RESEARCH ARTICLE T(>,\"\(:)G RAP H Y®

Temporal Feature Extraction from DCE-MRI to
Identify Poorly Perfused Subvolumes of
Tumors Related to Outcomes of Radiation
Therapy in Head and Neck Cancer

Daekeun You', Madhava Aryal’, Stuart E. Samuels2, Avraham Eisbruch', and Yue Cao?

'Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; 2Department of Radiation Oncology, University of Miami, Miami, Florida; and 3Department
of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan

Corresponding Author:

Daekeun You, PhD

Department of Radiation Oncology, University of Michigan,
Ann Arbor, Ml 48109;

E-mail: youdae@med.umich.edu

Key Words: DCEMRI, fumor subvolumes, therapy assessment, feature extraction, discrete WT, SYM
Abbreviations: Dynamic contrastenhanced (DCE), magnetic resonance imaging (MRI), head
and neck (HN), blood volume (BV), low blood volume (LBV), high blood volume (HBV), gross
tumor volume (GTV), pharmacokinetic (PK), chemoradiation therapy (CRT), wavelet fransform
(WT), principal component analysis (PCA), support vector machine (SVM), arterial input function
(AIF), Dice similarity coefficient (DSC)

This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-and-
neck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting
local and regional failure after chemoradiation therapy. Temporal features were extracted from time-intensity
curves to build classification model for differentiating voxels with LBV from those with high BV. Support vec-
tor machine (SVM) classification was trained on the extracted features for voxel classification. Subvolumes
with LBV were then assembled from the classified voxels with LBV. The model was trained and validated on
independent datasets created from 456 873 DCE curves. The resultant subvolumes were compared to ones
derived by a 2-step method via pharmacokinetic modeling of blood volume, and evaluated for classification
accuracy and volumetric similarity by DSC. The proposed model achieved an average voxel-level classifica-
tion accuracy and DSC of 82% and 0.72, respectively. Also, the model showed tolerance on different acqui-
sition parameters of DCE-MRI. The model could be directly used for outcome prediction and therapy assess-
ment in radiation therapy of HN cancers, or even supporting boost target definition in adaptive clinical trials
with further validation. The model is fully automatable, extendable, and scalable to extract temporal features
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of DCE-MRI in other tumors.

INTRODUCTION

Dynamic contrast-enhanced (DCE) magnetic resonance imaging
(MRI) (DCE-MRI; Table 1) has been widely explored and applied
in clinical studies for diagnosis, treatment planning, and mon-
itoring therapy response of diseases (1), particularly in cancers
(2, 3). The T1-weighted DCE images are acquired during an
intravenous bolus injection of a gadolinium-based contrast
agent. The conventional analysis of DCE data is to quantify
kinetic parameters such as perfusion, microvascular volume,
vessel permeability, and volume of the extravascular extracel-
lular space by fitting the data to a pharmacokinetic (PK) model
(eg, Tofts model) (1, 2, 4). To further use this technique for cancer
prognosis and therapy monitoring, a 2-step analysis is often
applied, in which a metric(s) is extracted from physiological
parametric maps and modeled for prediction of a clinical end-
point of interest. One of the advantages of PK modeling is that
the estimated kinetic parameters have a physiological basis to an

extent, and thereby, it is possible to compare with parameters
across centers (1). However, these 2-step processes are time-
consuming for processing a large amount of patient data and
supporting real-time clinical decision-making.

An emerging approach, data-driven machine learning, has
the potential to process a large quantity of image data, extract
“features” beyond expert’s eyes, and create predictive models,
which is termed Radiomics (5-7). The “features” extracted from
the images range from textural features to intensity variation to
tumor morphology. When applying this concept to the 4-dimen-
sional DCE images, temporal “features” can be extracted,
learned, and modeled in a fully automated process. The new
data-driven machine learning approaches attempt to extract
temporal “features” beyond the empirical parameters, for exam-
ple, an area under the time-intensity curve, time-to-peak, peak
enhancement, and wash-in and wash-out slopes, which are
quantified by the conventional PK model-free approaches (1, 2).
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Abbreviation Description
AlF Arterial Input Function
BV Blood Volume
c-HBV Class of High Blood Volume
clBV Class of Low Blood Volume
CRT Chemoradiation Therapy
DCE-MRI Dynamic ContrastEnhanced Magnetic
Resonance Imaging
DSC Dice Similarity Coefficient
GTV Gross Tumor Volume
HBV High Blood Volume
LBV Low Blood Volume
PCA Principal Component Analysis
PK Pharmacokinetic
sHBV Subvolume of High Blood Volume
s-LBV Subvolume of Low Blood Volume
SVM Support Vector Machine
WT Wavelet Transform

In this study, we proposed a data-driven machine learning
approach for extracting significant tumor subvolumes as an
automatic supportive tool for radiotherapy assessment. A pre-
vious study (8) has shown that large poorly perfused subvolumes
of either primary or nodal head and neck (HN) cancers before
treatment and persisting during the early course of chemoradia-
tion therapy (CRT) have the potential for predicting local and
regional failure, and could be candidates for local dose intensi-
fication. We aimed to develop an automated and scalable model
to identify subvolumes of the tumor with low blood volume
(LBV) by extracting temporal contrast-enhanced features of
DCE-MRI in HN cancer for predicting local and regional failure.
In particular, we tested discrete wavelet transform (WT) (9) and
principal component analysis (PCA) to characterize “features” in
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the DCE curves of HN cancers. Support vector machine (SVM)
classifiers were trained regarding the temporal features to sep-
arate tumor voxels with LBV from those with high blood volume
(HBV). We validated our method at voxel and patient levels
using independent data sets. In addition, we evaluated whether
our model without retraining could be applied to the DCE data
acquired by a different pulse sequence on a different vendor
scanner. Our results showed that the new approach reached high
voxel classification accuracy of the tumor with LBV, which has
the potential to automatically analyze the DCE data and create
significant tumor behavior metrics for supporting adaptive RT in
advanced HN cancers. The methodology can be fully automated
and scalable to process a large DCE data set, and is also appli-
cable to data sets obtained by different acquisition settings, such
as different acquisition parameters or scanners.

MATERIAL

The data used in this study were from 38 patients (female, 10;
male, 28; median age, 58 years) who had HN cancers (T stage of
1-4 and N stage of 0-3) and were treated by CRT. The study was
approved by the institutional review board of the University of
Michigan. All patients underwent 3-dimensional DCE image
scanning on a 3 T scanner (Skyra, Siemens Medical Systems,
Erlangen, Germany) before CRT, using a TWIST pulse sequence
in the sagittal plane with the following parameters: voxel size =
1.56 X 1.56 X 1.5 mm?; echo time/relaxation time = 0.9/2.58
milliseconds; temporal resolution = ~3 seconds; and dynamic
image volumes = 60.

Training and validation data sets for the proposed models
consisted of 456 873 signal-intensity time-curves of DCE-MRI
from 45 gross tumor volumes (GTVs), including primary and
nodal tumors, of the first 32 patients (examples shown in Figure
1). The GTVs were delineated on magnetic resonance images by
radiation oncologists. This data set was divided into training
and validation subsets consisting of 70% and 30% of the curves,
respectively. Each curve was labeled as either a class of LBV
(c-LBV) or class of HBV (c-HBV) according to the blood volume
(BV) of the corresponding voxel for classification model training
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Figure 2. Block diagram of our proposed method. Classification model training phase (A). Usage (Validation) phase (B).

and validation. The BV maps were obtained by fitting the same
DCE-MRI data to a PK model (2-compartment Tofts model) (8,
10). The labeled DCE curves of each class were randomly se-
lected to the training and validation data sets. To further vali-
date the performance of the method at the patient level, the DCE
data from the next 6 patients were used to create the subvolumes
with LBV using the proposed method and compared with the
data created using the 2-step method (8).

MACHINE LEARNING MODELS
Our proposed framework is illustrated in Figure 2, and it consists
of development and usage phases. The development phase (Fig-
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ure 2A) includes training and validation steps, which use inde-
pendent data sets. After validation, to use the model, a new
patient’s data can be rapidly processed through the workflow,
without classification model training or PK modeling (Figure
2B). For the training process, the BV map derived from a PK
model is only for labeling the voxels with LBV. Details of each
step are discussed in this section.

Preprocessing

The dynamic curve at each voxel represents the temporal
changes in signal intensities after contrast injection. The curves
need to be preprocessed to remove variations in intensity mag-
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nitude and onset time of contrast enhancement because of
individual hemodynamics and various acquisition protocols. A
signal intensity change at time f, AS({), after contrast injection
compared with a baseline intensity, (So), is computed, and then
normalized to the peak of the arterial input function (AIF,,,,) of
the patient as shown in the study by Farjam et al. (11) and using
the following equation:

S(t) — S,
So
ASN() = AS(1)

AS(t) =

1 (1)

max

where S(f) is the signal intensity of a DCE curve at time t, ASy(t)
is normalized S(#), and AIF,,,, is the peak enhancement in AS(f)
of the AIF. The AIF was determined by thresholding the intensity
changes in a region of interest in a large artery, for example,
carotid artery in this study.

For temporal feature extraction, a time-intensity series dy-
adic in length is required. In total, 32 time points with ~3-
second temporal resolution were selected starting from the onset
time of the AIF (AIF,.s) of each patient, so as to include the
most significant intensity changes in the initial enhancement
and the peak and to exclude the precontrast points and the
extended wash-out period where minor intensity changes, in
general, are observed. The use of the AIF,,s. of each patient
effectively removes patient variations in the onset time of en-
hancement in the time-intensity curves.

To extract temporal features from the DCE curves and thereby
differentiate the voxels with LBV from those with HBV, WT and
PCA are applied to the preprocessed (normalized) DCE data to
extract 2 different sets of features tested in 2 different models.

Wavelet Transform. WT is a multiresolution analysis that
decomposes a signal into different frequency components in
different scales (9). One-dimensional discrete Haar WT (HWT) is
applied to characterize temporal frequency information in the
DCE curves. The Haar WT computes sums and differences of
pairs of temporal data points iteratively, and it stores the differ-
ence as a detail coefficient and passes the sum for the next
iteration. The sum and difference are equivalent to low- and
high-pass filters, respectively. The sum preserves low-frequency
components and removes high-frequency fluctuations from the
signal, whereas the difference captures high-frequency infor-
mation. The low- and high-pass filtering can be performed by
applying a scale (®) and WT (W) functions (shown in Figure 3)
to an input signal. The WT coefficients can be arranged as W =
[Aj, Dy, Dj—y, ..., Dy, Dy], where A; is the approximation
coefficient and D; represents detail coefficients at the j™ scale
level and is denoted as follows:

D, = {dj‘ | 1=i=< 2“1')} (2)

where di is an individual coefficient and J is the maximum scale
level and related to the number (N) of time points of the signal
curve by N = 27, It is worthwhile to point out that A, is proportional
to the area under the curve of the time-course (ie, AUC/2”). A full
HWT is performed to yield 2”7 coefficients including 1 approxima-
tion coefficient and (27 — 1) detail coefficients.
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Principal Component Analysis. PCA (12) is another method to
extract features from the DCE-MRI data set. PCA is performed on
the training data set to obtain principal components (PCs),
which transform the DCE curves into the new feature space
defined by the PCs. In our application, 32 PCs were initially
obtained from the preprocessed DCE curves in the training data
set, and projection coefficients of a new temporal curve x, that
is, a representation of x in the PC space, were computed and used
as features representing the curve .

Feature Selection. Feature (attribute) selection is an essential
step in machine learning and data mining to reduce the dimen-
sionality of initial states of features (13). Features can be easily
composed of several tens or hundreds of attributes. A large dimen-
sionality can hinder rapid model development and processing of a
large data set. Both WT and PCA features in our application have
only 32 attributes; however, the training set contains >300,000
DCE curves (samples) and, therefore, the model training can con-
sume significant time without feature selection.

Among the major approaches in the literature (13), a filter
method is used primarily because of its scalability and fast
selection. The wrapper method can interact with the classifiers
and model feature dependencies; however, it has a risk of over
fitting and is slow and very computationally expensive com-
pared with the filter method, and therefore, it may not be
appropriate for a large training set.

The filter method was applied only to WT features. For PCA
features, we selected the first several PCs with the largest eigenval-
ues, which have been frequently performed for feature selection or
dimensionality reduction in PCA-based approaches (11, 14, 15).

Voxel Labeling. Voxel classification is performed using SVM
(16). SVM is a supervised learning approach requiring labels of
training samples (ie, DCE curves). The voxels in both training
and validation data sets are labeled “0” for LBV and “1” for HBV
based on the BV of each voxel [computed from Tofts model as
described previously (8)]. A BV threshold of 7.6% that was
previously established in Wang et al.’s study (8) was applied to
determine the voxel labels.

Support Vector Machine. SVM is a machine learning algorithm
for finding a hyperplane splitting the labeled training samples into
2 classes (binary classification). The hyperplane is found to have a
maximum distance (margin) from it to the nearest training samples
on each side, known as a maximum-margin hyperplane. SVMs
have several training parameters that can be adjusted during the
training to build a better classification model. Equations 3 and 4
show the SVM objective function with a soft margin that allows for
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an analytical treatment of learning with errors (misclassification)
on the training set as follows:

N
1
argmm(—nwnz + 5,-) (3)
w,b,& 2

i=1
subject to the following equation:
yiw'x; +b) =1 - &,

Mg i=1, ...,N (4)

where w and b define a hyperplane (decision surface), N is the
number of training samples, and y; is a ground truth label of the
i training sample x;. In the equation, &; is a non-negative slack
variable that measures the degree of misclassification of the x;
(eg, distance from x; to the hyperplane). The constant C, a
regularization parameter, is one of the SVM training parameters,
which controls the cost of misclassification on the training data
(tradeoff between error and margin). With a sufficiently small C,
training errors (ie, sum of &;) can be ignored and it allows a large
margin. A sufficiently large C, in contrast, makes training errors
hard to be ignored and therefore results in a narrow margin,
which could result in an over-fitted model to the training sam-
ples and take longer training time.

For training data with no linear hyperplane available in the
original input space, a kernel-based SVM is used to implicitly
transform the original input space into a higher-dimensional
feature space, where a linear separating hyperplane is applica-
ble. We used a radial basis function kernel with a trainable
kernel parameter vy as follows:

K(x;, x) = exp(—v|x;—x;|°), y>0 (5)

where x; and x; are 2 sample vectors in the original input space.
A sufficiently large -y may result in an overfitting and therefore
poor generalization of the model.

Voxel Classification. After training, the classifier assigns each
voxel to either c-LBV or not, based upon the posterior class
probability of the voxel either >0.5 or not as a final assignment
of each instance. Then, a tumor subvolume with LBV is assem-
bled from a group of voxels assigned to c-LBV by the classifier.
Figure 4 shows the posterior probability map of c-LBV (the
probability of a voxel being classified as LBV), and the corre-
sponding subvolume map derived from the probability map in
Figure 4A with a threshold of 0.5.

We used Weka data mining software package (17) for feature
selection from the WT features. A filter method based on correla-
tion-based feature subset selection (CfsSubsetEval in Weka) was
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used with different search methods, such as Best-first, Genetic, and
Greedy search, and the features selected from each search method
were compared for determining a final feature set.

LIBSVM (18), a library for support vector classification, was
used to train SVM classifiers. We trained radial basis function
kernel SVMs with a probability estimation option to obtain both
an output class label and a posterior class probability of each
voxel. The SVM parameters C and y were empirically selected as
200 and 0.2, respectively.

VALIDATION

Validations were performed on data sets independent of the train-
ing data set at voxel and patient levels. The voxel-level validation
used 30% of the DCE curves randomly selected from 456 873
curves of the first 32 patients. The patient-level validation used 6
new patients. In addition, a preliminary test was performed for the
model sensitivity to the different DCE acquisition using the data
from 2 patients who were scanned using a 3 T Philips scanner
(Intera Achieva, Philips Medical Systems, Best, The Netherlands)
with different pulse sequence and parameters.

Outcomes from our method were voxel classification and tumor
subvolumes derived from the classification result. We had 2
performance measurements, namely, accuracy and the Dice sim-
ilarity coefficient (DSC). Voxel classification accuracy was de-
fined as follows:

#of correctly classified voxels

Accuracy(%) = 6)
#of total voxels

The DSC was used to compare the resulting subvolumes
from the classification with a ground truth (defined by the BV
threshold) to evaluate spatial overlap accuracy between the 2
segmentations. DSC was computed as follows:

_2IGNRI

DSC(G,R) = ———
IGI+IRI

(7)
where |.| denotes the total number of voxels in a segmentation;
G and R denote ground truth and classification result, respec-
tively; and N is the intersection between the 2 segmentations.
The 6 patients’ data, which were not used for model training and
testing, were mainly used for DSC evaluation.
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RESULTS

Wavelet Feature Extraction and Selection

WT coefficients as features extracted from training voxels are
shown in Figure 5. A box plot in Figure 5 shows scattering ranges
of WT coefficients from each scale level (J) grouped by a rectangle.
Note that variation of the coefficient values increases with the scale
level J, and also early-time coefficients (smaller index) within the
same scale level generally show larger variation. Table 2 shows the
coefficients in Figure 5 selected by the filter-based feature selection
but 3 different search methods. Four coefficients with indices #1,
#5, #9, and #18 were selected by all search methods, whereas the
Genetic search picked up 2 additional coefficients. Note that the 4
common coefficients were the early-time coefficients within the
scale levels where they were computed, and most of the selected
coefficients were from higher scale levels (corresponding to low WT
frequency components) where global shape information of the
curve is captured. In addition, the early-time coefficients in each
scale level were computed from early enhancement phases.
Therefore, the results suggest that the global shape of the
curve and intensities from early enhancement phases provide
more useful information for the voxel classification and anal-
ysis of DCE-MRI.

PCA Feature Selection
PCA in our application revealed that 87% of the total variance in
the training data set was explained by the first PC, 92% by the

Table 2. Feature Selection Results from WT

Features by Filter Method Using Different
Search Methods

Index of Selected

Search Method Coefficients
Best-first 1,5,9,18
Genetic 1,3,4,5,9,18
Greedy 1,5,9, 18
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first 2 PCs, and 95% by the first 4 PCs. Figure 6 illustrates the
first 4 PCs with the largest eigenvalues out of 32 initial PCs. We
used projection coefficients of each DCE curve to the first 4 PCs
as features for voxel classification.

Voxel Classification Results

The selected WT features and PCA features were used to train
the classifier separately. Voxel classification accuracies in
Table 3 were obtained from the 2 classifiers tested on the
validation data set. Both WT and PCA features achieved over
800 accuracy using only 4 coefficients. As receiver operating
characteristic curves shown in Figure 7, the classifier trained
on the PCA features performed slightly better than the one on
the WT features.

Results testing the classifiers on the 6 new patients’ data are
shown in Table 4. The size of s-LBV of the patients ranged from
~10% to 30% of the GTVs. To compute the DSC, the contiguous
voxels classified as LBV but smaller than 1 cc were excluded,
which was a criterion used in a clinical trial. Also, the DSC of
s-LBV and the DSC of s-LBV plus s-HBV (representing the
correctly classified voxels in the GTVs) were computed for the
PCA classification. Overall, both classifiers achieved classifi-
cation accuracy higher at the patient level than at the voxel
level (shown in Table 3). In addition, DSCs suggest that the
subvolumes with LBV classified by the proposed method have
an excellent spatial overlap with those generated by the
2-step process via PK modeling. In the literature, a 0.7 of DSC
or greater is accepted as excellent overlap between 2 segmen-
tation results (19). Patient #5 did not have contiguous voxels
with LBV greater than 1 cc for the DSC computation. Patient
#6, who had the smallest s-LBV (<99% of GTVs), had the
lowest DCS of 0.6 for s-LBV. Nevertheless, patient #6 had
0.94 of the DSC for LBV + HBYV, the highest, suggesting the
overall high rate of correctly classified voxels, and consisting
of a high classification accuracy of 86% (Table 4). The small
s-LBV resulted in the DSC being oversensitive to misclassifi-
cation of the voxels with LBV. The DSCs calculated from
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Accuracy (%) DSC (PCA)
Size of s-LBV
Patients ID in GTV (%) Wavelet PCA LBV LBV + HBV
1 21.4 88.1 87.2 0.7600 0.9070
2 20.0 88.8 88.9 0.8145 0.9295
3 28.0 83.9 83.6 0.7182 0.8690
4 31.1 80.9 81.0 0.7119 0.8383
5 17.9 85.9 84.3 NA 0.8813
6 8.7 86.0 86.3 0.6029 0.9435

but the boundaries of the subvolumes vary between the 2
approaches. The boundary mismatching is a typical behavior
of a binary classification on continuous changes of data. For
instance, LBV voxel distributions in patients #3 and #4 were
more complicated compared with those in patients #1 and #2,
resulting in relatively lower voxel classification accuracies
and DSCs. In addition, the s-LBVs derived by the proposed
methods were smaller than those by PK modeling, especially
in patient #3.

It is important to understand whether our proposed machine
learning model is applicable to data sets obtained by different

PK-modeling

WT-based

PCA-based

(a) Patient #1
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acquisition settings or scanners without retraining the model.
We conducted a preliminary test by directly applying our
trained model to the DCE data acquired by a completely
different protocol on a different vendor scanner in 2 patients.
The acquisition parameters used for model training and for
additional testing are listed in Table 5 for comparison.

Figure 9 shows AIFs and mean DCE curves from 2 patients’
data, each scanned by the acquisition parameters in Table 5.
Major differences between the 2 included the following:

(1) The DCE data in Figure 9B had only 32 dynamic image
volumes (phases) with a temporal resolution of ~7.7
seconds.

VOLUME 2 NUMBER 4 | DECEMBER 2016
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Table 5. Comparison of Acquisition Parameters and Scanner Type Between 2 Scanners

Acquisition Parameters
Voxel size (mm3)
TE/TR (ms)
Temporal resolution (s)
TWIST
Skyra 3T, Siemens

Purse sequence

Scanner

Scanner 1 (Training Data)

1.56 X 1.56 X 1.5
0.9/2.58

~3 (60 dynamic image volumes)

Scanner 2 (Additional Testing)

2X2X2

1.16/5.14
~7.7 (~32 dynamic image volumes)
Gradient Echo

Intera Achieva 3T, Philips

(2) The signal intensity in Figure 9B was significantly greater
than that in Figure 9A by ~104 times.

For the DCE data obtained by Scanner 2, we performed only
additional resampling of the DCE curves (Figure 9C) to have ~60
time points with a temporal resolution of ~4.1 seconds, closer to
3.0 seconds in training data on Scanner 1. Evaluation results are
shown in Table 6. The PCA-based method achieved >80% of
accuracy for both patients, comparable with those in Table 4.
The WT-based method had 82% and 75% of accuracy for the
respective first and second patients, respectively, relatively
lower than those in Table 4. In addition, all the DSCs were >0.7.

Signal Intensity
D
(=3
(=1

Mean DCE curve

The results suggest that our proposed machine learning ap-
proach is applicable to data sets obtained by different acquisi-
tion parameters and scanners with minor additional preprocess-
ing, but no major changes in the model, to produce sufficient
accuracy in the subvolume maps.

Sensitivity of the Classification Model to the AIF
Parameters

The peak and onset times of the AIF can be susceptible to errors
because of numerous factors. The errors can cause variations in
the normalized curves, and subsequently, affect the voxel clas-
sification and subvolume extraction. To examine the impact of
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Accuracy (%) DSC (PCA)
Size of s-LBV
Patients ID in GTV (%) Wavelet PCA LBV LBV + HBV
1 52.5 82.3 80.1 0.7230 0.7548
2 47.7 75.2 82.5 0.7153 0.7829

the variations, we performed a classification test by varying
AIF,,,, and AIF,, . values used in the DCE curve normalization.
We simulated probable measurement variations in the AIF,;
by shifting the onset time by =2 and =1 time points from the
originally identified onset time, and in the AIF,,,, by changing
the peak intensity by = 10% from the original values. Consider-
ing the original onset time and peak of AIF (AIF2"E, and AIFJS),
we had 5 onset times at each AIF,,., and 3 maximum values of
AIF at each onset time for the test. We used DCE data of patients
#1, #2, and #3 in Table 4 for the test.

Box plots of accuracy variation at each AlFgnset, When
varying AlFyax, in the 3 patients are shown in Figure 10. Only at
2 instances, the classification accuracy was approximately
<80%, for which both onset times were shifted by 2 time points
from the originals. The variation in the maximum value of AIF
had a lesser extent of impact on the classification accuracy than
onset time. One time point shift (~3 seconds) in the onset of AIF
did not cause >49% decrease in the classification accuracy even
with +100% of variation in the peak of AIF, which is consistent
with the results tested on the DCE data acquired with a com-
pletely different protocol on a different scanner.

DISCUSSION

In this paper, we proposed a temporal feature-based machine learn-
ing approach for extracting the tumor subvolumes with LBV from
DCE-MRI curves in patients with HN cancers. Our previous research
shows that large subvolumes of tumors with LBV in HN cancers

before RT and persisting during the early course of RT are signifi-
cantly related to the tumor local and regional failure (8). In this
study, we trained and validated the SVM classifier based on WT
features or PCA features directly extracted from the DCE data to
create the tumor subvolumes with LBV. The validation indicates
that we are able to achieve fairly high voxel classification accuracy
and the DSC as ~82% and 0.72, respectively, compared with the
2-step method via PK modeling. In addition, we found that WT
coefficients from higher scale levels are more informative, to yield
high accuracy and the DSC, than ones from lower scale levels for
our application. The former captures global shape characteristics
(low-frequency components) of the curve, whereas the latter cap-
tures high-frequency fluctuations. Furthermore, the proposed ma-
chine learning method has a fair amount of tolerance to the DCE
data acquired by different protocols on different scanners and the
ATF onset and peak. The method developed in this study can be
fully automated and is scalable for extracting the significant tumor
subvolume in HN cancer, which could be an important tool to
support future clinical trials that adapt individual treatments based
on the response of this subvolume to therapy.

Discrete WT has been applied similarly to other studies to
extract temporal features of the DCE curves for voxel cluster
analysis (20, 21). In these studies, the WT is basically the same as
ours, except for the mother WTs (W), but WT coefficient selec-
tions differ from ours. In Whitcher et al.’s study (20), the ap-
proximation coefficient (Aj) and detail coefficients in D; were
discarded. However, the approximation coefficient was found to
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be the most informative in our study. In addition, the coeffi-
cients in higher scale levels (J > 1) were all selected in Whitcher
et al.’s study (20), whereas only several of them were found to be
useful in our application. WT shrinkage that sets small coeffi-
cients below a threshold to zero was used by Li et al. (21) for
feature selection. However, the wavelet shrinkage is not suitable
for our classification-based methodology, as the number of
selected coefficients varies by the threshold.

Our proposed approach has several advantages over other
approaches for tumor region segmentation using features from
DCE curves. The most promising advantage could be that the
resulting subvolumes are similar to ones defined by physiological
parameters. Basically, our approach is also a method for segment-
ing a heterogeneous tumor volume into subregions (subvolumes in
this paper) based upon the image features of interest. However, ours
is different from others, in that its resulting subregions are already
associated with physiological characteristics of tumors (ie, BV) and
even cancer treatment outcomes, whereas those from others are
generally not. Subregions (or clusters) in other approaches may be
well characterized by the imaging features, but additional tests are
required to associate them with tumor behavior or underlying
structure of the tissue (11, 15). In our approach, voxels are charac-
terized by not only (explicitly) features extracted from the DCE
curves as in other approaches but also (implicitly) physiological
parameters obtained from PK model fitting. The physiological pa-
rameters, however, are not directly included in the features used to
train the model. Our model enables to apply to new patients’ data in
the usage phase without any computation of physiological param-
eters and obtain subvolumes similar to physiological parameter-
derived ones. Therefore, our approach is attractive by taking ad-
vantages of the PK model-free approach, but yielding the results
similar to the PK model-based method, which could facilitate the
development of the real-time decision-making supportive tools in
diagnosis and therapy assessment. Another advantage of our
method is the simplicity of the WT-based feature extraction, which
requires only simple sum and difference computations of pairs of
floating numbers. In addition, the multiresolution analysis of WT,
decomposing a signal into different frequency components, can
provide richer choices for feature selection.

Preprocessing of the DCE curves is generally required by
quantification methods. Our approach needs substantially less
computation efforts than others, for example, using a gamma
variate function to fit the DCE curves to compute perfusion-related
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