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Renal cell carcinoma (RCC) is the most common renal cancer in adults. The histopathologic 
classification of RCC is essential for diagnosis, prognosis, and management of patients. 
Reorganization and classification of complex histologic patterns of RCC on biopsy and surgical 
resection slides under a microscope remains a heavily specialized, error-prone, and time-consuming 
task for pathologists. In this study, we developed a deep neural network model that can accurately 
classify digitized surgical resection slides and biopsy slides into five related classes: clear cell RCC, 
papillary RCC, chromophobe RCC, renal oncocytoma, and normal. In addition to the whole-slide 
classification pipeline, we visualized the identified indicative regions and features on slides for 
classification by reprocessing patch-level classification results to ensure the explainability of our 
diagnostic model. We evaluated our model on independent test sets of 78 surgical resection whole 
slides and 79 biopsy slides from our tertiary medical institution, and 917 surgical resection slides 
from The Cancer Genome Atlas (TCGA) database. The average area under the curve (AUC) of our 
classifier on the internal resection slides, internal biopsy slides, and external TCGA slides is 0.98 
(95% confidence interval (CI): 0.97–1.00), 0.98 (95% CI: 0.96–1.00) and 0.97 (95% CI: 0.96–0.98), 
respectively. Our results suggest that the high generalizability of our approach across different data 
sources and specimen types. More importantly, our model has the potential to assist pathologists 
by (1) automatically pre-screening slides to reduce false-negative cases, (2) highlighting regions 
of importance on digitized slides to accelerate diagnosis, and (3) providing objective and accurate 
diagnosis as the second opinion.

Kidney cancer is among the ten most common cancers  worldwide1,2, and approximately 90% of all kidney can-
cers are renal cell carcinoma (RCC)3. The classification of RCC consists of three major histologic RCC subtypes. 
Clear cell renal cell carcinoma (ccRCC) is the most common subtype (around 75% of all cases), papillary renal 
cell carcinoma (pRCC) accounts for about 15–20% of RCC, and chromophobe renal cell carcinoma (chRCC) 
makes up approximately 5% of RCC 4. The classic morphologic features of ccRCC include compact, alveolar, 
tubulocystic or rarely papillary architecture of cells with clear cytoplasm and characteristic network of small, 
thin-walled  vessels5. Papillae or tubulopapillary architecture with fibrovascular cores and frequently with foamy 
macrophages are identified pRCC 6. Of note, although renal oncocytoma is the most common benign renal tumor 
type, it still remains difficult to distinguish clinically from renal cell carcinoma including chRCC 7. There are well-
documented disparities in histologic appearances of chRCC and renal oncocytoma: chRCC shows prominent 
cell border, raisinoid nuclei and perinuclear halo, while oncocytoma displays nested architecture with myxoid 
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or hyalinized stroma and cells with eosinophilic or granular cytoplasm and small round nuclei. However, the 
eosinophilic variant of chRCC can mimic the histologic features of oncocytoma, given their similar  histogenesis8.

Histological classification of RCC is of great importance in patient’s care, as RCC subtypes have significant 
implication in the prognosis and treatment of renal  tumors9–11. Inspection and examination of complex RCC 
histologic patterns under the microscope, however, remain a time-consuming and demanding task for patholo-
gists. The manual classification of RCC has shown a high rate of inter-observer and intra-observer  variability12, 
as renal tumors can have varied appearances and combined morphologic features, making classification difficult. 
With the advent of whole-slide images in digital pathology, automated histopathologic image analysis systems 
have shown great promise for diagnostic  purposes13–15. Computerized image analysis has the advantage of provid-
ing a more efficient, objective, and consistent evaluation to assist pathologists in their medical decision-making 
processes. In recent years, significant progress has been made in applying deep learning techniques, especially 
convolutional neural networks (CNNs), to a wide range of computer vision tasks as well as biomedical imaging 
analysis  applications16–18. CNN-based models can automatically process digitized histopathology images and 
learn to extract cellular patterns associated with the presence of  tumors19–21.

In this study, we developed a CNN-based model for classification of renal cell carcinoma based on surgical 
resection slides. We used resection slides from our tertiary medical institution, Dartmouth-Hitchcock Medical 
Center (DHMC), which include rare subtypes, such as normal, renal oncocytomas, and chRCC, for the develop-
ment of our model. We evaluated this model on 78 independent surgical resection slides from our institution and 
917 surgical resection RCC slides from The Cancer Genome Atlas (TCGA) database. Furthermore, we evaluated 
this model for RCC classification on 79 biopsy slides from our institution. The study presented in this paper 
utilizes deep neural networks to automatically and accurately differentiate RCC from benign renal tumor cases 
and classify RCC subtypes on both surgical resection and biopsy slides.

Results
Table 1 summarizes the per-class and average evaluation of our model on the first test set of surgical resection 
whole-slide images from DHMC. Our model achieved a mean accuracy of 0.97, a mean precision of 0.94, a mean 
recall of 0.92, a mean F1-score of 0.92, and a mean AUC of 0.98 (95% CI: 0.97–1.00) on this internal test set of 
resection slides. Table 2 shows the performance summary of our model on whole-slide images from the kidney 
renal carcinoma collection of the TCGA databases. We achieved high performance on these external resection 
whole-slide images with a mean accuracy of 0.95, a mean precision of 0.92, a mean recall of 0.90, a mean F1-score 
of 0.91, and a mean AUC of 0.97 (95% CI: 0.96–0.98). Table 3 presents the per-class and mean performance 
metrics of our model on 79 biopsy whole-slide images from DHMC. Our model shows great generalizability on 

Table 1.  Model’s performance on 78 surgical resection whole-slide images in our independent test set from 
DHMC. The 95% confidence interval is also included for each measure.

Subtype Accuracy Precision Recall F1-score AUROC

Normal 1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

Oncocytoma 0.97
(0.95–1.00)

1.00
(1.00–1.00)

0.80
(0.63–0.95)

0.89
(0.77–0.97)

0.97
(0.91–1.00)

Chromophobe RCC 0.94
(0.90–0.97)

0.93
(0.84–1.00)

0.78
(0.65–0.89)

0.85
(0.76–0.92)

0.98
(0.95–1.00)

Clear cell RCC 0.97
(0.95–1.00)

0.91
(0.83–0.98)

1.00
(1.00–1.00)

0.95
(0.91–0.99)

0.98
(0.96–1.00)

Papillary RCC 0.96
(0.94–0.99)

0.87
(0.78–0.95)

1.00
(1.00–1.00)

0.93
(0.88–0.97)

0.99
(0.98–1.00)

Average 0.97
(0.95–0.98)

0.94
(0.91–0.97)

0.92
(0.87–0.95)

0.92
(0.88–0.96)

0.98
(0.97–1.00)

Table 2.  Model’s performance metrics and their 95% confidence intervals on 917 surgical resection whole-
slide images from the TCGA database.

Subtype Accuracy Precision Recall F1–score AUROC

Normal 1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

Chromophobe RCC 0.96
(0.96–0.97)

0.86
(0.82–0.89)

0.82
(0.78–0.85)

0.84
(0.81–0.86)

0.97
(0.95–0.98)

Clear cell RCC 0.91
(0.90–0.92)

0.98
(0.97–0.98)

0.86
(0.85–0.87)

0.91
(0.91–0.92)

0.95
(0.94–0.97)

Papillary RCC 0.92
(0.92–0.93)

0.85
(0.83–0.87)

0.93
(0.92–0.95)

0.89
(0.87–0.90)

0.96
(0.95–0.97)

Average 0.95
(0.95–0.96)

0.92
(0.91–0.94)

0.90
(0.89–0.92)

0.91
(0.90–0.92)

0.97
(0.96–0.98)
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the internal biopsy test set, with a mean accuracy of 0.97, a mean precision of 0.97, a mean recall of 0.93, a mean 
F1-score of 0.95, and a mean AUC of 0.98 (95% CI: 0.96–1.00).

Of note, our pipeline is the same for resection and biopsy slides and processes each slide using the same 
method and parameters. Typical biopsy core specimens include 2 to 8 biopsy cores. In this study, the biopsy 
cores were analyzed and evaluated together at the slide level. Some biopsy cores may only consist of benign 
renal parenchyma, and some biopsy cores may contain an insufficient amount of lesional tissue; therefore, our 
approach considered all biopsy cores together at the level of slide.

The confusion matrices for each of our three test sets are shown in Fig. 1. Overall, the normal cases could 
be easily recognized by our model, whereas a minor portion of oncocytoma cases could be misclassified as 
chromophobe RCC and papillary RCC in both surgical resection cases and biopsy cases. We provide a detailed 
error analysis in the discussion section. The Receiver Operating Characteristic (ROC) curves of all the test sets 
are plotted in Fig. 2.

Table 3.  Model’s performance metrics and their 95% confidence intervals on 79 biopsy whole-slide images 
from DHMC.

Subtype Accuracy Precision Recall F1–score AUROC

Oncocytoma 0.96
(0.94–0.99)

1.00
(1.00–1.00)

0.87
(0.79–0.95)

0.93
(0.88–0.98)

1.00
(1.00–1.00)

Clear cell RCC 0.96
(0.94–0.99)

1.00
(1.00–1.00)

0.91
(0.85–0.97)

0.95
(0.92–0.98)

0.95
(0.89–1.00)

Papillary RCC 0.97
(0.95–1.00)

0.91
(0.83–0.98)

1.00
(1.00–1.00)

0.95
(0.91–0.99)

0.99
(0.97–1.00)

Average 0.97
(0.94–0.99)

0.97
(0.94–0.99)

0.93
(0.88–0.97)

0.95
(0.90–0.98)

0.98
(0.96–1.00)

Figure 1.  Each confusion matrix compares the classification agreement of our model with pathologists’ 
consensus for each of our three test sets: (a) surgical resection whole-slide images from DHMC, (b) surgical 
resection whole-slide images from TCGA, and (c) biopsy whole-slide images from DHMC.

Figure 2.  Receiver operating characteristic curves for (a) surgical resection whole-slide images from DHMC, 
(b) surgical resection whole-slide images from TCGA, and (c) biopsy whole-slide images from DHMC.
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We visualize the patches on whole-slide images in our test sets with a color-coded scheme according to the 
classes predicted by our model. This visualization provides pathologists with insights into the major regions and 
features that contribute to the classification decisions of our method, to avoid the “black-box” approach toward 
the outputs. Figure 3 shows a sample visualization for slides from each test set. More visualization examples 
from the DHMC surgical resection test set are included in Figure S1 in the Supplementary Material. In addi-
tion, Figure S3 shows the visualization of patch-level classifications using GradCAM method to enhance the 
interpretability of our  model22.

Discussion
Classification of renal cell carcinoma subtype is a clinically important task that enables clinicians to predict 
prognosis and to choose the optimal management for patients with RCC. Different RCC subtypes may have 
different prognosis, underlining the importance of differentiation of these subtypes. Clear cell RCC has a worse 
prognosis compared to chromophobe or papillary RCC at the same  stage23–26. Of note, the most common benign 
renal tumor is oncocytoma (3–7% of all renal tumors) and is known for mimicking RCC on histology  slides27. 
Therefore, it is very important to recognize different subtypes of RCC as well as benign renal neoplasms such 
as oncocytoma.

This study proposed and evaluated a deep neural network model for automated renal cell carcinoma clas-
sification on both surgical resection and biopsy whole-slide images. We chose ResNet-18 architecture as the 
backbone of our pipeline, which involved a patch-prediction aggregation strategy. Our final model achieved an 
average F1-score of 0.92, 0.91, and 0.95 for independent resection whole-slide image test sets from DHMC and 
TCGA databases, and DHMC biopsy whole-slide images, respectively. This study is the first step toward utiliz-
ing deep learning methods to automatically classify RCC subtypes and oncocytoma on histopathology images.

Previous work on machine learning applications to kidney cancer histopathology is mostly focused on resec-
tion slides and three RCC subtypes, without the consideration of benign or oncocytoma classes, with validation 
on a single test  set17,28–30. To distinguish between chRCC and oncocytoma classes, which are less common in 
public datasets, we used region-of-interest annotations to develop a highly accurate patch classifier. Recently, a 
combination of a convolutional neural network and directed cyclic graph-support vector machine (DAG-SVM) 
was used for the classification of three RCC subtypes using the TCGA  dataset17. Another common method in 
digital pathology is using a weakly supervised approach with a multiple instance learning framework to train a 
diagnostic model without region-of-interest  annotations31,32. Our study stands out from this previous study for 
several reasons: (1) our approach follows a more intuitive methodology based on patch-level confidence scores 
and achieved an average AUC of > 0.95 on the test sets; (2) our method was evaluated on both DHMC and TCGA 
datasets to show its generalizability on surgical resection whole-slide images, establishing a strong baseline for 
future studies in the classification of renal cell carcinoma subtypes; (3) our study includes identification of benign 
renal neoplasm, oncocytoma, in addition to all major RCC subtypes; and (4) we showed the application and 
generalizability of our model to a test set of biopsy whole-slide images, which also achieved promising results.

Of note, because the TCGA dataset is focused on malignant cancer cases, oncocytoma, a benign subtype, does 
not exist among the TCGA whole-slide images. Therefore, this subtype was not included in the surgical resection 
slides in our external test set. Additionally, chromophobe RCC makes up about 5% of RCC occurrences and 
we could only identify a few chromophobe biopsy slides at DHMC. Similarly, for clinical purposes, only a few 
normal biopsy slides are stored at DHMC, as more emphasis is put on renal tumor biopsy slides. Considering the 
prevalence and availability of chromophobe biopsy slides, and the availability of normal slides at our institution, 
we excluded chromophobe RCC and normal class from our biopsy test set, and evaluated our model on the two 
major RCC subtypes (i.e., clear cell RCC and papillary RCC) and the major renal benign tumor type (i.e., renal 
oncocytoma). Notably, the generalizability of our model to biopsy whole-slide images has a wide range of appli-
cation, as it could assist clinicians with fast and reliable diagnoses and follow-up recommendations for patients.

Manual histopathological analysis is a tedious and time-consuming task that could induce errors and vari-
ability among different pathologists. Our model addresses this limitation by providing a new technology that 
has the potential to help pathologists achieve a more efficient, objective, and accurate diagnosis and classification 
of renal cell carcinoma. In particular, our approach could provide clinical assistance and a second opinion to 
general surgical pathologists that are not specialized in genitourinary pathology.

Our error analysis shown in Figure S2 in the Supplementary Material demonstrates that the misclassifications 
of our model are mainly due to the atypical morphologic patterns in the histopathologic images. In the DHMC 
resection test set, chromophobe RCC is misclassified as clear cell RCC because of the substantial clear cytoplasm 
and thin walled vasculature in the images (Figure S2a). Oncocytoma is misclassified as chromophobe RCC or 
papillary RCC due to focal tubular growth pattern and less characteristic stroma present (Figure S2b). In the 
TCGA test set, papillary RCC is misclassified as clear cell RCC due to focal tumor cells with clear cytoplasm and 
thin walled vasculature (Figure S2c) and clear cell RCC is misclassified as papillary RCC due to focal papillary 
formation and less clear cytoplasm (Figure S2d). In the DHMC biopsy test set, we observed focal tubular growth 
pattern and tumor cell cluster formation in oncocytoma cases, and these patterns share overlaying features with 
pRCC and may be mistakenly recognized as pRCC by our model. In our model’s errors for ccRCC cases, the 
tumor area consisted less than 5% of whole tissue, which was below the abnormality threshold in our approach 
and caused misclassification (Figure S3). Additional error analysis at whole-slide level is included in Figure S3 
in Supplementary Materials.

As a future direction, we plan to expand our dataset and test sets through external collaborations for a more 
robust and extensive evaluation of RCC subtypes. This extension will include rare subtypes and classes, such 
as clear-cell papillary renal cell carcinomas. In addition, Table S3 in Supplementary Materials shows the model 
performance on the TCGA test set, stratified by Fuhrman grade. We plan to investigate and identify salient 
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Figure 3.  Examples of visualized slides from our test sets with highlighted regions of interest for predicted 
classes using our model. Clear cell RCC and papillary RCC classes are common among the three test sets and 
thus are used for this illustration. Top row: A surgical resection whole-slide image in the DHMC test set. Middle 
row: A surgical resection whole-slide image from the TCGA test set. Bottom row: A biopsy whole-slide image 
from DHMC.
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morphological features in high-grade cases in future work. According to our error analysis, one of our model’s 
limitations is the misclassification of clear cell RCC as normal in the biopsy slides. To address this limitation, we 
will pursue developing an adaptive thresholding method that is attentive to differences between biopsy slides 
and resection slides. With more available data for rare classes, we expect weakly supervised frameworks could 
potentially remove the thresholding requirement for aggregation; however, aggregation methods such as recur-
rent neural networks (RNNs) that are used in these weakly supervised approaches could negatively affect the 
interpretability of these models. Moreover, recent studies suggest that weakly supervised learning frameworks 
with attention mechanisms are effective for whole-slide classification, which we can utilize in conjunction with 
our fully-supervised learning method to further improve the accuracy of our  model33,34. Another direction of 
improvement is to utilize graph-based approaches, such as Slide  Graph35, to capture the location information of 
features in whole-slide classification. Of note, our proposed whole-slide inference utilizes aggregation of patch-
level predictions, and is permutation invariant and does not consider the location information of patches. Finally, 
we plan to implement a prospective clinical trial to validate this approach in clinical settings and quantify its 
impact on the efficiency and accuracy of pathologists’ diagnosis of renal cancer.

Materials and methods
Data collection. A total of 486 whole-slide images were collected from patients who underwent renal resec-
tion, including 30 normal slides with benign renal parenchyma and no renal neoplasm, from 2015 to 2019 from 
Dartmouth-Hitchcock Medical Center or DHMC, a tertiary medical institution in New Hampshire, USA. These 
hematoxylin and eosin (H&E) stained surgical resection slides were digitized by Aperio AT2 scanners (Leica 
Biosystems, Wetzlar, Germany) at 20× magnification (0.50 µm/pixel). We partitioned these slides into a train-
ing set of 385 slides, a development (dev) set of 23 slides, and a test set of 78 slides. Additionally, we collected 
79 RCC biopsy slides from 2015 to 2017 from DHMC, as well as 917 whole-slide images of kidney cancer from 
TCGA for external validation. This study and the use of human participant data in this project were approved by 
the Dartmouth-Hitchcock Health Institutional Review Board (IRB) with a waiver of informed consent. The con-
ducted research reported in this article is in accordance with this approved Dartmouth-Hitchcock Health IRB 
protocol and the World Medical Association Declaration of Helsinki on Ethical Principles for Medical Research 
involving Human  Subjects36. The distribution of whole-slide images that were used in this study is summarized 
in Table 4. Additional information about inclusion and exclusion criteria for DHMC datasets are included in 
Supplementary Materials, Appendix A.

Data annotation. Two pathologists (R.R. & B.R.) from the Department of Pathology and Laboratory Medi-
cine at DHMC manually annotated the surgical resection whole-slide images in our training and development 
sets. In this annotation process, bounding boxes outlining regions of interest (ROIs) for each subtype were gen-
erated using Automated Slide Analysis Platform (ASAP), a fast viewer and annotation tool for high-resolution 
histopathology  images37. Each ROI was associated and labeled as clear cell RCC, papillary RCC, chromophobe 
RCC, oncocytoma, or normal. All annotated ROIs were confirmed by one pathologist at a time before being 
broken into fixed-size patches for our model training and validation steps.

Deep neural network for patch classification. Given the large size of high-resolution histology images 
and the memory restrictions of currently available computer hardware, it is not feasible to analyze a whole-slide 
image all at once. Therefore, in this work, we use a computational framework developed by our group that relies 
on deep neural network image analysis on small fixed-size patches with an overlap of 1/3 from the whole-slide 
 images38. These results are then aggregated through a confidence-based inference mechanism to classify the 
whole-slide images. As a result, this framework allows us to analyze a high-resolution, whole-slide image with a 
feasible memory requirement. Figure 4 shows the overview of our model in this study.

To do this, we utilized a sliding window  approach38 on the annotated ROIs in our training and development 
sets to generate fixed-size (i.e., 224 × 224 pixels) patches. To balance the dataset, we randomly selected the same 
number of 12,240 patches from the training set for each subtype. The distribution of this patch-level dataset is 
available in Table S1 in the Supplementary Material. We normalized the color intensity of patches and applied 

Table 4.  Distribution of the collected whole-slide images among renal cell carcinoma and benign subtypes. 
“–” indicates the corresponding subtype was not available in the dataset.

Histologic subtype

Surgical resection WSIs Biopsy WSIs

DHMC TCGA DHMC

Training set Dev set Test set #1 Test set #2 Test #3

Normal 15 5 10 9 –

Renal oncocytoma 14 3 10 – 24

Chromophobe RCC 15 5 18 109 –

Clear cell RCC 285 5 20 505 34

Papillary RCC 56 5 20 294 21

Total 385 23 78 917 79
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standard data augmentation methods, including random horizontal and vertical flips, random 90° rotations, and 
color jittering. For model training, we tried four variations of residual neural network (ResNet) architecture with 
different numbers of layers: ResNet-18, ResNet-34, ResNet-50 and ResNet-101. All the networks were initialized 
using He  initialization39. These models used the multi-class cross entropy loss function and were trained for 40 
epochs with an initial learning rate of 0.001. The learning rate was reduced by a factor of 0.9 every epoch during 
the training. The trained models assign a label with a confidence score (i.e., a prediction probability between 
0 and 1) for each patch. We compared the trained models in our cross-validation process. Among the trained 
models, we selected a ResNet-18 model, which achieved the best average F1-score of 0.96 on the development set, 
for further whole-slide inference. The model’s performance on the development set is summarized in Table S2 
in the Supplementary Material.

Whole-slide inference. For whole-slide classification, our approach aggregated patch-level predictions 
based on their confidence scores. For each whole-slide image, we automatically processed the image by remov-
ing the white background, breaking down the remaining areas in each whole-slide image into fixed-size (i.e., 
224 × 224 pixels) patches, and feeding the patches to our trained deep neural network to generate a pool of patch-
level predictions. Of note, to enhance the robustness of our method, we removed all low-confidence patches 
from this pool so that their confidence scores were less than the threshold of 0.9. We performed a grid search to 
find the best threshold for the patch-level confidence score on the development set.

To aggregate the patch-level predictions, we computed the percentage of patches that belongs to each class in 
the pool of patches from a whole-slide image. We applied a grid-search optimization on patch-based statistics in 
the development set to build our inference criteria for whole-slide inference. In our whole-slide image inference 
criteria, if any of the renal subtypes (i.e., clear cell RCC, papillary RCC, chromophobe RCC, or oncocytoma) 
accounted for more than 5.0% of the total number of patches, we labeled the whole-slide image as an abnormal 
class with the greatest number of patches. Otherwise, we classified the whole-slide image as overall normal. The 
details of our grid search process are included in Supplementary Materials, Appendix B.

Evaluation metrics and statistical analysis. To show the accuracy and generalizability of our approach, 
we evaluated our method on three different test sets: (1) 78 independent surgical resection whole-slide images 
from DHMC, (2) 917 surgical resection whole-slide images from the TCGA database, and (3) 79 biopsy whole-
slide images from DHMC.

In this evaluation, we establish the gold standard for each whole-slide image in our test sets based on the 
original institutional label and the verification of a pathologist (R.R.) involved in our study. If there is any disa-
greement, we send the cases to our senior pathologist (B.R.) to resolve the disagreement. For this multi-class 
classification, we used precision, recall, the F1-score, and the area under the curve (AUC), as well as confusion 
matrices to show the discriminating performance of our approach for renal cancer classification. In addition, 
95% confidence intervals (95% CIs) were computed using the bootstrapping method with 10,000 iterations for 
all the  metrics40.

Received: 17 November 2020; Accepted: 17 March 2021

Figure 4.  Overview of our classification pipeline. Tissue patches are extracted from whole-slide images using 
a sliding-window method with 1/3 overlap after background removal. Deep neural networks extract histology 
features of the patches and compute patch-level confidence scores for each of the target classes. The patch-
level predictions are filtered by low-confidence thresholding and aggregated by computing the percentage of 
patches that belong to each class in a whole-slide image. We classify a whole slide using a decision tree based on 
the computed percentages of each class. Patch predictions are also used for visualization, which illustrates the 
coverage of each class on slides.
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