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Abstract

Fluoroquinolone resistance in Salmonella Typhimurium is becoming a major concern.

Hence, an intervention to limit the growth in resistance is inevitable. One way to combat this

challenge is through combination therapy. The combination of antibiotics with phytochemi-

cals has become an ideal means of preventing antimicrobial resistance. Recently, in an in

vitro study, the combination of methyl gallate (MG) with marbofloxacin (MAR) has shown to

prevent Salmonella Typhimurium invasion. It is also worth to study the effects of plant

extracts on the pharmacokinetics of antibiotics. Hence, the objective of this study was to

determine the effect of MG on the pharmacokinetics of MAR and pharmacokinetics/pharma-

codynamics integration of MG and MAR. The micro-broth dilution method was used to

obtain the minimum inhibitory concentration (MIC), and fractional inhibitory concentration

(FIC) of MAR and MG. Whereas, the pharmacokinetic was conducted in rats by administer-

ing either MAR alone or combined with MG through oral and/or intravenous routes. The

results indicated that the MIC of MAR and MG against standard strain Salmonella Typhimur-

ium (ATCC 14028) was 0.031 and 500 μg/mL, respectively. The FICindex of the combination

of MAR and MG was 0.5. For orally administered drugs, the Cmax and AUC24h of MAR were

1.04 and 0.78 μg/mL and 5.98 and 6.11 h.μg/mL when MAR was given alone and in combi-

nation with MG, respectively. The intravenous administration of MAR showed a half-life of

3.8 and 3.9 h; a clearance rate of 1.1 and 0.73 L/h/kg and a volume of distribution of 5.98

and 4.13 L/kg for MAR alone and in combination with MG, respectively. The AUC24/MIC for

MAR alone and in combination with MG was 192.8 and 381.9 h, respectively. In conclusion,

MG has shown to increase the antimicrobial activity of MAR in vitro and ex vivo experiments

without affecting the pharmacokinetics of MAR in rats.

Introduction

The broad-spectrum efficacy of fluoroquinolones against a wide range of pathogenic bacterial

species has led to its extensive use globally with strict safety measures. However, even with

these guidelines, which aim to preserve the efficacy of these drugs, resistance to
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fluoroquinolones is still emerging at an alarming rate in several bacterial species [1]. Similarly,

multiple reports have indicated the development of fluoroquinolone resistance in Salmonella
along with various antibiotics [2]. Thus, an alternative to these drugs or other means of inter-

ventions, including drug combination, are required to limit the growth in resistance against

fluoroquinolones.

Drug combinations either with other groups of antibiotics or pairing with nonantibiotic

compounds are one approach to overcome drug-resistance [3]. However, a combination

might affect the pharmacokinetics (PK) and pharmacodynamic (PD) of an antimicrobial agent

[4,5]. Hence, their effectiveness relies on the association between the PK and PD properties of

the drugs [6]. Mechanism-based PK/PD are instrumental in keeping the balance between com-

bination therapy and maximizing drug efficacy [7]. The estimate of the clinical efficacy and

potency of the drugs depends on the integration of the PK and PD surrogate markers [8].

Hence, the PK/PD predictor indices are the bases for the selection of an appropriate drug and

optimize dosage formulation [9,10]. The ratio of the area under the plasma concentration-

time curve (AUC) to the minimum inhibitory concentration (MIC) and the ratio of the maxi-

mum concentration of the drug in plasma (Cmax) to the MIC are the main PK/PD predicting

indices for concentration-dependent antimicrobials [11]. However, the AUC/MIC ratio is

much preferable to determine the efficacy and potency of marbofloxacin (MAR), which is a

widely used antibiotic in veterinary medicine [12].

Recently, the utilization of herbal medicine in the treatment of various bacterial infections

has been increased due to their efficacy and potency [13]. Hence, the combination of antibiot-

ics with phytochemicals has become an ideal means of preventing antimicrobial resistance.

Previous reports indicated that methyl gallate (MG) (Fig 1A), a polyphenol plant, has shown

anti-quorum sensing, antioxidant, anti-inflammatory and anti-cancer activity [14,15]. The

antimicrobial activity of MG has been shown elsewhere in different bacterial agents [16–21].

This antimicrobial activity also extends to drug resistance pathogens like methicillin-resistant

Staphylococcus aureus (MRSA) [21], multi-drug resistant Shigella species [22] and multiple Sal-
monella strains [19].

Anti-quorum sensing is one of the mechanisms of MG’s antibacterial activity [15]. Recently

we have reported the anti-invasive activity and antibacterial mechanism of MG alone and in

combination with marbofloxacin (MAR) (Fig 1B) against Salmonella Typhimurium [23]. In

this study, we presented the synergistic effect of the combination of MG and MAR. These

results showed that MG affects the antibacterial and anti-invasive activity of MAR. On the

other hand, the PK of MAR has been reported in several previous studies. Another study pre-

sented the PK of MG in rats [24]. However, no previous study has been available on the effect

of MG on the PK of MAR. Therefore, in this study, we did the first stage of clinical application,

Fig 1. Structural diagram of Methyl gallate (A) and Marbofloxacin (B).

https://doi.org/10.1371/journal.pone.0234211.g001
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investigating the effects of MG on the PK of MAR in clinically healthy rats and computed the

PK/PD integration of both compounds.

Materials and methods

Chemicals, reagents and antibiotics

All chemicals, reagents, and antibiotics used in this study were procured from Sigma-Aldrich

(USA) unless otherwise specified.

Animal ethics

All procedures on animals were conducted in accordance with the internationally accepted

principles for laboratory animal use and care and the ethical requirements, guidance, and

approval of the Kyungpook National University, Animal Ethics Committee (2017-0159-1).

The experimental animals were used only for this study. At the end of the experiment, all the

rats were euthanized as per the guidelines of the Koreans Food and Drug Administration

(KFDA) using Carbon Dioxide. Carbon Dioxide was filled in a cage that contains two rats at a

flow rate of 5.6 L/min until the rats became unconscious. Finally, the death of the rats was con-

firmed by cervical dislocation and rats were checked for lack of respiration and faded aye color

before disposal.

Bacterial strains and culture method

Three different strains of Salmonella enterica serovar Typhimurium including two field isolates

from clinically infected pigs (one susceptible and another intermediately resistant to MAR)

and one control (ATCC 14028) were used in this study. Salmonella Typhimurium isolation

and identification were performed as described previously [25]. For the subsequent processes,

the bacteria were cultured at 37 ˚C in Luria Bertani (LB, Difco, BD, USA) broth or agar plate

under aerobic conditions.

Minimum inhibitory concentration and minimum bactericidal

concentration

The minimum inhibitory concentration (MIC) of MAR and MG was determined using the

micro-broth dilution method according to the guidelines of CLSI [26]. Briefly, a cation-

adjusted Muller Hinton II broth (MHBII, Difco) was used to make a twofold dilution of MAR

and MG starting from 1 μg/mL and 2000 μg/mL, respectively. Then, Salmonella Typhimurium

at a final concentration of 105 CFU/mL was added and cultured overnight at 37 ˚C under aero-

bic conditions, and the results were read using a microplate reader (Versa max, Molecular

devices, USA) at 600 nm. Whereas, the minimum bactericidal concentration (MBC), was

determined by transferring 20 μL of the suspension starting from the MIC onto LB agar plate

and incubating for 48 h. Each test was conducted at least three times in duplicate.

Fractional Inhibitory Concentration (FIC)

The Fractional inhibitory concentration (FIC) was used to determine the effect of the combi-

nation of MAR with MG using the Checkerboard method. A final concentration of 105 CFU/

mL of the bacteria was added to a different fractional concentration of MAR and MG. The

dilution was made in a 96-well plate and incubated aerobically for 24 h at 37 ˚C. Finally, the

results were read both visually and on a plate reader at 600 nm. The FIC index was calculated
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using the following equation as described previously [27]:

X
FICindex ¼

C MARcombination

MIC MARalone
þ
C MGcombination

MIC MGalone

Where, FIC is fractional inhibitory concentration, C is the lowest concentration of each drug

in the combination, and MIC is the minimum inhibitory concentration of each drug alone.

Pharmacokinetics study

The PK study was conducted on five weeks clinically healthy, male Sprague Dawley rats

(OrientBio Inc. Korea) with an average weight of 180–215 gm. The rats were acclimated to the

lab condition for one week and provided with ad libitum feed and water throughout the exper-

imental period. Ten rats were used with a four-way crossover method in two weeks interval

and received an equal single dosage of MAR (5 mg/kg) alone or in combination with MG (20

mg/kg) through the intravenous (IV) or oral routes. Three-hundred microliter of blood was

collected at 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12 and 24 h after administration using microvette con-

taining EDTA (Sarstedt, Numbrecht, Germany) from the tail vein. The blood was centrifuged

at 2000× g for 15 min at 4 ˚C and the plasma was stored at -70 ˚C until used for high-perfor-

mance liquid chromatography (HPLC) analysis. A non-compartmental analysis with a Linear

trapezoidal Linear interpolation calculation method fitted for the orally administered drugs.

Whereas, a one-compartment model with first-order input analysis fitted the plasma disposi-

tion and selected for plasma concentration analysis of an intravenously administered drugs.

The data were analyzed using nonlinear least-squares regression. A comparison of the mean

values of the PK parameters of MAR alone and in combination with MG was statistically eval-

uated using an unpaired t-test.

High-performance liquid chromatography analysis

MAR concentration in the plasma was measured by HPLC using a Hewlett Packard, Agilent

1100 series. The column temperature was set at 30 ˚C and the wavelength was detected at 293

nm. Fifty-μL of rat plasma was deproteinated by adding an equal amount of acetonitrile. The

sample mix was centrifuged at 14,000 rpm for 7 min and 20 μL of the supernatant was injected

into the column. The mobile phase consisted of 80% potassium phosphate buffer (20 mmol,

pH = 3), 10% acetonitrile and 10% methanol. The flow rate was set at 1 mL/min [28].

The standard and quality control (QC) samples were prepared using stock solutions of

MAR. The accuracy, precision and detection limits of the assays were determined by plotting

standard curves of a drug-free plasma spiked with the antibiotic using a high concentration of

MAR (50 μg/mL) in plasma and stepwise twofold dilutions (S1 Fig). The samples were also

used as a QC for intra- and inter-assays. The antibiotic stock solutions were kept at -20 ˚C

until used. Method validation was determined using the standard deviation and the slope of

the calibration curve, which was also used to calculate the detection (LOD) and quantitation

limit (LOQ) according to the FDA guidelines [29]. The LOD and LOQ were 0.048 and

0.16 μg/mL, respectively. The correlation of determination (R2) of the calibration curve from

0.05 to 50 μg/mL was 0.999. The retention time for MAR was 15.6 min. The intra- and inter-

assay coefficients of variation were< 10%. The linear regression equation was Y = 90.567�X–

79.779 (S1B Fig).

Ex vivo antibacterial effect of plasma samples

The ex vivo antibacterial activity of plasma was performed using sampled plasma from treated

rats at each time-point. Briefly, 25 μL of plasma from each time-point was added to 225 μL of
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MHBII broth containing Salmonella Typhimurium at a final concentration of 106 CFU/mL.

The suspension was incubated at 37 ˚C and samples were taken at 0, 1, 2, 4, 8, 12 and 24 h. The

suspension was serially diluted, plated on LB agar and incubated overnight at 37 ˚C for bacte-

rial counting. The antibacterial activity was determined using the following equation as previ-

ously described for orbifloxacin (Gebru et al., 2009).

E ¼ E0 þ
Imax � Ceγ

IC50

γ þ Ceγ

Where, E is the antibacterial effect, measured as the change in bacterial counts (log CFU/mL)

in the plasma sample after 24 h of incubation compared to the initial bacterial count; Imax is

the log10 difference of the bacterial counts of the control between 0 and 24 h; E0 is the log10 dif-

ference of the bacterial counts of the test sample containing MAR between 0 and 24 h, when

the count is 10 CFU/mL; Ce is the AUC0-24/MIC of the plasma; IC50 is the AUC0-24/MIC of

MAR to produce 50% of the maximal inhibitory effect; and γ is the Hill coefficient, which indi-

cates the sensitivity between the exposure and response.

Pharmacokinetics/Pharmacodynamics (PK/PD) integration indices

The PK/PD integration for MAR was performed as described for fluoroquinolones [12]. The

AUC24/MIC and Cmax/MIC were calculated from the PK and in vitro PD studies. The inhibi-

tory concentration (IC50) for the plasma samples were calculated to determine the efficacy of

the drugs.

Dosage formulation

The dosage for MAR alone and in combination with MG was calculated using the following

formula.

Dosage mg=kgð Þ ¼
AUC
MIC

� �
� CL�MIC
fu� F

Where, AUC is area under the concertation curve; MIC is the Minimum inhibitory concerta-

tion; CL is the clearance rate, fu is unbound fraction and F is the bioavailability.

Statistical analysis

The descriptive statistical analysis and IC50 were analyzed using Prism 6 (Graphpad, USA).

The PK parameters were analyzed with Phoenix WinNonlin version 8 (Pharsight Corp.,

St. Louis, MO, USA). Un-paired T-test was used to compare the test groups. P-value <0.05

was considered as statistically significant for all statistics used.

Results

The MIC and MBC of MAR against both Salmonella Typhimurium ATTC 14028 and field

strain-2 (S-2) were 0.031 and 0.125 μg/mL, respectively. Whereas, for the field strain 15 (S-15)

the MIC and MBC were 0.5 and 2 μg/mL, respectively. The MIC and MBC of MG for all the

three Salmonella Typhimurium strains were 500 and 1000 μg/mL, respectively (Table 1). The

FIC index for the combination of MAR with MG in all three strains was 0.5. The inhibitory

concentration of MAR and MG in the combination for ATCC14028 and S-2 were 0.008 and

125 μg/mL while it was 0.125 and 125 μg/mL for S-15 strain, respectively.

The effect of MG on the in vivo PK of MAR was determined using healthy rat models after

administering MAR alone and in combination with MG (Fig 2). The half-life of MAR
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administered orally alone and in combination with MG was 7.62 and 6.01 h, respectively. The

time required to reach the highest concentration (Tmax) was 0.5 and 2 h, whereas, the maxi-

mum concentration (Cmax) was 1.04 and 0.78 μg/mL for rats treated with MAR alone and

combined with MG, respectively. The overall AUC was 5.98 and 6.1 h.μg/mL for rats treated

with MAR alone and in combination with MG, respectively (Table 2). A significant difference

was observed for half-life (P = 0.0185), Tmax (P<0.0001), and volume of distribution. However,

no significant difference was observed between the two treatment groups for Cmax and AUC

(P>0.05).

The half-life of MAR administered intravenously alone and in combination with MG was

3.77 and 3.93 h, respectively. The overall AUC was 4.54 and 6.86 h.μg/mL for rats treated with

MAR alone and in combination with MG, respectively. The clearance rate was 1099.4 and

729.1 mL/h/kg whereas, the steady-state volume of distribution was 5985.6 and 4134.3 mL/kg,

which is significantly different (P = 0.009) after MAR was administered alone and in combina-

tion with MG, respectively (Table 3). The bioavailability (F) of MAR in rats given MAR alone

and in combination with MG was 131 and 89.1%, respectively.

Table 1. Pharmacodynamics of marbofloxacin and methyl gallate against Salmonella Typhimurium strains.

MIC (μg/mL) IC50 MBC (μg/mL) FICindex

MAR MG MAR MG MAR MG

ATCC 14028 0.031 500 0.03 58.75 0.13 1000 0.5

S-2 0.031 500 0.03 53.71 0.13 1000 0.5

S-15 0.5 500 0.275 25.64 2 1000 0.52

MIC, Minimum inhibitory concentration; MBC, Minimum bactericidal concentration; IC50, inhibitory concentration of 50% of the population; FICindex, Fractional

Inhibitory concentration index

https://doi.org/10.1371/journal.pone.0234211.t001

Fig 2. Pharmacokinetics plot of marbofloxacin alone and in combination with methyl gallate administered after

PO and IV routes at different time. A) MAR after oral administration B) MAR in combination with MG after oral

administration C) MAR after intravenous administration D) MAR in combination with MG after intravenous

administration; n = 10.

https://doi.org/10.1371/journal.pone.0234211.g002
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In the ex vivo experiment, the bacterial inhibitory activity of plasma from rats orally given

MAR alone observed from time-points 0.25 to 2 h (Fig 3A). Whereas, in combination with

MG the bacterial inhibitory activity was extended from 0.25 h to 4 h. The bactericidal activity

for orally treated rats was achieved within 4 h of incubation for the plasma collected from

time-point between 0.5 to 2 h, (Fig 3B). The bacterial inhibitory effect was observed from

time-point 0.25 to 2 h in rats treated with MAR alone and combined with MG after IV admin-

istration (Fig 3C and 3D). The mean slope of the curve of the AUC0-24/MIC is 5.4 and 10 for

MAR given alone and in combination with MG. Whereas, the Imax for MAR alone and in com-

bination with MG was 10.9 and 10.7, respectively. The IC50 was 406 and 504.8, respectively.

The efficacy of MAR was increased when it is administered in combination with MG (Fig 4,

Table 4).

The integration of the PK/PD after oral administration showed that the AUC24/MIC of

MAR after treatment with MAR alone and in combination with MG was 191.22 and 381.93,

respectively. The Cmax/MIC ratio was 33.39 and 49.06 for MAR administered orally alone and

Table 2. Pharmacokinetics parameters of marbofloxacin and methyl gallate after oral administration alone and

in combination with methyl gallate in rats.

Parameter Units MAR MGM

HL_Lambda_z h 7.62±0.37 6.01±0.5�

Tmax h 0.5±0.06 2±0.1�

Cmax ug/mL 1.04±0.4 0.78±0.2

AUCall h�ug/mL 5.98±1.6 6.11±1.3

Vz_F_obs mL/kg 7759.03±145.1 6534.15±83.9�

Cl_F_obs mL/h/kg 705.42±48.7 753.98±58

MRTlast h 4.51 4.46

HL_Lambda_Z: half-life; Tmax: time to reach the maximum concentration; Cmax: maximum concentration; AUC:

Area under the curve; Vz: volume of distribution; CL: total clearance; MRTlast: Mean residual time; MAR:

marbofloxacin and MGM: Combination of marbofloxacin and methyl gallate. n = 10.

� indicates significance difference (P<0.05).

https://doi.org/10.1371/journal.pone.0234211.t002

Table 3. Pharmacokinetics parameters of marbofloxacin and methyl gallate after intravenous administration

alone and in combination with methyl gallate in rats.

Parameter Units MAR MGM

V mL/kg 5986±620 4134.3±358�

K10 1/h 0.18±0.07 0.18±0.05

AUC h�ug/mL 4.55±1.42 6.86±1.81

K10_HL H 3.77±1.36 3.93±1.19

Cmax ug/mL 0.84±0.09 1.21±0.1�

CL mL/h/kg 1099.4±345 729.1±192

MRT H 5.44±1.96 5.67±1.7

Vss mL/kg 5985.98±620 4134.3±358

V: volume of distribution; K10: elimination rate; AUC: Area under the curve; K10_HL: half-life of the elimination

phase; Cmax: maximum concentration; CL: total clearance; MRTlast: Mean residual time; Vss: Volume of distribution

at the steady state n = 10.

� indicates significance difference (P<0.05).

https://doi.org/10.1371/journal.pone.0234211.t003
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Fig 3. Time-kill assay of plasma after treatment with MAR and MG. A) MAR alone given orally; B) MAR combined with MG given orally; C) MAR

alone given IV and D) a combination of MAR and MG given IV; n = 6.

https://doi.org/10.1371/journal.pone.0234211.g003

Fig 4. Ex-vivo sigmoidal inhibitory effect of MAR alone and in combination with MG. A) MAR administered orally alone B)

MAR administered orally in combination with MG; n = 6.

https://doi.org/10.1371/journal.pone.0234211.g004
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in combination with MG after oral routes of administration, respectively (Table 5). A statisti-

cally significant difference was observed.

The calculated dosage showed that the combination of MAR with MG reduces the given

dosage by 40% in rats. The bacteriostatic dosage for MAR is 6.2 mg/kg, whereas in combina-

tion with MG it reduced to 3.7 mg/kg. Moreover, the bactericidal and bacterial elimination

dosage decreased from 7.7 to 4.2 mg/kg and from 8.3 to 4.3 mg/kg for MAR administered

alone and in combination with MG, respectively (Table 5).

Discussion

Marbofloxacin has been used for the treatment of various infectious agents in veterinary medi-

cine. In addition, several reports are available on their PK and PD indices in various animal

species [12,30,31]. Recently, we have indicated that MG produced a synergistic effect in combi-

nation with MAR in preventing Salmonella Typhimurium invasion and intracellular survival

[23]. However, no reports are available concerning the effect of MG on the PK of MAR.

Hence, in this study, we investigated the antimicrobial activity of MAR and MG against the

field and standard strains of Salmonella Typhimurium and the effect of MG on the PK of

MAR using healthy rats. In addition, we determined the PK/PD integration of MAR and MG

since this provides information about the optimal dosage, the antibiotic effect and reducing

drug resistance [32].

Table 4. Antibacterial effect of marbofloxacin administered alone and in combination with methyl gallate after

oral administration.

Parameter MAR MGM

Imax 10.86±0.58 10.66±1.14

IC50 405.99±11.78 584.75±30.06��

E0 4.05±0.29 3.6±0.67

Gamma 5.41±1.46 10±5.51

Imax: maximum inhibitory response (difference in the log of number of bacteria (CFU/mL) in the control sample);

IC50: Concentration at which 50% of maximum inhibition; E0: the difference in the log number of bacteria in the

sample treated with MAR between 0 and 24; Gamma: Exponent for sigmoid Imax model. MAR: marbofloxacin and

MGM: Combination of marbofloxacin and methyl gallate. n = 6.

� indicates significance difference (P<0.05).

https://doi.org/10.1371/journal.pone.0234211.t004

Table 5. Pharmacokinetics/pharmacodynamic indices of marbofloxacin and its dosage administered alone and in

combination with methyl gallate after oral administration.

MAR MGM

AUC24/MIC (h) 191.22 381.93�

Cmax/MIC 33.39 49.06�

Bacteriostatic dosage (mg/kg) 6.20 3.70

Bactericidal dosage (mg/kg) 7.65 4.16

Bacterial elimination dosage (mg/kg) 8.3 4.34

AUC: Area under the curve; MIC: Minimum inhibitory concentration; Cmax: maximum concentration; MAR:

marbofloxacin and MGM: Combination of marbofloxacin and methyl gallate.

� indicates significance difference (P<0.05).

https://doi.org/10.1371/journal.pone.0234211.t005
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A previous study showed that the maximum plasma concentration after intraperitoneal

administration of 20 mg/kg of MG is 6.4 μg/mL [24]. However, this concentration is much

smaller than the MIC of MG against Salmonella Typhimurium. Hence, we did not include the

PK of MG in this study. However, if MG is administered orally, due to the limited absorption,

it can only act locally in the small intestine where Salmonella Typhimurium resides. As we pre-

viously indicated, MG can inhibit Salmonella Typhimurium adhesion and invasion in the cells

of the intestine and macrophages [23]. Hence, the antibacterial effect of MG will be more sig-

nificant locally in the intestine than being systemic. However, this phenomenon should be sup-

ported by clinical trials in the future.

The antimicrobial activity of MG against various bacterial agents, including MRSA, Escheri-
chia coli, S. enteritidis, Vibrio cholerae, Shigella species has been reported previously

[17,18,20,21,33]. In this study, we have also confirmed its antimicrobial activity using a stan-

dard control and field strains of Salmonella Typhimurium isolated from clinical infections of

pigs. In all the strains, MG has shown similar antimicrobial activity with the same concentra-

tion. The results are comparable with those observed in E. coli (250 μg/mL), and Salmonella
strains (500 μg/mL) [17]. However, our MIC results are relatively higher than those reported

in Shigella species (128–256 μg/mL) [20], MRSA (50 μg/mL) [21] and Salmonella strains from

Chicken and human (3.9–125 μg/mL) [19] and also lower than those recorded in Klebsiella
oxytoca (1000 μg/mL), Actinomyces viscosus (1000 μg/mL), Streptococcus mutans, S. sobrinus
(2000–4000 μg/mL), and Lactobacillus species (8000 μg/mL) [16,17]. The observed differences

might be due to variation in the bacterial strains, hosts, and epidemiology of the study area.

Salmonella Typhimurium resistance to fluoroquinolones is emerging and becomes a global

concern [34]. Frequent usage and overdosage of a given antibiotic are related to the incidence

of drug resistance. Hence, in addition to appropriate dosage formulation, drug combination is

critical and effective in certain types of infections in reducing the risk of occurrence of multi-

drug resistance strains [3]. In our study, it is shown that the presence of MG has increased the

efficacy of MAR, and their combination showed a synergistic effect against both susceptible

and relatively resistant field isolates of Salmonella Typhimurium. Our result agrees with previ-

ous reports which showed the synergistic effect of the combination of MG with nalidixic acid

and ciprofloxacin [16,17]. This synergism has significant importance in reducing the antimi-

crobial resistance specifically for MAR or related antimicrobials [35]. MG has been shown to

destabilize bacterial cell membrane integrity and affects the membrane potential, which results

in an influx of antimicrobials, and might contribute to the synergism effect of both compounds

[20,36,37].

Furthermore, the early killing of bacteria in the presence of MG contributes to reducing the

contact time of the bacteria with MAR. The continuous exposure of microbial agents to con-

centration-dependent antibiotics increases the rate of development of resistance which can

transfer to other antimicrobials either in the same or different groups [30]. Hence, reducing

the exposure time of the bacteria with the antibiotic, as seen in MAR in combination with MG,

could prevent the emergence of drug-resistant strains.

The AUC of MAR has increased upon the combination with MG whereas, the Cmax was

slightly decreased without statistical significance difference after oral administration. The Tmax

of MAR also increased when combined with MG. Tmax shows the extent and rate of drug

absorption and the higher Tmax might result in the slow absorption of the drug. Even though

the rate is different, the total amount of absorption, as seen in the AUC, which indexed the

drug exposure of the body and its absorption did not show a significant difference [38]. This

might be due to a slow rate of absorption due to increased Tmax and lower volume but even

distribution of MAR. In addition, the slight decrease in the rate of clearance, the increase in

the half-life and mean residence time (MRT) of MAR indicates that MG might protect the

PLOS ONE Pharmacokinetic-pharmacodynamic integration of marbofloxacin and methyl gallate

PLOS ONE | https://doi.org/10.1371/journal.pone.0234211 June 4, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0234211


degradation of MAR and can be used in improving the dosing regimen of MAR [39]. The

short half-life observed for the combination of MAR and MG can have a near-instant effect

and can be used for acute infections. Besides, it helps to reduce residual side effects which can

be seen in drugs with long half-lives. This can further decrease the toxicity of MAR which can

arise due to increased dosage. MAR has a higher percentage of bioavailability after oral admin-

istration [40]. This higher bioavailability is not significantly affected by the co-administration

of MG.

After an intravenous administration, the volume of distribution and Cmax showed a signifi-

cant difference. The highest concentration achieved for IV administered drugs is equal if the

equal dosage is given [41]. In this study, the same dosage regimen was given for both IV and

orally administered drugs. Hence, there is no need to consider the Cmax for the IV given drug.

The volume of distribution of MAR increased when administered alone in comparison to the

combined drugs after IV administration. Since dosing is proportional to the volume of distri-

bution, it can indicate the extent of drug distribution and aid in the determination of dosage

requirements. This could suggest that the MAR is distributed in the tissue and more dosage

might be required to increase the plasma concentration when administered alone. In contrast,

the decrease in the calculated dosage for the combination of MG and MAR might be attributed

to the decrease in the volume of distribution. This also suggests that MG might reduce the

dilution of MAR in the plasma or it decreased the plasma protein binding of MAR.

In combination with MG, the antibacterial activity of MAR in the plasma has increased sig-

nificantly and was sufficient to kill the bacteria immediately after administration. This could

attribute to the less protein binding ability of MAR. In which the presence of MG might fur-

ther decrease its plasma protein binding activity and contribute to its increased antibacterial

activity [12].

The in vitro PD results alone are not sufficient for clinical trials and applications. Thus, its

integration with the in vivo PK properties of the drugs should also be evaluated [42]. In addi-

tion, the AUC/MIC surrogate marker is the best PK/PD index to describe the efficacy and give

a better predictive value of MAR [11,12]. Hence, in this study, we determined the integration

of PK/PD surrogate markers. The AUC/MIC ratio obtained in MAR administered in combi-

nation with MG was relatively higher than the MAR given alone. Even though, the ratios of

both MAR alone and in combination with MG exceeded a value of 125, which is a recom-

mended value to avoid the risk of resistance induction in fluoroquinolones, the ratio near to

the value of 400 shows an optimal condition [12]. Furthermore, the Cmax/MIC ratio is 8–10

times higher than the conventional surrogate value for Gram-negative bacteria. Moreover, the

obtained Cmax showed a higher value than the MIC of each strain examined, showing the effi-

cacy of the drug to kill the bacteria with sufficient concentration in the plasma.

The computed dosage showed that the presence of MG helps to reduce the total amount of

MAR to be administered in comparison to administering MAR alone with better efficacy in

rats. This could also apply in other species of animals. Even though decreasing the dose of anti-

biotics for economic benefits or misguided by PK/PD perceptions will decrease the AUC/MIC

ratio and increase the pressure for the occurrence of drug resistance, the risk can be avoided

by the combination therapy [11]. In general, our data suggested an increase in the potency and

decrease the risk of development of antimicrobial resistance against MAR when combined

with MG [12].

Conclusions

In conclusion, in this study, we investigated the effect of MG on the PK of MAR, and its PK/

PD integration with MAR for the first time using in vitro, ex vivo and in vivo rat experiments
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as a preclinical trial of the combination of MG and MAR. The in vitro experiments showed a

synergistic activity of MAR and MG. Furthermore, the combination of MAR with MG

increased its ex vivo antibacterial effects without affecting the PK of MAR. The detection limit

of MG in the plasma after oral administration of a combination of MG and MAR at the 20 mg/

kg dose was very low. This indicates that a relatively small amount of MG was absorbed. These

could attribute to the insignificant effect of MG on the pharmacokinetics of MAR. This has a

paramount significance in lowering drug resistance, which occurs by frequent use of a single

antibiotic and its application in a higher dosage. In addition, a dose-use regimen for antimi-

crobial therapy in rats has recently been proposed. However, in the current study, we have

used a low number of sample size and bacterial strains. Hence, we recommend further investi-

gation of the PK and PK/PD integration of MAR and MG in clinically challenged animals and

population PK studies in natural hosts. The low detection limit of MG in the serum samples

was the major challenge we observed in this study. Hence, we recommend further study for

the quantification of MG from serums. Besides, further study on the mechanism of action of

the combination of the two compounds should be carried out.

Supporting information

S1 Fig. Chromatogram and standard curve plasma with MAR. A) Chromatogram of MAR

after plasma was treated with 10 μg/mL of MAR B) The standard curve of MAR after two-fold

dilution in free plasma.
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