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A B S T R A C T   

Obesity represents a risk factor for disability with a major bearing on life expectancy. Neuroimaging techniques 
are contributing to clarify its neurobiological underpinnings. Here, we explored whether structural brain ab-
normalities might accompany altered brain activations in obesity. We combined and compared data from brain 
activation studies for food stimuli and the data reported in structural voxel-based morphometry studies. We 
found that obese individuals have reduced grey matter density and functional activations in the thalamus and 
midbrain. A functional connectivity analysis based on these two clusters and its quantitative decoding showed 
that these regions are part of the reward system functional brain network. Moreover, we found specific grey 
matter hypo-densities in prefrontal cortex for the obese subjects, regions involved in controlled behaviour. These 
results support theories of obesity that point to reduced bottom-up reward processes (i.e., the Reward Deficit 
Theory), but also top-down theories postulating a deficit in cognitive control (i.e., the Inhibitory Control Deficit 
Theory). The same results also warrant a more systematic exploration of obesity whereby the reward of food and 
the intentional control over consummatory behaviour is manipulated.   

1. Introduction 

Overweight and obesity are defined as excessive fat accumulation 
that may impair health. The two conditions are usually defined using a 
Body Mass Index (BMI), a simple ratio of weight-for-height squared (kg/ 
m2). A BMI greater or equal to 25 indicates overweight; a BMI greater or 
equal to 30 indicates obesity . Worryingly, obesity rates have nearly 
tripled since 1975, making it one of the biggest health problems in 
modern times. Despite the causes of overweight and obesity may appear 
straightforward (i.e., an individual’s intake of food exceeds the ho-
meostatic energy needs), the fine mechanisms underlying the overeating 
behaviour remain to be established. For sure, food-oriented behaviour is 
determined by both biological (genetic) and environmental (cultural or 
energetic expenditure) factors (Kopelman, 2000). 

Structural and functional neuroimaging techniques have been 
fundamental to investigate the neurobiological underpinnings of food 
overconsumption and obesity. These discoveries have raised the general 
interest on obesity in the field of cognitive neuroscience: the concept of 

“food addiction” has become popular and its exploration under the same 
conceptual framework used to explore substance abuse (Fletcher and 
Kenny, 2018). These imaging studies are now sufficiently numerous and 
diverse to justify a quantitative review of the cumulative evidence. In a 
recent meta-analysis, we described the patterns of altered brain activity 
specific for the obesity condition and their interaction with the satiety 
state and modality of presentation of food related stimuli (Devoto et al., 
2018). Here, we aimed to further expand these findings, investigating 
whether brain structural abnormalities might accompany altered acti-
vations in obesity. To do so, we re-analysed our previous functional 
brain imaging (fMRI) meta-analytical data, making them comparable 
with those extracted with the same approach from structural voxel- 
based morphometry (VBM) studies. 

In what follows, we briefly introduce the main theories on neural 
vulnerability factors associated with obesity that drove our predictions 
and previous imaging findings. As individual imaging and structural 
studies represent the “raw data” for the present meta-analysis, we avoid 
discussing each of the single previous empirical studies, even though 
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these are all cited. Rather, in this introduction we summarize the evi-
dence derived by previous meta-analyses. Crucially, our analytical 
approach allowed us to discuss to what extent various neurocognitive 
theories on overeating could be supported by the evidence of a 
conjunction of functional and structural imaging findings. 

1.1. Neurocognitive theories of obesity 

Several models try to address the development of obesity from a 
neurocognitive perspective. These theories typically associate the dys-
regulation of food intake with alterations of the reward system or the 
cognitive control system, as highlighted by a recent systematic review 
on the main neurocognitive factors beyond obesity (Stice and Yokum, 
2016). For example, the “reward surfeit theory” (Davis, Strachan and 
Berkson, 2004) of obesity suggests that pathologic food consumption is 
related to greater reward responsivity to food cues. In line with this 
hypothesis, previous studies demonstrated that normal-weight popula-
tion at higher risk of obesity is characterized by augmented brain ac-
tivity in reward regions when exposed to food stimuli (Shearrer et al., 
2018; Stice et al., 2011). 

The “reward deficit theory” (Wang, Volkow, and Fowler, 2002) 
postulates the opposite hypothesis, suggesting that obese individuals 
overeat to compensate for a lowered responsivity of reward brain re-
gions in response to food consumption. A dopamine deficiency may be 
responsible for this mechanism, as it has been suggested that D2 re-
ceptors expression in subcortical regions is reduced in obese compared 
to normal-weight individuals (Volkow et al., 2008). Evidence showing a 
diminished activation of reward regions in response to food consump-
tion corroborates this hypothesis (Stice et al., 2008). 

The “incentive sensitization theory” suggests that prolonged 
overfeeding and exposure to high hedonic foods would cause an 
enhanced reactivity to palatable substances via an incentive salience 
mechanism (Berridge et al., 2010). Specifically, associative mechanisms 
lead the “tempted brain” to respond also to anticipatory food stimuli (e. 
g., visual cues), rather than only to food consumption (Rothemund et al., 
2007; Stoeckel et al., 2008). Support for this theory comes from studies 
showing an increased attentional bias to visual food stimuli (Carters 
et al., 2015). 

The “inhibitory control deficit theory” (Nederkoorn et al., 2006) 
calls into play higher-level cognitive control functions and it focuses on 
the inhibitory role of frontal regions in food overconsumption. In line 
with this hypothesis, previous studies found that obese patients, 
compared with normal-weight controls, show a preference for imme-
diate rewards (Amlung et al., 2016) and a more frequent presence of 
trait impulsivity (VanderBroek-Stice et al., 2017). 

Finally, a recent model of pathological food consumption tries to 
synthesize the previous theories into a “dynamic vulnerability model 
of obesity” (DVM, Burger and Stice, 2011), but see also its refined form, 
the R-DVM (Stice and Yokum, 2016). Based on this model, an 
augmented responsivity of reward regions to food cues and genetic 
variables or bias would represent risk factors for the future development 
of obesity. This increased brain activation also constitutes the basis of 
cue-reward learning to food cues, resulting in incentive sensitized re-
gions that also respond to palatable cues rather than only food con-
sumption, which, consequently, support long-term food 
overconsumption. The R-DVM predicts that the repeated overeating, 
leading to weight gain, contributes to the blunted responses of the 
reward system to palatable high-calories food intake. It is worthy to note 
that the R-DVM is based on a series of prospective neuroimaging studies 
reporting (the lack of) significant associations between brain activity in 
response to food cues (visual, gustatory) and future weight gain (see 
Stice and Yokum, 2016 for a complete review of the prospective neu-
roimaging evidence). Nevertheless, it is not clear whether and how the 
neurofunctional predictors of weight gain map into the brain abnor-
malities associated with chronic obesity. 

1.2. Brain structural and functional abnormalities in obesity: previous 
meta-analyses. 

Several studies investigated the structural and functional abnor-
malities in obesity, and an increasing number of quantitative meta- 
analyses summarizing these findings have been published. 

Three meta-analyses of structural imaging studies have been con-
ducted so far, and they all highlighted the important role of grey matter 
density reduction in obesity. For example, García-García et al. (2019) 
reported a negative association between the BMI and the volume of 
several brain regions, including the medial prefrontal cortex, the cere-
bellum, and the left temporal pole (García-García et al., 2019). Another 
meta-analysis (Herrmann et al., 2019) associated the obese status with 
reduced grey matter volumes in the left inferior frontal gyrus, the left- 
middle frontal gyrus, and the right inferior frontal gyrus (including 
the insula). The same study showed that obesity was also linked with 
reduced grey matter volume in regions outside of prefrontal cortex - the 
left middle temporal cortex, left precentral gyrus, and left cerebellum 
and superior temporal gyrus, including the amygdala and the lenticular 
nucleus (Herrmann et al., 2019). Finally, Chen and colleagues (2020) 
highlighted the importance of orbitofrontal cortex volume in obesity 
(Chen et al., 2020). These results are graphically summarized in Sup-
plementary Fig. S1, upper panel. 

For what concerns the fMRI literature of obesity-related abnormal-
ities, the vast majority reported obesity specific hyper-activation of 
limbic and frontal structures, whereas the most convergent hypo- 
activations were reported in the left dorsolateral prefrontal cortex and 
left insula (Brooks et al., 2013). The latter finding was replicated by a 
meta-analysis that explored the effect of satiety on the neural visual 
food-cue reactivity, showing that obese individuals exhibit persistent 
activity to food images in striatal and frontal regions, despite their 
satiety state (Kennedy and Dimitropoulos, 2014). 

Similarly, Chen and Zeffiro (2020) investigated factors that modulate 
neural responses towards sweet palatable substance consumption: to 
this end, they performed a meta-analysis using both a categorical and a 
meta-regression analysis, a method whereby-one can perform regression 
analyses between brain activity and continuous variables at the meta- 
analytic level. It was found that obese participants, during consump-
tion of sweet substances, have a reduced activation of the supplementary 
motor area, the caudate and the globus pallidum. On the other hand, the 
BMI positively correlated with activity in post-central gyrus, angular 
gyrus, superior occipital gyrus, temporal gyrus, insula, and cerebellar 
lobule (Chen and Zeffiro, 2020). In a recent study from our lab, we 
applied a meta-analytical factorial design to show that obese individuals 
are characterized by a ventral striatum hyper-responsivity in response to 
pure tastes, particularly when fasting. Furthermore, we found that obese 
subjects displayed more frequent ventral striatal activation for visual 
food cues when satiated. We also reported a less frequent activation of 
thalamic and midbrain structures, suggesting that the reward system of 
obese individuals could be both up- and down-regulated (Devoto et al., 
2018). These results are graphically summarized in Supplementary 
Fig. S1, lower panel. 

1.3. Aims of the study and specific predictions. 

This study aimed at evaluating to what extent structural and func-
tional imaging studies in obesity have shown consistent results and 
whether any such consistency may support one of the major neuro-
cognitive theories of overeating and obesity. 

To do so, we analysed the previous fMRI/VBM literature on obesity, 
and we classified the structural/functional peaks associated with either 
obese or normal-weight individuals in different but homogeneous 
datasets. We then ran two separate meta-analyses with the same Acti-
vation Likelihood Estimate analytical approach (ALE, Eickhoff et al., 
2012). The results of the meta-analysis of functional neuroimaging 
studies and the meta-analysis of structural neuroimaging studies were 
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statistically overlapped via a conjunction analysis. The results of this 
conjunction analysis were used as regions of interest for an independent 
seed-based functional connectivity analysis conducted on resting-state 
data collected in normal-weight subjects. This last step aimed at 
exploring which functional brain network the clusters showing both 
structural and functional abnormalities normally belong. Importantly, 
we interpreted the results based on what is predicted by the neuro-
cognitive theories of overeating and obesity. The “reward surfeit theory” 
would predict a hyper-activity and possibly, but not necessarily, an 
augmented grey matter density of the reward circuitry (midbrain, 
striatum, orbitofrontal cortex, OFC) in obese participants. The opposite 
pattern may support the “reward deficit theory”, as the compulsion to 
eat in obesity may be associated with dopaminergic deficiency in the 
reward system, expressed as grey matter hypo-densities and reduced 
brain response. On the other hand, the “inhibitory control deficit the-
ory”, emphasizing the role of the neural circuits underlying inhibition 
processes, would forecast a reduced activity and grey matter volume at 
the level of prefrontal regions involved in high-level cognitive processes 
such as inhibitory control (i.e., ventromedial prefrontal cortex, dorso-
lateral prefrontal cortex). Finally, the “incentive sensitization theory” 
would anticipate a hyper-activity and augmented grey density of brain 
regions involved in both salience attribution (insula, amygdala, para-
hippocampal gyrus, hippocampus) and reward (midbrain, striatum, 
OFC). 

Of course, the predictions spelled out above are based on the hy-
pothesis of a perfect fit and same directions of the brain activations and 
density behind each of the scenarios. Yet, it is possible that some dis-
sociations might be observed, like for example reduced activations in the 
reward circuitry in the absence of changes of grey matter density, or, 
indeed, the observation of grey matter abnormalities not mirrored by the 
functional imaging patterns, inevitably constrained by the nature of the 
tasks considered: what matters, however, is that convergent and diver-
gent results can be interpretable due to the similarly well sized samples 
and homogeneous meta-analytical techniques employed. As we will 
discuss below, the present quest for joint morphometric and functional 
deficits in obesity limits the spectrum of effects that one could test, as the 
morphometric data derived by the simple comparison of obese and lean 
people are deprived of the necessary functional nature needed to support 
inherently functional theories like, for example, the enhanced brain 
responsivity to the consummatory or anticipatory aspect of food expe-
rience (key aspects of the Reward Surfeit and Incentive Sensitization 
theories, respectively). This implies that the combination of meta- 
analyses of structural and functional techniques limits the theories 
that one can test. 

2. Materials and methods 

Our PRISMA-compliant meta-analysis (Page et al., 2021; see also 
Supplementary Fig. S2 and Supplementary Fig. S3) involved a series of 
analytical steps, starting from selecting the raw data (data collection and 
data preparation) to the classification of the peaks associated with 
changes in grey matter density or functional activation in obese subjects 
with respect to normal-weight individuals (see Fig. 1). We created two 
different datasets for structural and functional data, respectively. Then, 
using the software GingerALE (Turkeltaub et al., 2012; https://www. 
brainmap.org/ale/) and following the best practices for fMRI meta- 
analyses (Müller et al., 2018), we conducted two separate meta- 
analyses: one for structural data and one for functional data.2 Finally, 

the results of these analyses were formally compared. The meaning of 
any overlap was further explored with a seed-based functional connec-
tivity analysis on resting-state fMRI data. 

2.1. Structural imaging dataset 

We identified neuroimaging studies exploring the structural changes 
in obese individuals, using the following procedure, illustrated in Sup-
plementary Fig. S2. First, in December 2020, we entered the following 
queries in the PubMed database (https://pubmed.ncbi.nlm.nih.gov): 
“Obesity and Voxel Based Morphometry”, “Obesity and VBM”, “Obesity 
and Grey Matter”, Obesity and Structural MRI”, “Obesity and Morpho-
logical MRI”. After removal of duplicates, the initial dataset comprised a 
total of 381 studies. Then, we ran a preliminary selection based on the 
titles and abstracts of the papers, through which we included only the 
studies that matched the following criteria:  

• Studies including obese and normal-weight subjects.  
• Studies reporting results using stereotaxic coordinates (either MNI or 

Talairach atlases).  
• Studies reporting whole-brain peaks (no region-of-interest analyses).  
• For studies assessing the effects of hormonal or drug treatments, we 

considered only studies that reported foci belonging to the pre- 
treatment condition.  

• Absence of other clinically relevant conditions present in only one 
experimental group. In case of clinically relevant conditions, we 
selected only results coming from obese participants, not suffering 
from any other condition or we included peaks resulting from the 
comparison between the two samples.  

• Local maxima peaks resulting from a direct comparison between 
obese and normal-weight participants. 

This selection, initially based on titles and then on abstracts, yielded 
to the identification of 36 candidate papers for the first meta-analysis of 
structural data. We made a further selection by inspecting the entire 
manuscripts and applying the inclusion criteria in detail. Further, we 
conducted an up-to-date manual scan of the references of the selected 
articles, to ensure that all relevant papers had been included. All man-
uscripts were screened independently by three reviewers (GG, SZ, and 
FG); any discrepancy was resolved through a collaborative discussion 
with another reviewer not involved in the screening process (LZ). All the 
relevant data were then entered on the predefined spreadsheet by three 
investigators independently (GG, SZ, and FG). 

By applying such criteria, we included 27 papers yielding a total of 
29 experiments and 36 contrasts and 570 foci; a flowchart of the se-
lection process is available in Supplementary Fig. S2. 

The final dataset comprised a total of 7650 participants, of which 
497 could be classified as normal-weight volunteers, and 315 were 
classified obese patients. The remaining 6838 subjects are taken from 
correlational analyses between grey matter density and BMI and speci-
fications were not given on whether they fell into the obesity class or 
normal weight class (as an example, see: Hayakawa et al., 2018 Jano-
witz et al., 2015; Kharabian Masouleh et al., 2016; Taki et al., 2008). The 
mean age of the participants classified as obese was 36.65 years (age 
range: 14.9–77.2), while the mean age of the normal-weight participants 
was 36.49 years (age range: 16.4–77.5). The mean BMI of the obese 
group was 36.27 (32.81–43.17), the mean BMI of the normal-weight 
group was 22.22 (20.83–24.02). 

532 local maxima, resulting from 29 contrasts were associated with 
grey matter density reduction in obese individuals, while 38 peaks 
derived from 7 contrasts were associated with increased grey matter 
density in obese participants. Talairach coordinates were converted 
using the Talairach to MNI (SPM) transformation tool implemented in 
the GingerALE software. 

In order to study the effects of decreased and increased grey matter 
density in obesity, different meta-analyses should be conducted for foci 

2 It is worthy to note that any information about the absolute changes in grey 
matter volume (mm3, for VBM studies) and in brain activity (% signal change, 
for fMRI studies) between the groups in the original studies is lost during the 
meta-analytical process. In other words, the ALE method is not aimed at 
quantifying the differences in grey matter volume (or BOLD activity), rather it 
aims at quantifying the degree of convergence across a set of studies. 
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indicating increases or decreases of grey matter density in obese par-
ticipants. However, the number of contrasts reporting a positive asso-
ciation between BMI and grey matter volumes was too small (#7) to 
perform a meta-analysis (Eickhoff et al., 2016). Therefore, we computed 

a quantitative meta-analysis only including grey matter volume re-
ductions in obese participants. Peaks included in the dataset resulted 
from a contrast (e.g., Normal-weight > Obese individuals), or from a 
negative correlation between BMI and grey matter density (e.g., brain 

Fig. 1. Graphical summary of the analytical flow-chart. NW = normal-weight individuals; OB = obese individuals.  

Table 1 
Studies selected for the structural meta-analysis. BMI = Body Mass Index; NW = normal-weight individuals; OB = obese individuals; GM = Grey Matter; a = body mass 
percentiles (BMI%) were converted according to US grow charts (Kuczmarski et al., 2002); b = BMI standard deviations were converted according to UK grow charts 
(Cole et al., 1995). Note: for studies reporting contrasts between obese and normal-weight individuals, we reported the descriptive statistics of each sample. For studies 
reporting results on a single sample (including normal-weight and obese individuals), we reported the descriptive statistics of the whole sample (for further details, see 
Supplementary Table S1).  

# First Author Year Contrast Sample size (NW/OB) BMI (NW/OB) Gender 
(M/F) 

Age 
(NW/OB) 

N foci 

1 Bond 2014 Negative correlation between GM and BMI 55 24 31/24 22.15 7 
2 Brooks 2013 GM volume NW > GM volume OB 97/59 22.1/33.7 70/86 75 11 
3 Figley 2016 Negative correlation between GM and BMI 32 24.85 16/16 29.8 9 
4 Hayakawa 2018 Negative correlation between GM and BMI 269 22 0/269 55.2 10 
5 Hayakawa 2018 Negative correlation between GM and BMI 523 24.7 523/0 55.3 31 
6 Hidese 2018 GM volume NW > GM volume OB 107/7 22.2/33.2 56/58 41.1/38. 25 

Negative correlation between GM and BMI 25 
7 Horstmann 2011 Positive correlation between GM and BMI 122 26.7 61/61 25.29 4 
8 Janowitz 2015 Negative correlation between GM and BMI 2344 27.3 1087/1257 48.05 57 
9 Jauch-Chara 2015 GM volume NW > GM volume OB 15/15 23.2/36.3 30/0 24.6/24.7 19 

Negative correlation between GM and BMI 15 
10 Karlsson 2013 GM volume NW > GM volume OB 22/23 24.02/43.17 12/33 46.45/47.30 9 
11 Kennedy 2016 Negative correlation between GM and BMI 137 20.5a 69/68 14.89 7 
12 Kharabian Masouleh 2016 Negative correlation between GM and BMI 617 27.54 359/258 68.7 23 
13 Kurth 2013 Negative correlation between GM and BMI 115 25.02 54/61 45.17 34 
14 Mathar 2016 GM volume NW > GM volume OB 23/19 21.8/33.6 22/20 25.2/27 2 
15 Nouwen 2017 GM volume NW > GM volume OB 19/20 20.83/32.81b 10/29 16.4/14.9 6 
16 Opel 2015 Negative correlation between GM and BMI 139 25.74 61/78 37.59 6 
17 Opel 2017 Negative correlation between GM and BMI 330 24.5 158/172 39.2 8 
18 Opel 2017 Negative correlation between GM and BMI 347 26.3 192/155 51.6 16 
19 Pannacciulli 2006 GM volume NW > GM volume OB 36/24 22.7/39.4 36/24 33/32 7 

GM volume OB > GM volume NW 6 
20 Raji 2009 Negative correlation between GM and BMI 94 27.63 44/50 77.5/77.2 5 
21 Shott 2015 GM volume NW > GM volume OB 24/18 21.64/34.78 0/42 27.42/28.67 8 
22 Taki 2008 Negative correlation between GM and BMI 690 23.41 690/0 44.5 22 

Positive correlation between GM and BMI 17 
23 Tuulari 2016 GM volume NW > GM volume OB 29/47 23.2/42.2 11/65 45.9/44.9 31 
24 Walther 2010 Negative correlation between GM and BMI 95 28.26 0/95 69.3 18 
25 Wang 2017 GM volume NW > GM volume OB 49/31 21.87/34.38 52/28 29.55/39.58 17 

GM volume OB > GM volume NW 3 
26 Weise 2017 Negative correlation between GM and BMI 875 26.6 386/489 28.8 46 

Positive correlation between GM and BMI 3 
27 Yao 2016 Negative correlation between GM and BMI 109 28.26 47/62 35.15 37 

Positive correlation between GM and BMI 4 
28 Zhang 2016 GM volume NW > GM volume OB 18/15 21.60/38.10 11/22 27/25.8 21 
29 Zhang 2017 GM volume OB > GM volume NW 20/20 21.48/33.56 40/0 24 1  
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regions showing a decrease in grey matter volume for greater BMI). For a 
summary of studies, description of the local maxima included and 
number of peaks, please refer to Table 1. 

2.2. Functional imaging dataset 

Given the main aim of the present work, the functional dataset (i.e., 
peaks of activation associated with reductions or enhancements of ac-
tivity in obese participants) was adapted starting from a recent meta- 
analysis conducted in our lab (Devoto et al., 2018). This was done to 
obtain a dataset comparable with the structural one. The flowchart of 
the selection process is available in Supplementary Fig. S3. 

First, we entered the following queries in PubMed (https://www. 
ncbi.nlm.nih.gov/pubmed/): “obesity and fMRI”, “obesity and PET” 
“obesity and functional magnetic resonance imaging”, “obesity and 
positron-emission tomography” and “obesity and neuroimaging”. The 
initial set of studies included 7391 papers. Second, after removal of 
duplicates, we ran a preliminary selection based on the titles and ab-
stracts of the papers, through which we excluded the studies that did not 
match the following criteria:  

• Studies including either obese and normal-weight subjects, or both 
(for the obese participants, we considered only populations with BMI 
above or equal to 30 ).  

• Studies reporting results using stereotaxic coordinates (either MNI or 
Talairach atlases).  

• Studies reporting whole-brain peaks (no region-of-interest analyses).  
• Activation protocol on food-related stimuli limited to passive visual 

(i.e., reflecting the anticipation and not the actual food intake) or 
gustatory (i.e., reflecting the actual taste/food in the mouth) stimu-
lation (only simple effects related to stimuli or between-group 
comparisons for the factor obesity were considered). For example, 
studies employing delay-discounting tasks (Kishinevsky et al., 2012; 
Weygandt et al., 2013) or requiring explicit inhibitory processes 
(Hendrick et al., 2012; Hsu et al., 2017), not reflecting simple 
anticipatory processing, have been excluded.  

• For studies assessing the effects of hormonal or drug treatments, we 
considered only studies that reported foci belonging to the pre- 
treatment condition; these were used for the analysis. 

The final dataset included 707 peaks of activation derived from 22 
papers yielding a total of 22 experimentsand 67 contrasts); it comprised 
a total of 507 participants, of which 194 were normal-weight voluneers, 
and 313 were obese patients. 

The mean age of the normal-weight sample was 33.04 years (age 
range: 21.01–57.8), while the mean BMI was 22.40 (BMI range: 
20.85–24.1). For what concerns the obese sample, the mean age was 
37.06 years (age range: 23–58), while the mean BMI was 35.37 (BMI 
range: 31.6–43.87). 

Foci were labelled according to the analysis they were drawn from. 
For a summary of all the studies initially selected, see Table 2. A detailed 
description of each paper included is listed in Supplementary Table S2. 

To compare the data derived from obese subjects and normal weight 
subjects, we first run two single-study ALE meta-analyses for the peaks 
assigned to normal-weight and obese participants (within-group con-
trasts); we then compared the results of these within group meta- 
analyses with “contrast study” ALE meta-analyses. We are aware that 
the best way to make the fMRI data comparable with the VBM data 
would have been the inclusion of only between-group contrasts in a 
single-study ALE meta-analysis. However, unfortunately, the number of 
between group contrasts available in the literature was too small (4) to 
perform a form too small ( to perform a formal meta-analysis (Eickhoff 
et al., 2016). 

Therefore, the first functional datasets for the two single-study meta- 
analyses included only main effects within the normal-weight or obese 
sample. 390 foci (36 contrasts) were associated with normal-weight 

subjects, while 117 peaks (14 contrasts) were associated with the 
obese sample. 

2.3. Activation likelihood estimation meta-analyses 

Coordinate-based ALE meta-analyses estimate the spatial conver-
gence of coordinates between experiments relative to the null hypoth-
esis that these experiment foci are uniformly and randomly distributed 
across the brain. Specifically, the analyses that we conducted evaluated 
the most probable location where differences in grey matter volume or 
functional activations occur given the BMI status relative to the null 
hypothesis that these experiment foci are randomly distributed across 
the brain. 

In a “single dataset” analysis (e.g., using activation foci from obese 
subjects only), the algorithm computes a map which contains, in every 
voxel, the probability that a given peak of activation included in the 
database lies within that specific voxel. This statistical index is named 
Activation Likelihood Estimation (ALE), and it represents the probabil-
ity that at least one local maxima of activation lies within a specific 
voxel. A statistical computation is then made on all voxels to identify 
foci that consistently represented a convergence of the results derived 
from the studies that were entered into the meta-analysis. 

In the subsequent “contrast datasets” analysis (Eickhoff et al., 2011), 
it is possible to quantitatively compare the results obtained from two 
different single dataset analyses (e.g., comparison of activation foci of 
normal weight and obese subjects). Through this computation, the user 
can identify the foci that are specifically associated with either a single 
dataset, more than the other, or the “conjunction” between two datasets. 

We applied the ALE algorithm to two different datasets: (i) a ‘struc-
tural’ dataset, comprising peaks associated to grey matter volume re-
ductions in obese individuals (since the number of contrasts indicating 
the opposite direction was too low to be submitted to a meta-analysis) 
and (ii) a ‘functional dataset’, comprising peaks associated to re-
ductions of functional activations in obese individuals. While the former 
meta-analysis on the structural data was achieved by computing the ALE 
maps on coordinates derived from natively between-group comparisons, 
for the functional data an intermediate contrast analysis between obese 
and normal weight subjects was needed first (see Fig. 1). 

In all single-study analyses we applied, as recommended, a cluster- 
level threshold of p < 0.05 family-wise error (I) corrected, and a 
cluster-forming threshold of p < 0.001 uncorrected (Müller et al., 2018). 

In the contrast-analysis of the functional dataset, we employed a 
threshold of p < 0.001 uncorrected and 10,000 permutations. 

Results were the visualized on a ch2better template using the MRI-
croGL software (Rorden and Brett, 2000). 

Meta-analytic results were quantitatively compared, to identify a 
common cluster associated to both volumetric and functional abnor-
malities in obese individuals: the thresholded images resulting from the 
different meta-analyses were masked with each other using the fslmaths 
function of the FSL package (Jenkinson et al., 2012; Smith et al., 2004). 
This conjunction cluster was then used as a ROI in the subsequent seed- 
based functional connectivity analysis. 

2.4. Resting-state functional connectivity study. 

With the aim of further exploring our meta-analytical results, we ran 
a functional connectivity analysis based on resting-state data. Despite 
not being specific to cognitive-motivational processing, analysis of 
resting-state data was done to investigate the functional brain network 
associated with the clusters displaying both structural and functional 
abnormalities. We selected as ROIs the clusters associated with both 
morphometric and functional abnormalities in obese individuals. Seed- 
based resting-state functional connectivity was calculated from the 
extracted ROIs, in a normal-weight sample. This approach, backed up by 
the meta-analytical results, can provide complementary information 
about possible system-level dysfunctions. 
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Table 2 
Studies selected for the functional meta-analysis. BMI = Body Mass Index; NW = normal-weight individuals; OB = obese individuals (for further details, see Sup-
plementary Table S2).  

# First 
Author 

Year Contrast Subjects (NW/OB) BMI (NW/OB) Gender (M/F) Age (NW/OB) N foci 

1 Blechert 2016 NW 32/0 22.4/0 16/16 22.4 25 
NW 23 
NW 37 
NW 10 

2 Cornier 2009 NW 22/0 21.6/0 12/10 34.4 23 
3 Cornier 2012 OB 0/12 0/33.3 7/5 38.2 8 
4 Cornier 2013 NW 25/0 20.85/0 14/11 31.4 6 

NW 9 
5 Dimitropoulos 2012 OB > NW 16/22 22.7/31.6 17/21 24.6/24.8 7 

OB > NW 22 
NW > OB 14 

6 Gautier et al. 1999 NW 11/0 < 25 (not better specified)/0 11/0 < 25 (n.a.) 13 
NW 6 

7 Geliebter 2013 OB 0/31 0/36.55 17/14 35 8 
OB 7 
OB 9 
OB 6 

8 Haase 2011 NW 9/0 23.15/0 9/12 22.96 14 
NW 12/0 22.76/0 7 
NW 12/0 22.76/0 2 
NW 12/0 22.76/0 9 
NW 12/0 22.76/0 18 
NW 9/0 23.15/0 8 
NW 9/0 23.15/0 6 
NW 9/0 23.15/0 6 
NW 12/0 22.76/0 1 
NW 12/0 22.76/0 6 
NW 12/0 22.76/0 2 
NW 12/0 22.76/0 3 
NW 21/0 22.96/0 21 
NW 21/0 22.96/0 13 
NW 21/0 22.96/0 10 
NW 21/0 22.96/0 24 

9 Jastreboff 2013 OB 25/25 22.9/32.6 31/19 26.2/26.2 6 
NW 1 

10 Karra 2013 NW 24/0 21.95/0 24/0 22.55 5 
11 Killgore 2003 NW 13/0 22.1/0 0/13 23.5 11 

NW 7 
NW 7 
NW 3 

12 Lundgren 2013 OB 0/14 37.9 2/12 33.6 5 
OB 1 
OB 2 

13 Luo 2013 OB 0/13 0/34 0/13 23 18 
14 Martin 2010 OB > NW 10/10 22.1/34.0 n.a. 10/10 25 

NW > OB 2 
OB > NW 7 

15 Murdaugh 2012 OB 0/25 0/32.86 6/19 48.04 15 
NW 13/0 22.64/0 5/8 45.15 11 

16 Murray 2014 NW 20/0 23.09/0 10/10 22.8 9 
17 Nummenmaa 2012 OB > NW 16/19 24.10/43.87 n.a. 47.75/45.74 1 

NW > OB 19 
18 Puzziferri 2016 NW 15/15 22.3/42.7 0/30 45.1/40.6 13 

OB 22 
NW > OB 31 

19 Rothemund 2007 OB > NW 13/13 20.9/36.3 0/26 29/31 5 
OB > NW 7 
OB > NW 2 
OB 7 
OB 3 
NW 1 

20 St-Onge 2014 NW 25/0 23.6/0 13/12 34.7 20 
21 Szalay 2012 OB > NW 12/12 21.42/34.05 6/18 38.3/37.1 9 

OB > NW 26 
OB > NW 16 

22 Van Bloemendaal 2014 OB > NW 16/16 23.2/32.6 16/16 57.8/58 4 
OB > NW 3  
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2.5. Participants. 

Twenty-two normal-weight subjects (mean age: 46.64 ± 11.35 
years; mean education level 14.95 ± 3.08 years; 6 males and 16 females; 
mean BMI: 23.21 ± 1.48) without any cognitive, neurological, or psy-
chiatric illness participated in the resting-state fMRI study. They were all 
right-handed as assessed by the Edinburgh handedness inventory (Old-
field, 1971). Each subject was asked to stay with their eyes closed, 
awake and, as far as possible, not to think about anything. The study 
protocol was approved by the local Ethics Committee (IRCCS San Raf-
faele, prot. CONSUME), and informed written consent was obtained 
from all subjects. 

2.6. fMRI data acquisition and analysis. 

MRI scanning was performed with a Siemens Avanto 1.5 T scanner 
equipped with gradient-echo echo-planar imaging. Before the acquisi-
tion of functional data, high-resolution T1-weighted structural images 
were acquired (flip angle 35◦, TE 5 ms, TR 21 ms, FOV 256 × 192 mm, 
matrix 256 × 256, TI 768, 160 slices with 1 mm × 1 mm × 1 mm voxels). 
Echo-planar imaging gradient-echo fMRI scans [flip angle 90◦, echo 
time (TE) = 60 ms, TR = 2000 ms, field of view = 250 × 250 mm, and 
matrix = 64 × 64, slice thickness = 4 mm] were then acquired (450 
volumes). 

Resting state BOLD raw data were pre-processed and analysed with 
CONN (https://web.conn-toolbox.org; Whitfield-Gabrieli and Nieto- 
Castanon, 2012). 

Pre-processing was performed according to the default pipeline 
implemented in the CONN toolbox. Functional images were first real-
igned to the first scan of the session and slice-time corrected. After 
outlier detection, functional data were directly co-registered to the 
structural data and smoothed using a 10-mm isotropic Gaussian kernel. 

After preprocessing, data of each subject were explored and quality 
checked; then, denoising was conducted to remove any source of signal 
noise in the data. We applied a band-pass filtering between 0.008 and 
0.09 Hz; a component-based noise correction method was used to 
identify and remove the principal noise components from different tis-
sue classes; moreover, movement parameters were estimated for each 
subject and their confounding effect was subtracted from our analyses. 

In the first level analysis, the toolbox computes the Pearson’s cor-
relation coefficients between the time course of the fMRI signal of the 
seed regions selected and the time course of each voxel in the brain 
separately to generate the parametric seed- to-voxel correlation map. A 
seed-to-voxel correlation map was computed for each subject from the 
previously extracted seed region. Correlation coefficients were then 
converted to z-scores using the Fisher’s transform to allow for subse-
quent analysis. 

In the second level analysis, we performed a one sample t-test to 
extract the group connectivity map of the ROIs that were used as seeds. 
The regions described survived a canonical cluster-level FWE p-value <
0.05 correction (voxel-wise uncorrected threshold: p < 0.001), in line 
with recent suggestions by Flandin and Friston (2019). 

2.7. Further methods for the interpretation of the data. 

Besides typical forward inferences based on the experimental design 
and interaction of factors, we also considered the strength of associa-
tions between the actual statistical maps of a given analysis (our meta- 
analyses) and neuroscientific semantics as indexed by specific key-
words. Specifically, the clusters representing the functional/structural 
abnormalities and the map of the functional network of these clusters 
were loaded into the Neurosynth.org database and analysed by means of 
the “decoder” function (https://neurosynth.org/decode/; Yarkoni et al., 
2011). The decoder function of Neurosynth allows one to retrieve the 
Pearson correlation of the keywords that are most associated with the 
input image, containing the clusters identified by the meta-analysis, 

based on the NeuroVault repository. The r-value associated with each 
keyword reflects the correlation across all voxels between the input map 
and the map associated with a particular keyword in NeuroVault. 

In other words, while not replacing the typical forward inferences in 
the current study, the quantitative associations returned by Neurosynth 
may provide some valuable information for our line of discussion. 

3. Results 

3.1. Structural data meta-analysis 

The first meta-analysis conducted on structural data highlighted 
three different clusters consistently associated with reduced grey matter 
volumes in obese individuals compared to healthy controls. These re-
gions were located in the orbitofrontal cortex, in the medial prefrontal 
cortex, in the anterior cingulum and subcortically in the thalamus and 
the midbrain (see Table 3 and Fig. 2a). 

3.1.1. Neurosynth decoding of the brain structural abnormalities. 
Besides auto-referential anatomical correlations (e.g., dorsomedial, 

medial prefrontal, thalamus…), the first functional domain terms that 
correlated with this anatomical pattern were “social” (Correlation co-
efficient: 0.15), “traits” (Correlation coefficient: 0.136), “mental states” 
(Correlation coefficient: 0.133), “personality traits” (Correlation coef-
ficient: 0.125), and “craving” (Correlation coefficient: 0.104). 

3.2. Neurofunctional data meta-analysis. 

Information about the single dataset analyses conducted on within 
group effects are available in Supplementary Table S3. 

The contrast-study meta-analysis conducted on neurofunctional data 
produced eleven clusters, which weighted centres were located sub-
cortically in the thalamus and in the midbrain bilaterally. These regions 
were significantly less activated in the obese sample compared to 
healthy controls (see Table 4 and Fig. 2b). 

Finally, the results of the two meta-analyses were overlapped by 
masking the thresholded images with each other using the fslmaths 
function of the FSL package (Jenkinson et al., 2012; Smith et al., 2004). 
This procedure resulted in two clusters located in the thalamus and in 
the midbrain bilaterally (see Fig. 2c). This conjunction cluster was then 
used as ROI in the subsequent seed-based functional connectivity anal-
ysis. The peaks that contributed to these clusters were derived by studies 
passive perception of high-caloric food images, of chocolate, or the 
consumption of sucrose. 

3.2.1. Neurosynth decoding of the brain functional abnormalities. 
Besides auto-referential anatomical correlations (e.g., thalamus, 

subcortical, midbrain… and themselves), the first functional domain 
terms that correlated with this functional anatomical pattern were 
“pain” (Correlation coefficient: 0.138) and “sexual” (Correlation coef-
ficient: 0.131) followed by the keyword “reward” (Correlation coeffi-
cient: 0.104) and “anticipation” (Correlation coefficient: 0.103). 

3.3. Functional connectivity analysis. 

The seed located in the bilateral thalamus and the midbrain, which, 
according to our results, was associated with obesity-related structural 
and functional impairments, resulted to be functionally connected with 
the anterior cingulum bilaterally, the right middle cingulum, the right 
medial superior frontal gyrus, the left insula, and the right striatal re-
gions such as the putamen, the pallidum and the thalamus itself. See 
Table 5 and Fig. 2d. 

3.3.1. Neurosynth decoding of the functional connectivity pattern. 
Besides auto-referential anatomical correlations with the seeds used 

for the functional connectivity analysis of the fMRI data (e.g., the 
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thalamus correlating with itself), the decoding procedure identified 
further anatomical structures corresponding to what reported in Table 5. 
The first functional domain terms that correlated with this functional 
anatomical pattern were the two antinomically correlated keywords 
“pain” (Correlation coefficient: 0.323) and “reward” (Correlation co-
efficient: 0.236), followed by the keyword “gain” (Correlation coeffi-
cient: 0.187). 

4. Discussion 

In this paper we performed a quantitative meta-analysis and 
measured to what extent obesity-related functional and structural brain 
abnormalities overlap. Our aim was to expand the results of our previous 
meta-analysis on fMRI studies in which we described the patterns of 
altered brain activity specific for the obesity condition, and their inter-
action with the satiety state and modality of presentation of food related 
stimuli (Devoto et al., 2018). Here we tested the hypothesis that - at least 
some of - these altered brain functional activations for food-related 

Table 3 
Results of the ALE meta-analysis conducted on structural data, representing brain regions consistently associated with reduced grey matter volumes in obese in-
dividuals. For each cluster we reported the anatomical label, the spatial extent in mm3 (k), the ALE-scores, the Z-scores and the MNI coordinates.  

Cluster ID Brain region ALE-score k Z-score MNI coordinates of the Weighted Center 

Left Hemisphere Right Hemisphere 

x y z x y z 

1 Thalamus  0.0071 10080  5.5 − 4 − 14 − 2 – – – 
2 Medial orbitofrontal cortex  0.0080 8624  6.2 – – – 10 56 − 22 
3 Superior medial frontal gyrus  0.0068 5240  5.3 − 8 54 26 – – – 
3 Anterior cingulate cortex  0.0046  3.5 − 4 42 14 – – –  

Fig. 2. Results of the meta-analyses and resting-state functional connectivity. a) Results of the meta-analysis on structural alterations in obesity. b) Results of the 
meta-analysis on neurofunctional alterations in obesity. c) Results of the conjunction analysis showing overlapping regions between structural and functional al-
terations in obesity. d) Results of the seed-based resting-state functional connectivity. Coordinates of the axial slices in MNI space. AV, anteroventral; IL, intralaminar; 
MDl, mediodorsal lateral; MDm, mediodorsal medial; VA, ventral anterior; VL; ventral lateral. * = foci compatible with the anatomical coordinates of the Ventral 
Tegmental Area (VTA, Gu et al., 2010; Trutti et al., 2021). 
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stimuli might be mirrored by specific structural abnormalities. We 
interpreted our results with reference to the different neurocognitive 
theories of obesity. 

We found that two clusters located at the level of the thalami and the 
midbrain satisfied these criteria showing both reduced grey matter 
density and reduced functional activation in obese individuals when 
watching food-related stimuli or during consummatory gustatory 
behaviour. To further explore the functional meaning of these obser-
vations, we performed a seed-based functional connectivity analysis on 
an independent resting-state fMRI data set from normal-weight partic-
ipants: this analysis revealed that the aforementioned brain stem and 
thalamic regions are part of a broader brain network including, among 
other areas, the cingulate cortex, the insula, and subcortical regions 
bilaterally of the striatum, a set of regions broadly overlapping with the 
so-called reward system of the brain. 

Our results support the theory of obesity that points to reduced bottom- 
up reward processes (i.e., the Reward Deficit Theory) but also the top-down 
theory postulating a deficit in cognitive control (i.e., the Inhibitory Control 
Deficit Theory). In what follows we explain why this is so. 

4.1. Structural data meta-analysis: do the patterns of grey matter 
alterations in obesity converge anatomically in a replicable manner, 
surviving to a formal meta-analysis? 

The meta-analysis on brain morphometry data shows the existence of 
a negative relationship between the BMI and the volume of prefrontal, 
subcortical thalamic and brainstem regions (Fig. 2a). This is in line with 
what observed in previous meta-analyses exploring the same topic 
(Chen et al., 2020; García-García et al., 2019; Herrmann et al., 2019): in 
particular, as for what described by Chen and colleagues (2020), obesity 
(and overweight) was associated with grey matter density reduction at 
the level of the OFC (Chen et al., 2020).3 However, our results expand 
this previous observation showing a grey matter density reduction also 
at the level of the medial prefrontal cortex – including the anterior 
cingulate cortex – and subcortically in the thalamus and the midbrain. 
These observations permit a more comprehensive discussion on how 
these morphometric findings may accompany some of the behavioural 
features that are staples of the obesity condition. 

The OFC is a prefrontal region that integrates sensory modalities such 
as taste, smell, and vision, and, through its dense reciprocal projections 
into thalamic, midbrain, and striatal regions, it acts as a critical hub for 
decision-making when decisions are made on highly motivating stimuli 
such as food, drugs or sexual stimuli (Seabrook and Borgland, 2020). 

Similarly to what is postulated for the disinhibited behaviour in drug 
addiction (see, for example, the model proposed by Baler and Volkow, 
2006), a malfunction or dysregulation of the OFC may concur to the 

Table 4 
Results of the ALE meta-analysis conducted on neurofunctional data, representing brain regions consistently associated with reduced activity in obese individuals. For 
each cluster we reported the anatomical label, the spatial extent in mm3 (k), the Z-scores and the MNI coordinates. * = foci compatible with the anatomical coordinates 
of the Ventral Tegmental Area (VTA, Gu et al., 2010; Trutti et al., 2021). VL = vetrolateral nucleus. MDm: medio-dorsal medial nucleus; MD-lat; medio-dorsal lateral 
nucleus. PV: paraventricular-nucleus. Identification of the thalamic nuclei was based on the AAL3 template for MRIcron (Rolls et al., 2020) and on Morel’s stereotactic 
atlas of the thalamus (Morel, 2007).  

Cluster ID Brain region k Z-score MNI coordinates of the Weighted Center 

Left Hemisphere Right Hemisphere 

x y z x y z 

1 Thalamus VL 1576  3.9 – – – 10 − 14 9 
1 Thalamus MD-lat  3.5 – – – 8 − 13 4 
1 Thalamus MDm/PV  3.7 – – – 5 − 18 8 
1 Thalamus MDm/PV  3.2 – – – 2 − 14.3 4.7 
1 Thalamus MDm/PV  3.1 – – – 2 − 11 1 
1 Thalamus MDm/PV  3.4 − 4 − 14 6 – – – 
2 Thalamus MDm/PV 88  3.2 − 1.3 − 24 1.3 – – – 
6 Thalamus MDm/PV 16  3.2 − 2 − 20 − 3 – – – 
10 Thalamus MDm/PV 8  3.2 − 4 − 12 − 4 – – – 
11 Thalamus MDm/PV 8  3.1 − 2 − 20 6 – – – 
3 Midbrain* 32  3.2 − 2 − 12 − 9 – – – 
4 Midbrain* 16  3.2 − 4 − 14 − 8 – – – 
5 Midbrain 16  3.2 – – – 0 − 22 − 3 
7 Midbrain* 8  3.2 − 4 − 16 − 10 – – – 
8 Midbrain – Red Nucleus 8  3.2 − 4 − 18 − 8 – – – 
9 Midbrain 8  3.1 − 6 − 16 − 6 – – –  

Table 5 
Results of the seed-based resting-state functional connectivity analysis. We re-
ported the number of voxels that are included in each volume of interest of the 
Automatic Anatomical Labelling (AAL) template. We reported results surviving 
a cluster-level FWER (pcorrected < 0.05). We reported regions including at least 
1000 voxels.  

Brain regions (AAL) Number of voxels 

Left 
Hemisphere 

Right 
Hemisphere 

Medial superior frontal gyrus 4057 1481 
Inferior frontal gyrus (orbitalis/ 

triangularis) 
1324 2359 

Anterior cingulum 9269 6772 
Middle cingulum 9873 10,684 
Posterior cingulum 2834 2322 
Supplementary motor area 1881 1430 
Precuneus 2783 5934 
Heschl gyrus – 1083 
Superior temporal pole 1290 – 
Superior temporal gyrus 1986 1569 
Insula 10,991 7589 
Caudate 1912 1815 
Putamen 7838 8299 
Pallidum 2285 2188 
Amygdala 1098 1161 
Thalamus 8588 8320 
Hippocampus 1725 1732 
Para-hippocampal gyrus 1453 1413  

3 These additional results can be explained by slightly different inclusion 
criteria of the studies submitted to a meta-analysis: first, contrary to Chen et al. 
(2020), we did not consider studies in which there were no frankly obese 
participants but only overweight subjects. Therefore, two studies were excluded 
from our dataset (He et al., 2015; Smucny et al., 2012). Moreover, we did not 
include pre- and post-treatment data (Honea et al., 2016; Mueller et al., 2015). 
Finally, our literature search identified three further studies that were not 
included in previous meta-analyses (Jauch-Chara et al., 2015; Raji et al., 2010; 
Wang et al., 2017). 
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excessive salience given to food-related stimuli in obesity and to the 
excessive food-oriented behaviour. 

However, as suggested by Baler and Volkov (2006, but see also 
Everitt and Robbins, 2016) the OFC is only one of the frontal cortical 
hubs involved in the control of goal oriented motivated behaviour: the 
picture would not be complete without considering also the anterior 
cingulate and the dorsomedial prefrontal cortex. Our meta-analysis of 
the morphometric data also showed obesity-related structural alter-
ations of these cortices. These brain regions are significantly involved in 
intentional goal-directed behaviours. For example, the anterior 
cingulum can be considered as an “intentional” hub: it is significantly 
more active during intentional behaviour, compared to stimulus-driven 
actions, irrespectively on what aspect of intentional action is empha-
sized by the task, such as the content, the timing, or the actual possibility 
of acting intentionally (Zapparoli et al., 2018). 

The mechanism whereby the volume of medial prefrontal cortices 
becomes reduced in obesity remains to be established: in any event, a 
malfunction here may explain why external motivationally salient 
stimuli, such as food visual cues, may trigger more easily stimulus- 
driven behaviour in obese individuals, with a reduction of higher-level 
and “more rational” intentional behaviour. 

We believe that the present findings may provide a possible anatomical 
basis for the abnormal decision-making processes described in obesity 
(Yang et al., 2018). Coherently with this suggestion, we recently demon-
strated that high-frequency bilateral deep TMS stimulation of the pre-
frontal cortex and the insula is effective in promoting weight loss in obese 
individuals. Crucially, these changes were specifically associated with an 
increase of the whole-brain functional connections of the OFC (Devoto 
et al., 2021). Thus, the brain mechanisms behind weight-loss may occur 
through an increased reliance on top-down decision-making processes 
mediated by the OFC and its connections (Devoto et al., 2021). 

Finally, further obesity-related structural abnormalities were found 
in midbrain and thalamic regions: these, given their overlap with the 
functional alterations, will be discussed in the next paragraphs. 

Crucially, it is important to note that the described structural differ-
ences between the obese and normal-weight individuals cannot be 
explained by age-related factors, since the two samples were comparable 
in terms of age. 

4.2. Neural structural abnormalities underlying altered brain activation in 
obesity: Do the findings of the two meta-analyses overlap in a meaningful 
manner? 

For what concerns the neurofunctional data, we re-classified the 
peaks of the studies included in the meta-analysis of Devoto and col-
leagues (2018) and we re-analysed these data with the ALE approach.4 

This was done to have a dataset coherent and comparable with the 
structural one. Even with a different analytical approach, we were able 
to replicate the less frequent activation in the obese sample of the 
thalamus and the midbrain5 (Fig. 2b). In particular, the specific 

locations of the midbrain and thalamus corresponded, respectively, to 
the VTA, in a position corresponding to what described by Trutti et al. 
(2021), and in the most medial part of the dorso-medial thalamic nu-
cleus, corresponding, according to Morel’s (2007, page 9, Fig. 2D) ste-
reotactic atlas of the thalamus , to the paraventricular nuclei (PVT). 
These regions are part of a broader brainstem-hypothal-
amic—thalamic—ventral striatal circuit involved in the regulation of 
energy intake and feeding behaviour (Kelley et al., 2005). Specific 
subregions of the thalamus, such as the PVT, receive information from 
dopaminergic, cholinergic, and serotoninergic nuclei in the midbrain 
(one of them being the VTA) as well as from the hypothalamus and 
diencephalic structures. PVT neurons then project to the ventral stria-
tum, amygdala, and insular cortices (for a review, see Millan et al., 
2017). Another important thalamic relay is the dorso-medial nucleus 
because of its connections with prefrontal cortex (Goldman-Rakic and 
Porrino, 1985). It is through these projections that thalamic subregions 
exert either a bottom-up or top-down control of food intake, playing a 
significant role in homeostatic and non-homeostatic feeding behaviour. 
Congruent with this suggestion, a previous meta-analytical study 
revealed that the medio-dorsal thalamus is consistently activated by 
different kinds of reward (i.e., monetary, erotic and food rewards) and is 
thought to bridge basic reward signals with higher-level cognitive pro-
cesses, such as motivation and goal-directed behaviour (Sescousse et al., 
2013). 

We compared these results with the ones obtained with our struc-
tural meta-analysis, providing evidence that obesity-related neuro-
functional alterations are partially associated with structural 
abnormalities in the same brain areas (Fig. 2c). Specifically, we showed 
that food over-consumption leading to obesity is associated with 
reduced grey matter volumes at the level of the thalamus and the 
midbrain, regions that already we found hypoactive in obese partici-
pants independently from the specific sensory modality (Devoto et al., 
2018). A combined structural and functional impairment reveals that 
brain hypo-functionality here is complemented by structural alterations. 

Previous studies suggest the existence of a direct relationship be-
tween structural and functional impairments. For example, animal 
studies showed that striatal regions in obese rats are characterized by a 
decreased concentration of D2 receptors (Fetissov et al., 2002; Hamdi 
et al., 1992; Huang et al., 2006), accompanied by a decreased dopamine 
release (Geiger et al., 2009). Similarly, other studies conducted on 
human subjects have demonstrated a decreased concentration of D2 and 
µ-opioid receptors in obese individuals respect to their lean counter-
parts: because of this diminished receptor availability, over-eaters are 
also characterized by a diminished dopamine metabolism (Van De 
Giessen et al., 2014) and reduced D2 receptor expression (Volkow et al., 
2008). 

How would these abnormalities translate into a reduction of grey 
matter tissue in a VBM analysis? This is of course a matter of speculation: 
one could argue that the underlying structural abnormality may be due 
to a reduction of the dendritic neuropil, the neuronal subdivision that is 
most sensitive to plastic changes due to “experience” in a broad sense 
(Kolb and Whishaw, 1998). A reduced dendritic tree may also translate 
into a reduced expression of dopaminergic receptors. There is some 
animal evidence for structural changes of the dendritic tree associated 
with obesity (Bocarsly et al., 2015): in a diet-induced model of obesity in 
rats, it was found that a combination of synaptic loss in prefrontal cor-
tex, including reduced numbers of dendritic spines and expression of 
synaptic proteins, as well as structural alterations, the microglia, 
correlated with reduced cognitive performance. 

There was a discrepancy between the fMRI data and the VBM meta- 
analyses: this might seem perplexing and yet it can be easily explained 
by the fact that the fMRI paradigms that we scrutinized did not contain 
studies that were stressing behavioural control, as these studies are still 
too few to be meta-analysed (see the recommendations on study 
numerosity needed for meta-analyses in Eickhoff et al. 2016). It is likely 
that having a larger number of these studies available the two meta- 

4 In the original paper, we performed the meta-analysis with the software 
CluB (Berlingeri et al., 2019), in order to assess the possible interactions be-
tween the factor BMI and the factors satiety and sensory modality. See also the 
next footnote.  

5 It is important to note that in Devoto et al. (2018) we also investigated the 
possible interactions between the factor body weight (obese vs normal-weight) 
and the factors sensory modality of food-related stimulation (visual vs gusta-
tory) and satiety (fed vs fasted). This factorial design was suitable for reflecting 
both anticipatory (e.g., visual) and consummatory (i.e., gustatory) brain func-
tional processing of food stimuli while controlling for the physiological status of 
satiety. This approach led to some further findings that are not described here 
since not crucial for the aim of the present work (i.e., addressing the relation-
ship between structural and functional data). The data presented here are 
qualitatively equivalent to a description of a group – obese versus lean - main- 
effect in Devoto et al (2018). 
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analyses may converge better on the prefrontal anterior cingulate VBM 
observations. 

To further investigate the functional meaning of our meta-analytical 
results, we explored the functional network of the brain clusters asso-
ciated with both structural and functional alterations in obesity. This 
was done with a resting-state functional connectivity analysis of inde-
pendent data collected in normal-weight participants. The motivation 
for such analysis on normal-weight participants data was simple, namely 
the desire of defining to what network the regions of reduced grey 
matter density and activation would normally project and belong. The 
results of this final analyses revealed that these regions are part of a large 
bilateral network including the anterior and middle cingulum, the 
operculum, the medial superior frontal cortex, the insula, the amygdala, 
subcortical regions such as the striatum, the hypothalamus, and, of 
course, the thalamus and midbrain themselves (Fig. 2d). 

Once decoded through the Neurosynth.org decoding routine 
(https://neurosynth.org/decode/; Yarkoni et al., 2011) our functional 
connectivity results confirm that the regions identified by our study are 
part of what can be broadly seen as a reward circuit, including regions 
sensitive to “reward” and “gain” but also to what is normally antithet-
ical, namely “pain”. Indeed, prefrontal cortices, insula, and anterior 
cingulate cortices, as well as often subcortical limbic structures such as 
nucleus accumbens, ventral pallidum and amygdala are typically high-
lighted as a reward network of interacting brain regions activated by 
different kinds of pleasurable stimuli (e.g., food, sex, addictive drugs, 
friends and loved ones, music, art; for a review, see Berridge and Krin-
gelbach, 2015). 

Interestingly, this network largely overlaps with the regions involved 
in the so-called hierarchical model of taste proposed by Rolls (2019): 
indeed, the first tier of this hierarchy includes the insula and operculum, 
and it is involved in evaluating the intensity, temperature, and texture of 
tastes. The second tier includes the orbitofrontal cortex and the amyg-
dala, implicated in monitoring and encoding the reward value of tastes. 
The third tier includes the medial prefrontal cortex areas and cingulate 
cortex, the striatum/basal ganglia, and lateral hypothalamus/insula 
regions, involved in decision-making and learning regarding food (Rolls, 
2019). 

This evidence supports the hypothesis that the highlighted brain 
circuit is implicated in the food tasting experience and in food-related 
reward processing. 

4.3. Present findings and neurocognitive theories of obesity: are these 
results in line, in part or completely, with the predictions of a particular 
neurocognitive theory on obesity? 

The last twenty years of imaging research on obesity have had, 
inevitably-one could say, the ambition of shedding new light on the 
phenomenon and to give a brain basis to pathological overeating: this 
study makes no exception. 

Yet, the present quest for joint morphometric and functional deficits 
in obesity limits the spectrum of effects that one could test: the 
morphometric data lack the necessary functional nature required to 
support inherently functional theories like, for example, the enhanced 
brain responsivity to the consummatory aspect of food experience (a key 
aspect, for example, of the Reward Surfeit Theory). 

While bearing in mind these limitations, there are some aspects of 
the available theories that are supported by our data and that may 
deserve further investigation. 

For example, we believe that the shared morphometric and func-
tional alterations of the VTA region and medial thalamus support the 
idea that overeating is associated with alterations in the reward cir-
cuitry, in line with what predicted by the Reward Deficit Theory. The 
nature of the regions of joint reduced grey matter density and activation, 
particularly the mesencephalic region compatible with the VTA, pro-
vides some indirect evidence for a specific alteration in the dopami-
nergic circuitry. This may contribute to altered activations in connected 

reward-related brain regions (e.g., ventral striatum), previously re-
ported for the visual/gustatory processing of food-stimuli (for further 
discussion, see also Devoto et al. 2018, p. 280). 

One other finding that may be useful, in a theory-driven perspective, 
is the reduced grey matter density in medial prefrontal cortex and 
anterior cingulate cortex: this finding could partially support an Inhibi-
tory Control Deficit Theory of obesity, even though we still lack compel-
ling – i.e., replicated several times - evidence of a reduced activation of 
these regions during voluntary control of action towards food stimuli. 
The reduced grey matter density here seems justified by experimental 
models of obesity in the rat (Bocarsly et al., 2015). 

Moreover, all the decoding analyses made on the structural and 
functional results reported here point to cognitive dimensions impli-
cated in the condition of obesity and altered reward processing: for 
example, “reward”, “pain”, “gain”, “craving”, “sexual”. While not 
providing a mechanist explanation of the condition of obesity, these 
findings make good sense in the light of the brain abnormalities 
described. 

We believe that our results warrant a more systematic exploration of 
obesity whereby the reward of food, the level of satiety and the inten-
tional control over consummatory behaviour is manipulated. These 
studies may integrate theories of obesity that emphasize bottom-up 
processes (e.g., the Reward Surfeit Theory or the Incentive Sensitization 
Theory) with top-down theories postulating a deficit in cognitive control 
(e.g., Inhibitory Control Deficit Theory). This may help defining the 
working of the normal and “obese” brain under the temptation of the 
reward of food. 

4.4. Limitations 

We believe that it is important to spend a few words of caution about 
what changes of grey matter density seen using VBM might mean in this 
context, and how these might pair with differences of brain activation. 
This also depends on the stage of life when this is observed. Let’s assume 
that populations considered are young-middle aged adults whose brain 
maturation is complete and aging effects are not an issue yet. 

Reductions of grey matter density in one such pathological condition 
is what is normally expected in degenerative disorders: this may come 
from an impoverished number of brain cells, their neuropil or both. The 
relative increase of grey matter in the sample of healthy controls is 
normally interpreted as the other side of the coin of a reduction of 
density in the pathological condition. It is more contentious what a 
relative increase of grey matter may mean in a pathological population 
compared with a sample of healthy age-matched controls: this may 
represent the effect of an abnormal maturation/plasticity leading to 
“local hypertrophy” due to less neuronal death or hypertrophic neuropil. 
What is not conceivable is an augmented grey matter density due to 
experience and neuronal cells proliferation, given the perennial nature 
of the vast majority of brain neurons. Yet, it remains conceivable a 
regional augmented grey matter density due to plastic changes of the 
neuropil (Kolb and Whishaw, 1998).6 This may be observable in 
conjunction with augmented response at the functional level. However, 
the data behind coordinate based meta-analyses do not necessarily 
imply a between-group difference in the magnitude of the fMRI signal: 
these may simply represent a more frequent presence of a given 
“normal” activation in one group rather than an increased response due 
to greater grey matter density. 

One further caveat should be considered: while the patterns of 
dysfunctional activations are mostly determined by the nature of the 

6 As a matter of facts, only a minority of VBM studies reported augmented 
grey matter density in obese subjects (# of statistical comparisons: 7) making a 
meta-analysis of these results using the ALE technique impossible and all con-
siderations on the systematic occurrence of focal augmented density of grey 
matter a mere theoretical speculation. 
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task considered and the ensuing pattern of brain activity in the normal 
controls, changes of brain morphometry are task independent, unless a 
specific correlation with a behavioural pattern is attempted: yet they do 
have the potential of revealing latent correlations with altered behav-
iour not necessarily explicitly tested in the study considered and to be 
inferred by some form of – cautious - reversed inference. 
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