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Abstract

Deep learning has achieved the state-of-the-art performance across medical imaging tasks; 

however, model calibration is often not considered. Uncalibrated models are potentially dangerous 

in high-risk applications since the user does not know when they will fail. Therefore, this paper 

proposes a novel domain-aware loss function to calibrate deep learning models. The proposed loss 

function applies a class-wise penalty based on the similarity between classes within a given target 

domain. Thus, the approach improves the calibration while also ensuring that the model makes 

less risky errors even when incorrect. The code for this software is available at https://github.com/

lab-smile/DOMINO.
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1. Introduction to deep learning calibration

Modern deep learning models achieve spectacular accuracy; however, they often disregard 

calibration analysis [1]. Confidence calibration relates the model output prediction score 

(“the confidence”) to the true likelihood of a class being correct [1,2]. In other words, a 

calibrated model has an X percent chance of getting each data point that has X output 

probability correct. This is related to the model uncertainty, which corresponds to the 

classification noise [2]. Confidence calibration and uncertainty details are highly associated 

with model interpretability [2]. Hence, models with high accuracy and poor calibration could 

appear groundbreaking during research development, yet these same models may not be 

trustworthy for clinical deployment.

One reason for this poor translation to clinical data is that clinical data is often more variable 

than research data. Indeed, generalization to out-of-domain (OOD) data is a huge challenge 

in machine learning [3]. OOD data refers to any testing data that is different in distribution 

from the training data. In the research setting, it is easy to design an ideal testing dataset 

that matches our training data. This is performed by dividing one dataset into training and 

testing data splits. A fundamental problem with current deep learning models is that the high 

accuracy on such datasets often does not translate to OOD testing data. Different factors that 

may affect the distribution of clinical data include variability in data collection parameters, 

differences between patients, and rare data classes. For instance, changing to a different 

imaging scanner manufacturer may drastically lower segmentation performance [4,5]. Rare 

data classes are at the highest risk of these changes [6]. Poor performance on rare data is 

potentially dangerous, as the rarest data in medicine are often in diseased states [6]. There is 

prior evidence that confidence calibration can help [3].

In addition, model calibration can improve a model’s ability to detect when it is most likely 

to fail [7]. Failure prediction includes successfully detecting OOD data and reporting model 

confidence [8]. This feedback is equally as important as improving the performance because 

it strengthens a model’s interpretability. For instance, a disease classification model could 

sort patient cases based on confidence rather than just the binary label. This information 
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is useful in clinical screening since the true labels will not always be available. In this 

setting, a prediction with low confidence would be highlighted for clinician review. Overall, 

a calibrated machine has more potential for embedded safety features when compared to an 

uncalibrated model, even when the performance is equal.

Model calibration has the potential to improve failure detection, aid model interpretability, 

and possibly even improve generalizability. Yet, most modern deep learning models are 

poorly calibrated. Hence, DOMINO [9] was developed to calibrate deep learning models. 

The DOMINO loss function that computes penalties for incorrect classifications based 

on class-wise similarities. DOMINO computes the relevant class similarities using either 

task-driven or data-driven similarities. This approach improves performance by learning 

more true information about class representation, as opposed to traditional deep learning 

algorithms that fight class similarity. In addition, DOMINO can be adjusted so that classes 

that are safer to confuse are closer together. In this way, DOMINO loss allows a model to 

make safer and more meaningful mistakes when wrong. These features add to the overall 

safety and effectiveness of this calibration approach.

2. The DOMINO methodology

DOMINO calibration is constructed as a loss regularization term for deep learning. The base 

loss function only relies on Python3 and any PyTorch version. CUDA is optimal for best 

performance, but it is not required. The DOMINO-regularized loss function is

L y, y + βyTW y (1)

where L is any loss function, y is the one-hot encoded true label, and 

y
is the softmax output. The parameter β can take on any value between zero and one, and 

the entire novel loss term is scaled by β. The matrix W represents a generic regularization 

term of size N×N, where N is the number of classes. The diagonals are zero, whereas the 

off-diagonals represent the penalties for confusing classes.

The overall loss function is simple yet efficient so that it can be dynamically altered for 

a given task. DOMINO can work with either classification or segmentation, whereas the 

segmentation approach is regarded as classification on a pixel-wise basis. However, one 

caveat of the loss function is that it is optimized for multiclass problems. The reason is that 

DOMINO operates on the fundamental logic that the functional performance of a model on 

a particular task may be improved by treating certain classes as being less risky to confuse 

than others. These ideas lose their meaning in a binary problem since in a binary case the 

two classes are maximally separated.

DOMINO is easy to implement and adjust to different deep learning frameworks because 

its overall structure is simple. Eq. (1) operates according to basic matrix multiplication. 

At the same time, DOMINO is effective due to its adaptability across tasks. This is 

because the only parameter that is inherently task-specific is the W term, and W can be 

modified based on the specific user task. This term refers to a class-wise weighting penalty 

that regularizes our loss based on specific penalties for confusing a given class for any 
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other class. The scheme does not need to be symmetric; for instance, a disease severity 

model could give step-wise increases in penalization such as giving higher weight to false 

negatives. Our prior works [9] use two main W schemes that can be broadly categorized 

as machine-level confusion (confusion matrix method (DOMINO-CM)) or expert-guided 

groupings (hierarchical class method (DOMINO-HC)).

3. The advantages of using DOMINO

Our prior experiments [9] show that DOMINO can improve both accuracy and calibration 

metrics across many classification and segmentation tasks. DOMINO is easy to implement 

in existing projects via a quick addition to the loss function. DOMINO is particularly 

advantageous for works in which certain mistakes would carry lower risks than others. For 

example, a theoretical deep learning model controls a self-driving car which has to swerve 

due to frozen roadways. There are three “objects” in the car’s vision: a pedestrian, a bicycle 

rider, and a stop sign. In this situation, an uncalibrated model might equally confuse a 

bicycle rider for being a pedestrian or a stop sign. If it thinks that there are two stop signs, it 

might hit the rider. On the other hand, DOMINO would assign lower penalties for confusing 

pedestrian and bicycle rider, whereas it assigns a maximal penalty for confusing either of 

these classes with the stop sign. DOMINO helps reduce the risk to the bicycle rider.

So far, DOMINO has been added to segmentation applications in T1-weighted Magnetic 

Resonance Images (T1-MRIs) and the Cityscapes dataset [10]. Our results in T1-MRIs are 

featured in Stolte et al. [9]. Our classification studies have been on the MEDNIST [11], 

MNIST [12], and FashionMNIST [13] datasets. Some results on MEDNIST are featured in 

this section to show the promise of our method.

Fig. 1 shows our confusion matrix results using a simple convolutional neural network 

(CNN) with crossentropy 1a, DOMINO-HC 1b, and DOMINO-CM 1c. These results show 

that our overall accuracy is 99.47% with cross-entropy, 99.54% with DOMINO-HC, and 

99.56% with DOMINO-CM. Both of our methods increases the accuracy even further. Both 

DOMINO-CM and DOMINO-HC also improve segmentation accuracy [9].

Table 1 shows that these methods also give lower Brier Scores [14] Brier score loss 

measures the difference between predicted probability and the model’s assigned probability 

outputs for a given class [14]. A model’s assigned probability outputs refer to the softmax 

outputs before the final label assignment. A lower Brier score corresponds to better 

calibration.

4. How to implement DOMINO

DOMINO can be used within any PyTorch-based deep learning loss function. Our 

previous experiments have tested DOMINO on both classification and segmentation. In 

addition, DOMINO works with different deep learning algorithms. Prior experiments have 

tested simple CNNs, U-Net transformers (UNETR) [15], and DeepLabv3+ [16]. In these 

experiments, DOMINO was paired with cross-entropy loss, dice loss, or a combined cross-

entropy and dice loss. Therefore, DOMINO’s only requirement for functionality is that it 

currently requires the code to be written in PyTorch.
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Computation of the W matrix for a specific user task is required to run DOMINO. One 

advantage of our previous confusion matrix method is that it requires no previous knowledge 

of a problem to calculate W [9]. Broadly, this loss penalty can be calculated from the 

normalized confusion matrix of an uncalibrated model. This approach requires twice the 

running time of the uncalibrated model or hierarchical DOMINO method. On the other 

hand, the hierarchical grouping method does require manual creation of the required task 

groups [9]. This approach requires some knowledge of the intended task output, but under 

the right circumstances it can leverage user knowledge and intuition to provide improved 

outcomes. One example would entail grouping disease severity levels or sub-types based 

on their common treatment recommendations to minimize the impact of the most likely 

incorrect labeling results. All W constructions require the diagonal to be all zeros, as the 

diagonal of W represents “the penalty of correct classification”.

CUDA GPU access is not required, but it is strongly recommended. DOMINO is 

substantially faster on classification tasks, as classification tasks require image-wise 

computation whereas segmentation tasks require pixel-wise computation. Decent GPU 

resources are particularly recommended for segmentation with the confusion matrix method. 

Our previous work used an A100 NVIDIA GPU for training volumetric image segmentation, 

whereas MNIST classification could function on a GPU or CPU.

5. The impact of DOMINO on current research questions

Uncalibrated models may look good in research development but be untrustworthy in 

real-life high-risk applications. Thus, there is a gap “from bench to bedside”, or “from 

lab to life”. This paper provides a tool that is easy for researchers to implement in their 

codes to improve calibration. This will allow different projects to preserve their state-of-

the-art performance while being calibrated. Therefore, our project has great potential for 

improving the trustworthiness and reliability of existing deep learning methods in high-

risk applications. Another strength of this approach is that it works for classification and 

segmentation.

DOMINO will be the most beneficial in deep learning tasks where the penalties of making 

mistakes among different classes are not equal, especially in high-risk applications like 

medical treatment (e.g., tumor segmentation [17]), self-driving vehicles [18], and financial 

decision making [19]. In tumor segmentation, a triage system that recognizes healthy 

tissue as a tumor lesion would lead to an unnecessary doctor consultation, whereas a 

system that recognizes a tumor lesion as healthy could cause a person with cancer to miss 

their critical treatment window. Here, DOMINO would give a larger weight penalty for 

mistaking tumor tissue as healthy tissue than vice versa. Similarly, a self-driving car would 

need DOMINO to give a larger penalty for confusing humans for non-humans than the 

reverse. Further, DOMINO’s implementation could lead the respective software to make 

choices that are oriented towards lower downstream error, rather than focusing on traditional 

accuracy metrics. For example, the DOMINO creators have published an academic paper on 

DOMINO for medical image segmentation [9]. A following paper is planned that extends 

this segmentation to penalize head tissues based on their properties in applications for 

non-invasive brain stimulation.
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In addition to its future impact on high-risk software, DOMINO will benefit ongoing 

research questions in machine learning calibration. Specifically, multi-class calibration 

problems are even less well-defined than binary calibration. Typical methods treat classes 

in a one-vs-all or all-vs-all approach [20]. The area of multiclass calibration needs more 

significant research attention to develop better evaluation criteria. DOMINO contributes 

towards this area by challenging the idea that equal class treatment (e.g., in the one-vs-all 

approach) is reflective of the reliability and trustworthiness of deep learning systems. 

The research community and many application areas will benefit from this software’s 

contribution to trustworthy machine learning.

The results enabled by the software have been reported in the following academic 

publication:

Skylar E. Stolte, Kyle Volle, Aprinda Indahlastari, Alejandro Albizu, Adam J. Woods, Kevin 

Brink, Matthew Hale, and Ruogu Fang. DOMINO: Domain-aware Model Calibration in 

Medical Image Segmentation. International Conference on Medical Image Computing and 

Computer Assisted Intervention (MICCAI) 2022. 2022. Conference Proceedings, Springer. 

DOI: https://doi.org/10.1007/978-3-031-16443-9_44. See [9].
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Fig. 1. 
Confusion matrices on testing set of MEDNIST classification. The cross-entropy model 

gives 99.47% performance, DOMINO-HC gives 99.54% performance, and DOMINO-

CM gives 99.56% performance. Notably, DOMINO-HC and DOMINO-CM confuses 

AbdomenCT for ChestCT and Hand for BreastCT at lower rates.
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Table 1

Brier Score Loss [14] for basic cross-entropy and one of our methods. A lower Brier Score Loss corresponds 

to better calibration. The best performances are in bold.

MEDNIST Class Cross-Entropy DOMINO-HC DOMINO-CM

Abdomen CT 0.00219 0.00193 0.00183

Breast MRI 0.145 0.144 0.143

CXR 0.163 0.160 0.161

ChestCT 0.170 0.169 0.167

Hand 0.172 0.170 0.170

Head CT 0.162 0.162 0.160
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