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This study aimed to perform DM prediction through deep learning radiomics.
Methods: We retrospectively sampled 235 patients receiving nCRT with the minimum 36 months’ postopera-
tive follow-up from three hospitals. Through transfer learning, a deep learning radiomic signature (DLRS)
based on multiparametric magnetic resonance imaging (MRI) was constructed. A nomogram was established
integrating deep MRI information and clinicopathologic factors for better prediction. Harrell’s concordance
Distant metastasis index (C-index) and time-dependent receiver operating characteristic (ROC) were used as performance met-
Neoadjuvant chemoradiotherapy rics. Furthermore, the risk of DM in patients with different response to nCRT was evaluated with the
Deep learning radiomics nomogram.
Magnetic resonance imaging Findings: DLRS performed well in DM prediction, with a C-index of 0-747 and an area under curve (AUC) at
three years of 0-894 in the validation cohort. The performance of nomogram was better, with a C-index of
0-775. In addition, the nomogram could stratify patients with different responses to nCRT into high- and
low-risk groups of DM (P < 0-05).
Interpretation: MRI-based deep learning radiomics had potential in predicting the DM of LARC patients
receiving nCRT and could help evaluate the risk of DM in patients who have different responses to nCRT.
Funding: The funding bodies that contributed to this study are listed in the Acknowledgements section.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Most patients with locally advanced rectal cancer (LARC) receive a
- standard treatment including neoadjuvant chemoradiotherapy
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Research in Context

Evidence before this study

Neoadjuvant chemoradiotherapy before total mesorectal exci-
sion has no effect on the distant metastasis free survival of
locally advanced rectal cancer patients. In view of the different
therapeutic effects of neoadjuvant chemoradiotherapy, it is still
controversial which patients should receive adjuvant chemo-
therapy to reduce the risk of distant metastasis. Previous stud-
ies have pointed out that clinicopathological factors and
imaging information were related to the prognosis of locally
advanced rectal cancer patients. In addition, deep learning
radiomics shows good prospects in prognostic prediction. Thus,
this study aimed to develop a deep learning radiomic model to
accurately predict distant metastasis of locally advanced rectal
cancer patients receiving neoadjuvant chemoradiotherapy,
which can help clinicians formulate appropriate treatment
plans.

Added value of this study

In this multicentre study, we first established a deep learning
radiomic signature based on multiparametric magnetic reso-
nance imaging. Tested by an external validation cohort, deep
learning radiomic signature is a prognostic factor independent
of other clinical characteristics. Subsequently, a nomogram
combining deep MRI information with clinicopathologic factors
was constructed. While achieving a better predictive perfor-
mance, the nomogram can divide patients into high- and low-
risk groups of distant metastasis, regardless of their responses
to neoadjuvant chemoradiotherapy.

Implications of all the available evidence

By well predicting the distant metastasis of locally advanced
rectal cancer patients receiving neoadjuvant chemoradiother-
apy, the deep learning radiomic signature and the nomogram
proposed in this study can be used as clinical diagnostic aids to
achieve personalized treatment options.

survival is distant metastases (DM), the guidelines recommend adju-
vant chemotherapy after TME to reduce the risk of DM [4,5]. How-
ever, there is still controversy on which patients should receive
adjuvant chemotherapy. A pooled analysis [6] indicated that applying
adjuvant chemotherapy for all LARC patients receiving nCRT and TME
is a simple and pragmatic strategy, but it carries the risk of overtreat-
ment. Patients with pathologic complete response (pCR) after nCRT
may not benefit from subsequent treatment. A recent study has
shown that patients with ypT0-2NO, the downstaging subgroup that
have favorable oncological prognosis, will not benefit from postoper-
ative adjuvant chemotherapy, either [7]. Contrarily, some studies
suggested that adjuvant chemotherapy can improve overall survival
of pCR patients by potentially eradicating residual micrometastatic
disease [8,9].

Many researchers have conducted research on the prognosis of
LARC and found that clinicopathological factors and medical imaging
are both valuable for prognosis prediction [10—16]. Using clinico-
pathological factors, the severity of neural invasion has been proven to
be a crucial prognostic factor in rectal cancer [10]. Furthermore, com-
bining different clinicopathological factors to construct clinical nomo-
grams could predict DM in patients with LARC [11,12]. On the other
hand, among medical imaging techniques, non-invasive magnetic res-
onance imaging (MRI) is routinely used, which can provide a wealth of
prognosis information for LARC. Tumor morphology information has
been shown to be strongly associated with LARC prognosis [13—15].

Radiomics based on manually defined features could further extract
high throughput information in MRI to predict DM in LARC [16]. How-
ever, the prognostic prediction models constructed by the above stud-
ies were for all LARC patients, regardless of whether the patients
received nCRT. Given that nCRT is currently a common strategy for
treating LARC patients, it is necessary to establish a model that focuses
on the prediction of DM in patients receiving nCRT.

In previous studies, different methods have been used to mine
prognostic information in medical images [17,18], among which
deep learning radiomics has rapidly become a methodology of choice
for analyzing medical images due to its unique advantages. Deep
learning uses backpropagation algorithms to train machines in
obtaining intricate structures in raw data [19]. The intricate struc-
tures extracted from medical images by deep learning are usually
related to specific tasks, while handcrafted features lack this specific-
ity. Early use of deep learning radiomics focused on lesions classifica-
tion and detection and had at times achieved human expert-level
performance [20,21]. Recent studies show that deep learning radio-
mics can also extract prognostic-related information from medical
images and have good prospects in survival prediction tasks [22—-24],
involving multiple imaging modalities and application areas. For
these reasons, deep learning radiomics may have potential in predict-
ing DM in patients with LARC.

In this study, we developed a multiparametric-MRI signature
based on deep learning radiomics for DM prediction in patients with
LARC receiving nCRT and TME. For better prediction performance, an
integrating nomogram combined deep MRI information and clinico-
pathologic factors was further constructed. The predictive perfor-
mance of the signature and nomogram were tested on an external
validation cohort. With the nomogram, we evaluated the risk of DM
in patients with different responses to nCRT.

2. Methods
2.1. Ethics statement

The study was conducted in accordance with the guidelines of the
Declaration of Helsinki, and was approved by the Ethics Committee
of Yunnan Cancer Hospital (KY201824), The Sixth Affiliated Hospital
of Sun Yat-sen University (E2019076) and Fudan University Shanghai
Cancer Center (050432-4-1212B). Patient consent was waived due to
the retrospective design of this study.

2.2. Patients

The imaging and clinical information of the patients in this multi-
centre study was collected from three different hospitals in China. A
total of 235 consecutive patients with biopsy-proven rectal cancer
between August 2012 and March 2015 were included. Locally
advanced disease was determined based on pre-treatment CT of the
chest and abdomen and pelvis MRI. All patients received complete
treatment for nCRT before TME. Radiation therapy was administered
over a period of five weeks, with a total dose of 45-50 Gy in 25-28
fractions. An Oral Capecitabine treatment was performed simulta-
neously with radiation therapy (dose 820 mg/m?, twice per day). The
average time between nCRT and TME was 6-8 weeks, all patients
achieved complete (RO) resection. In order to train the deep learning
radiomic model and verify its robustness, we grouped 170 patients
from two hospitals into a primary cohort and 65 patients from
another hospital into an external validation cohort. Other details of
patient recruitment and exclusion are shown in Fig. S1.

2.3. Imaging data acquisition and Processing

All MRI examinations were performed with endorectal coils,
within one week before the patients’ colonoscopy. The imaging
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protocols included T2-weighted imaging (T2WI) and diffusion
weighted imaging (DWI). From DWI images with b-values of 0 and
1000 s/mm?, apparent diffusion coefficient (ADC) maps were gener-
ated. Details regarding the MRI acquisition parameters are shown in
Table S1.

In order to avoid interference between redundant information on
MRI sequences, we used the ITK-SNAP software [25] to manually
delineate regions of interest (ROI) on each lesion of T2W slices and
DW slices (ROIs on ADC map slices were copied from the correspond-
ing ROIs on DW slices with a b-value of 1,000 s/jmm?). Other details
of the ROI delineation are summarized in Supplementary Methods.
The minimum bounding rectangle containing ROI information was
extracted from each slice and resized to 112*112. This operation
could make the ROIs fit the Convolutional Neural Network (CNN)
structure and reduce the impact of different voxel spacing between
different centers. In addition, all ROIs were normalized with z-score
so that get a standard normal distribution of image intensities. Based
on the resized and normalized ROIs, we generated T2W/ADC bound-
ing boxes of size 112*112*20 for each patient. The bounding boxes
were the final input to the deep learning radiomic model. If the
bounding box contained less than 20 ROI patches, all-zero matrices
of size 112*112 were added to it.

2.4. Deep learning radiomic signature construction and validation

While pre-trained deep learning models have been successful in
computer vision and natural language processing tasks, transfer
learning is an effective method for applying these pre-trained models
to medical image analysis [26], In this study, we used the primary
cohort to fine-tune ResNet18 [27] pre-trained on ImageNet. The
channels of the T2ZW/ADC bounding boxes were reduced to three by
1*1 convolutions, so the boxes could fit to the input shape of the pre-
trained model. Since the pre-trained model is more widely used in
classification tasks, we used a two-step approach to predict DM. First,
patients were divided into two groups according to whether DM
occurred within three years after surgery (patients who were lost to
follow-up within three years were excluded). Based on the binary
classification problem, the deep learning radiomic models were
trained on the T2W bounding boxes and ADC bounding boxes of 162
patients respectively, then tested on the external validation cohort of
62 patients. Through the trained models, the probability of each
patient (including the censored patients) developing DM within three
years after surgery was obtained. The probabilities predicted by T2W
slices and ADC slices were called T2W-prob and ADC-prob, respec-
tively. The sum of these two probabilities was defined as DL-prob
(range from [0, 2]). Subsequently, we used DL-prob to build multi-
parametric MR radiomic signature (also called deep learning radio-
mic signature (DLRS) in this study) through the Cox proportional
hazard model.

The optimal cut-off value of DLRS was calculated by the Youden
Index of the primary cohort. Through time-dependent receiver oper-
ating characteristic (ROC) analysis, Kaplan-Meier (K-M) survival anal-
ysis and Harrell's concordance index (C-index), we evaluated the
prognostic value of DLRS.

2.5. Individualized DM prediction nomogram construction and model
performance evaluation

The combination of clinicopathologic factors with deep informa-
tion of multiparametric MRI may further improve the model’s predic-
tive performance. We firstly used prognostic clinicopathologic factors
to construct a clinical model; we then combined DL-prob and clinico-
pathologic factors to construct a combination prediction model in
comparison. The models were constructed in the primary cohort
based on a Cox regression analysis, and the combination model was
converted into an individualized DM prediction nomogram [28].

Model performance evaluation methods included C-index, net
reclassification improvement (NRI) and integrated discrimination
improvement (IDI) [29]. Decision curve analysis (DCA) [30], clinical
impact analysis and the ROC component analysis [31] were per-
formed to further quantify the benefits of the nomogram in clinical
applications.

2.6. Prognostic evaluation of patients with different responses to nCRT
based on nomogram

In this study, the responses to nCRT were divided into good
response and poor response. Specifically, patients with a good
response to nCRT were defined as the pCR cohort and downstaging
(ypT0-2NO) cohort. Patients with a poor response to nCRT were
defined as the non-pCR cohort and non-downstaging cohort. Through
subgroup analysis, we investigated whether patients with different
DM risks could be stratified in these cohorts using the nomogram.
More specifically, the Youden Index-based cut-off of the nomogram
was used to divide the patients into high- and low- risk groups for
DM. Then, the postoperative DMFS of patients in different risk groups
were evaluated based on a K-M survival analysis.

2.7. Availability of data and materials

Due to the privacy of patients, the MRI data and clinical informa-
tion related to patients cannot be available for public access but can
be obtained from the corresponding author on reasonable request.
The experiment and implementation details are described in detail in
the Methods, which can be replicated with public libraries.

2.8. Statistical analysis

We used R software (version 3.4.0) and SPSS software (version 21)
to perform all statistical analyses in this study. Expression of continu-
ous variables was mean 4 SD. The Mann-Whitney U test was used to
compare differences between two groups of continuous variables.
The Chi-square test or Fisher exact test was used to compare differen-
ces between two groups of categorical variables. The relationship
between clinicopathologic factors or MRI information and DMFS was
evaluated by univariate and multivariate Cox analyses. The difference
between K-M curves was compared using the Log-Rank test. For all
results of statistical analysis, P < 0-05 (two-sided tests) was consid-
ered significant.

2.9. Role of funding source

The funders had no role in the design of the study; in the collec-
tion, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results.

3. Results
3.1. Patient clinical characteristics

Clinical characteristics of patients in different cohorts are summa-
rized in Table 1. Distant metastasis positivity within three years after
surgery were 21.2% (36/170) and 29-2% (19/65) in the primary and
validation cohorts. Among all 235 patients, there were 165 men
(70-21%) and 70 women (29-79%), and the average age of all patients
was 54-93 (SD, 11-16). The histologic variants of rectal adenocarci-
noma included mucinous adenocarcinoma and signet ring cell carci-
noma. Among them, there were three cases of mucinous
adenocarcinoma and two cases of signet ring cell carcinoma in the
primary cohort; four cases of signet ring cell carcinoma in the exter-
nal validation cohort.
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Table 1

Clinical characteristics of patients in the primary and validation cohorts.
Characteristic Primary cohort (n=170)  Validation cohort (n=65)  P-value
Age(years, mean =+ SD) 54.82 +10.85 55.23 +12.01 0.602
Gender (%) 0.634
Male 121 71.18% 44 67.69%
Female 49 28.82% 21 32.31%
Tumor location (%) <0.001
High 4 2.35% 2 3.08%
Mid 100 58.82% 17 26.15%
Low 66 38.82% 46 70.77%
cT stage (%) <0.001
T3 130 76.47% 29 44.62%
T4 40 23.53% 36 55.38%
Lymph node status (%) <0.001
LN negative 25 14.71% 28 43.08%
LN positive 145 85.29% 37 56.92%
CEA (%) 0.612
Normal 130 76.47% 47 72.31%
Elevated 40 23.53% 18 27.69%
Surgical approach (%)
Laparotomy 79 46.47% 57 87.69% <0.001
Laparoscopy 91 53.53% 8 12.31%
ypT stage (%) 0.842
ypTO 24 14.12% 7 10.77%
ypT1 14 8.24% 3 4.62%
ypT2 26 15.29% 11 16.92%
ypT3 94 55.29% 39 60.00%
ypT4 12 7.06% 5 7.69%
ypN stage (%) 0.021
ypNO 113 66.47% 34 52.31%
ypN1 35 20.59% 25 38.46%
ypN2 22 12.94% 6 9.23%
Adjuvant chemotherapy (%) 0.060
Yes 160 94.12% 56 86.15%
No 10 5.88% 9 13.85%
Adjuvant radiotherapy (%) 0.298
Yes 6 3.53% 5 7.69%
No 164 96.47% 60 92.31%
Distant metastasis (%) 0.031
Yes 42 24.71% 26 40.00%
No 128 75.29% 39 60.00%
Locoregional recurrence (%) 0.502
Yes 7 4.12% 4 6.15%
No 163 95.88% 61 93.85%

Note: P-values were calculated by Mann-Whitney U test, Chi-square test or Fisher exact test.
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Fig. 1. ROC curves of prognostic performance with different deep learning models of the (a) primary cohort (n = 162) and (b) external validation cohort (n = 62). ROC receiver oper-
ating characteristic; AUC area under receiver operating characteristic curve; T2W T2-weighted; ADC apparent diffusion coefficient.
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3.2. Prognostic performance of DLRS

The trained deep learning radiomic models performed well on the
classification task of whether DM occurred in LARC patients within
three years after surgery (Fig. 1a-b). Among them, DL-prob had the
best discrimination performance, with an AUC of 0-892 in the valida-
tion cohort. This indicated that the DL-prob was closely related to the
prognosis of LARC patient and proved the feasibility of using it to con-
struct a reliable prognostic signature. The effect of different sizes of
bounding boxes and fine-tuned ROIs on the classification perfor-
mance of the models is shown in Fig. S2.

According to C-index and time-dependent ROC analysis in the val-
idation cohort, signatures constructed based on different binary clas-
sification MR-prob had good prognostic predictive performance.
Meanwhile, DLRS established by DL-prob had better performance
compared to T2W/ADC radiomic signature (established by T2W-
prob/ADC-prob). In the validation cohort, DLRS AUC of three-year
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DMFS was 0-894 (Fig. 2b), and the DLRS C-index of DMFS was 0.747
(95% CI, 0-665-0-830) (Table 2). The time-dependent ROC curves of
T2W radiomic signature and ADC radiomic signature are shown in
Fig. S3. According to DLRS, the patients were further divided into
high- and low-risk groups for DM. The optimal cut-off score for DLRS
was set to 1.784 based on the primary cohort. The distribution of clin-
icopathologic characteristics according to high and low DLRS are
shown in Table S2. Through the K-M survival analysis, the stratifica-
tion effect of DLRS was significant in both the primary and the valida-
tion cohort (all P < 0-001, Log-Rank test) (Fig. 2¢-d).

3.3. Combination model construction and individualized nomogram
prognostic performance evaluation

Based on univariate and multivariable Cox analyses, the clinical
model was established using cT stage, CEA and ypN stage (Table S3).
These three clinicopathological factors had a significant prognostic
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Fig. 2. Predictive performance of DLRS for DMFS. (a) and (b) are time-dependent ROC curves for one year, two years and three years of the primary cohort (n = 170) and external val-
idation cohort (n = 65). (c) and (d) are K-M curves for stratifying high- and low-risk patients of DM of the primary cohort (P < 0-0001, log-rank test) and external validation cohort
(P < 0-0001, log-rank test). The numbers of patients at risk for each time step are shown in the bottom. DLRS deep learning risk signature; DMFS distant metastasis free survival;
ROC receiver operating characteristic; AUC area under receiver operating characteristic curve.
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Table 2
Model performances in the primary and validation cohorts.
Primary cohort Validation cohort
Model C-index  95%ClI C-index  95%Cl
Nomogram 0.865 0.814-0.916 0.775 0.695-0.856
Clinical 0.714 0.632-0.797 0.601 0.487-0.732
DLRS 0.851 0.795-0.906 0.747 0.665-0.830
T2wW 0.854 0.802-0.905 0.729 0.640-0.819
ADC 0.688 0.615-0.761 0.599 0.473-0.724
NRI 95%Cl P-value NRI 95%Cl P-value
Nomogram vs. Clinical ~ 0.599 0.501-0.697  <0.001*  0.395 0.195-0.595  <0.001*
DLRS vs. Clinical 0.529 0.406-0.651 <0.001*  0.286 0.089-0.483  0.004*
IDI 95%Cl P-value IDI 95%Cl P-value
Nomogram vs. Clinical ~ 0.409 0.310-0.508  <0.001*  0.260 0.117-0.402  <0.001*
DLRS vs. Clinical 0.384 0.275-0493  <0.001*  0.187 0.023-0.352  0.026*

Note: *P-value < 0.05, P-values were calculated by NRI test and IDI test.
Abbreviations: DLRS, deep learning radiomic signature; T2W, T2-weighted; ADC, apparent diffusion

coefficient.

value for DMFS (P < 0-05, Likelihood ratio test). Then we combined
DL-prob with the above clinicopathological factors to establish a
combination model. Through a multivariate Cox analysis, DL-prob
showed its great prognostic value (HR 14-387, 95% CI, 7-428-27-864;
P < 0-001, Likelihood ratio test). The nomogram converted from the
combination model is shown in Fig. 3a.

Compared with other models, the model based on nomogram dis-
crimination showed significantly improved performance. The C-
index of the nomogram was the highest in the validation cohort
(Table 2), which was 0-775 (95% CI, 0-695-0-856) compared with the
DLRS C-index of 0-747 (95% CI, 0-665-0-830 P = 0.026, Student t test)
and the clinical model C-index of 0-601 (95% CI, 0.487-0.732
P = 0-008, Student t test). The calculated NRI and IDI further proved
that the prognostic predictive performance of nomogram and DLRS
was better than the clinical model. According to the quantitative
results, the nomogram improved the predictive performance more
significantly (Table 2). The standardized net benefit (SNB) was used
as a performance metric in the decision curve, and the application of
the nomogram showed excellent benefits in the relevant threshold
range (Fig. 3b-c). In order to evaluate the predictive value of nomo-
gram in further clinical applications, we provided ROC components
plot and clinical impact plot as supplements (Fig. 3d-g).

3.4. Prognostic evaluation of patients with different responses to nCRT
based on nomogram

Through further subgroup analysis based on the nomogram, high-
and low-risk patients of DM in the pCR cohort (P = 0-006, Log-Rank
test), non-pCR cohort (P < 0-001, Log-Rank test), downstaging cohort
(P < 0-001, Log-Rank test) and non-downstaging cohort (P < 0-001,
Log-Rank test) could all be significantly stratified (Fig. 4a-d). In this
study, 22/65 patients achieved a pCR/downstaging after nCRT, of
which 7/18 were defined as high-risk for DM through nomogram.
Meanwhile, there were 213/170 patients with non-pCR/non-down-
staging, of which 130/98 were defined as low-risk for DM through
nomogram. The results of subgroup analysis of other clinicopatho-
logic characteristics (including cT stage, lymph node status, ypT stage
and ypN stage) are shown in Fig. S4.

4. Discussion

Accurate prognosis prediction is very beneficial for the choice of
treatment and risk stratification for cancer patients. In this multi-
centre study, we developed and validated a deep learning radiomics-
based multiparametric-MRI signature to predict DMFS in patients

with LARC receiving nCRT and TME. As a risk factor independent of
clinicopathological factors (such as TNM stage), DLRS performed well
in DM prediction and high/low risk stratification of patients, which
demonstrated the value of MRI-based deep learning radiomics in
prognosis prediction. Furthermore, combining DL-prob extracted
from multiparametric MRI with clinicopathological factors to con-
struct a nomogram could achieve better prognostic prediction effect
compared to only using image information or clinical factors.

For LARC patients with different response to nCRT, the choice of
subsequent treatment options has always been controversial
[6-9,11]. If all patients are treated with postoperative adjuvant che-
motherapy, the risk of overtreatment will increase; if patients with
good response are considered to be unable to benefit from adjuvant
chemotherapy and receive no follow-up treatment, the DMFS of
patients with poor prognosis cannot be guaranteed. In this study, our
nomogram can serve as a prognostic prediction tool to well stratify
the high- and low-risk patients of DM regardless of their response to
nCRT, thereby promoting more precise treatment options. In the
good response cohort, the proportions of patients classified as high-
risk for DM by the nomogram were 31-8% (7/22, pCR patients) and
27-7% (1865, downstaging patients). In the poor response cohort, the
proportions of patients classified as low-risk for DM by the nomo-
gram were 61-0% (130/213, non-pCR patients) and 57-6% (98/170,
non-downstaging patients). The above findings suggested that the
risk of DM may not be judged simply based on the patient's response
to nCRT. In the good response cohort, the high-risk patients in the
pCR/downstaging cohorts have a relatively high probability of 42.9%
(3/7) and 44-4% (8/18) of DM within three years. It is inappropriate to
give up postoperative adjuvant therapy for these high-risk patients.
It is worth noting that in the cohort of patients with pCR, all patients
classified as low-risk according to nomogram did not develop distant
metastases within three years after surgery. The above findings indi-
cate that in future clinical applications, if patients with good response
are defined as low-risk for DM by the nomogram, then close observa-
tion can be used to replace adjuvant therapy for their treatment strat-
egy. If they are defined as high-risk for DM, the decision not to offer
adjuvant therapy should be made with caution.

In this study, the information of multiparametric-MR scans was
extracted by deep learning radiomics. Previous studies have shown
that according to machine learning methods, corresponding features
can be extracted from MR scans and used to predict the prognosis of
patients with LARC receiving neoadjuvant therapy (One example is
the prediction of therapeutic responses [32—34]|). Tumors are hetero-
geneous both on genetic and histopathological levels, which is
reflected in intratumoral spatial variation [35]. Due to intrinsic
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Fig. 3. Integrated nomogram and evaluation of the nomogram in multi centers. (a) is a nomogram for individual prediction of DMFS combined with deep MRI information and clini-
copathological factors. (b) and (c) are the decision curves of integrated nomogram/clinical model of the primary cohort (n = 170) and external validation cohort (n = 65). (d) and (e)
are the plots of true- and false-positive rates of the primary cohort and external validation cohort, as functions of the risk threshold for integrated nomogram. (f) and (g) are clinical
impact curves for 1000 random patients based on the integrated nomogram of the primary cohort and external validation cohort. 95% confidence intervals constructed via boot-
strapping is displayed on both sides of the ROC components plot or clinical impact plot. ROC receiver operating characteristic; DMFS distant metastasis free survival; MRI magnetic

resonance imaging.

aggressive biology or treatment
geneity show poor prognosis [3

risk-related intratumoral and intertumoral heterogeneity in voxels,
radiographic phenotypes,

identifies

resistance, tumors with high hetero-
6]. Radiomics noninvasively captures

and provides additional

prognostic information. A previous study pointed out that survival-
related imaging features were also associated with cellular events
such as angiogenesis and peritumoral infiltration [37]. In addition,
the identification of tumor subtypes of distinct survival through
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pathologic complete response.

radiomics analysis [38] and the investigation of the correlation
between radiomics features and dysregulated signaling pathways
[39] have provided a potential biological basis for the difference in
prognostic outcomes. However, these methods were limited by the
predefined features designed by domain experts and may ignore
image features related to specific tasks. For the survival prediction
task of this article, we defined patients as high- and low-risk groups
according to the time point of distant metastasis after surgery and
trained our CNN accordingly. Our CNN was based on the residual
structure, which can solve the problem of gradient disappearance
[27]. Meanwhile, making the data set contain complete tumor infor-
mation, the use of early stopping and proper dropout can effectively
improve the robustness of the model. Then we used the trained CNN
to obtain binary classification MR-prob from T2W and ADC slices,
and these probabilities were considered to be highly correlated with
prognosis. In a previous study, the radiomic features of tissue were
particularly sensitive to different scan parameters, and the features
related to tumor showed lower sensitive to the scanner manufacturer
and magnetic field [40]. In this study, we found that after proper pre-
processing, MR images performed with different scanners will not

have a significant influence on the performance of the deep learning
radiomic model. (Fig. S5; all P > 0-05, Delong test). Grad-CAM based
visualization of network prediction and Spearman correlation heat
map between MR-prob and clinicopathological factors are shown in
Fig. S6. Through T2W-prob, ADC-prob and DL-prob, we established
prognostic models and obtained radiomic signatures for single-
modality and multiparametric MR scans. We further found through
different evaluation methods that the multiparametric MR radiomic
signature had the best prognostic performance among all MR signa-
tures. This indicated that different types of medical images can reflect
tumor information from different views and can complement each
other. The combination of medical images can provide better tempo-
ral and spatial matching of tumor volume in different modalities.
Combining the radiomic features extracted from PET-CT and MRI for
efficacy evaluation and prognosis prediction has been proposed pre-
viously [41-43]. From a methodological perspective, the DL model
has great potential to combine different imaging information for
prognostic prediction, because the captured information is usually
related to a specific task. However, due to the design of this study
was retrospective and the imaging data was from different centers, it



X. Liu et al. / EBioMedicine 69 (2021) 103442 9

is difficult to construct a model by combining MRI and other types of
imaging. We would like to explore it in the future prospective study.

It has become a consensus that clinicopathological characteristics
are closely related to the prognosis of cancer patients. For example,
TNM staging and the severity of neural invasion, etc. have all been
confirmed to be related to the prognosis of LARC patients [10,11].
Although the N staging in MRI may sometimes be underestimated.
Some studies have demonstrated that combining imaging features
and clinicopathological risk factors can improve the predictive per-
formance of a prognostic model [44,45]. In this study, we drew the
same conclusion by combining several prognosis-related clinico-
pathological factors and multiparametric-MR scan information to
establish a prognostic model. When comparing it with the clinical
model through NRI and IDI, the improvement in prediction accuracy
was significant (all P < 0-001, NRI test, IDI test).

There are some limitations to this study. First, since our study
involved cohorts from multiple institutions, there were differences in
some clinicopathologic factors among patients in different cohorts.
Secondly, the number of cases included in the study was limited, and
the patient population in this study was from China. Therefore,
although tests have been conducted in different centers, further
large-scale international validation is needed for the application of
the model to patients of other ethnicities. Finally, information con-
tained in pathological images and genomes may be helpful in prog-
nostic prediction tasks, which suggests that the larger well-designed
prospective studies with multiple information should be done in the
future.

In conclusion, we designed a multiparametric MR signature based
on deep learning radiomics to predict the DM of LARC patients receiv-
ing nCRT and TME. In addition, we combined deep multiparametric
MR information and clinicopathological factors to construct a nomo-
gram for further clinical applications and better predictive perfor-
mance. Both DLRS and nomogram showed good DM predictive
performance. With the nomogram, we can evaluate the risk of DM in
patients who have different responses to nCRT.
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