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Abstract Encoding brain regions and their connections as
a network of nodes and edges captures many of the possible
paths along which information can be transmitted as humans
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process and perform complex behaviors. Because cogni-
tive processes involve large, distributed networks of brain
areas, principled examinations of multi-node routes within
larger connection patterns can offer fundamental insights
into the complexities of brain function. Here, we investigate
both densely connected groups of nodes that could perform
local computations as well as larger patterns of interac-
tions that would allow for parallel processing. Finding
such structures necessitates that we move from consider-
ing exclusively pairwise interactions to capturing higher
order relations, concepts naturally expressed in the language
of algebraic topology. These tools can be used to study
mesoscale network structures that arise from the arrange-
ment of densely connected substructures called cligues in
otherwise sparsely connected brain networks. We detect
cliques (all-to-all connected sets of brain regions) in the
average structural connectomes of 8 healthy adults scanned
in triplicate and discover the presence of more large cliques
than expected in null networks constructed via wiring min-
imization, providing architecture through which brain net-
work can perform rapid, local processing. We then locate
topological cavities of different dimensions, around which
information may flow in either diverging or converging pat-
terns. These cavities exist consistently across subjects, differ
from those observed in null model networks, and — impor-
tantly — link regions of early and late evolutionary origin
in long loops, underscoring their unique role in control-
ling brain function. These results offer a first demonstration
that techniques from algebraic topology offer a novel per-
spective on structural connectomics, highlighting loop-like
paths as crucial features in the human brain’s structural
architecture.
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1 Introduction

Macroscopic computation and cognition in the human brain
are affected by an intricately interconnected collection of
neurophysical mechanisms (Bassett et al. 2010; Sporns
et al. 2005). Unlike modern parallel computers, which oper-
ate through vast numbers of programs running in tandem
and in isolation from one another, neural processes are
supported on anatomically specialized brain regions that
constantly share information among themselves through a
network of white matter tracts (Hagmann et al. 2008). One
approach for understanding the function of such a sys-
tem begins with studying the organization of this white
matter substrate using the language of networks (Sporns
2015; Bassett et al. 2011; Sporns 2013). Collections of
regions that are pairwise tightly interconnected by large
tracts, known as communities (Porter et al. 2009), mod-
ules (Meunier et al. 2009), and rich clubs (van den Heuvel
and Sporns 2011; Senden et al. 2014), have been the sub-
ject of substantial prior study. Moreover, they have given
critical insights into the large-scale structural units of the
brain that give rise to many common cognitive functions
(Chen et al. 2008; Medaglia et al. 2015). Such com-
munities easily and rapidly transmit information among
their members, facilitating local integration of information
(Sporns and Betzel 2016).

Often left implicit in analyzes of structural networks, the
weakness of connections to external regions is equally as
important as the strength of internal connections within the
community. This tendency to focus on strongly connected
local regions arises naturally because standard network
analyzes are based on local properties of the network at
individual vertices, where local edge strength is the primary
feature (Bassett and Bullmore 2006; Bullmore and Sporns
2009; Bullmore and Bassett 2011); the particular choice of
quantitative language serves as a filter that diverts atten-
tion toward certain facets of the system. However, if one
takes a more macro-scale view of the network, the small or
absent white matter tracts intuitively serve to isolate pro-
cesses carried on the strong white matter tracts from one
another. Such structure facilitates more traditional concep-
tual models of parallel processing, wherein data is copied
or divided into multiple pieces in order to rapidly perform
distinct computations, and then recombined (Graham and
Rockmore 2011). Together, the two notions of dense cliques
and information-distributing cavities provide a picture of a
system that performs complex computations by decompos-
ing information into coherent pieces to be disseminated to
local processing centers, and then aggregating the results.
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To quantitatively characterize this macroscale structure,
we must move from the language of graph theory to alge-
braic topology, which is sensitive to the interplay between
weak and strong connections in systems (Ghrist 2008,
2014). In order to understand the interplay between strong
and weak connections in the brain, we make use of two
related lenses from algebraic topology. The first is an enu-
meration of the cliques, all-to-all connected subgraphs of
the network, representing strongly-interconnected compu-
tational units. The number and size of such units gives a
general sense for how intense local connections are across
the brain. However, just as important is their context in
the brain network: identical collections of processing units
can be configured to perform very different tasks, depend-
ing on the way they pass information among themselves.
Thus, we consider also how the cliques are arranged on a
mesoscale level by examining the cycles they form. These
structures, and the cavities they enclose, provide potential
pathways along which data is disseminated and collected.
Cycles enclosing voids correspond to extended paths of
potential information transmission along which computa-
tions can be performed serially to effect cognition in either a
divergent or convergent manner (i.e., distribution or integra-
tion of information), and we refer to these “enclosed spaces”
as topological cavities in the network. We hypothesize that
the spatial distributions of cliques and cavities will differ
in their anatomical locations, corresponding to their dif-
ferential putative roles in neural computations. Combined,
these two perspectives provide a more complete view of the
network’s capabilities than either does separately.

To test our predictions, we construct structural brain net-
works from diffusion spectrum imaging (DSI) data acquired
from eight volunteers in triplicate. We measure node partici-
pation in cliques and compare these with a minimally wired
null model (Betzel et al. 2016). To ensure this is an appro-
priate language for the structural connectome and to build
intuition for later methods, we also demonstrate the corre-
spondence between the anatomical location of cliques and
the anatomical location of the brain’s hubs and structural
rich club: a group of hubs that are densely connected to one
another. Next, we study topological cavities using a recently
developed method from algebraic topology which detects
the presence and robustness, summarized by a quantity
called persistence, of cavities in the network architecture.
We recover all minimal length cycles corresponding to four
highly persistent topological cavities in the consensus struc-
ture, and show that these features are robustly present across
subjects through multiple scans. Our results demonstrate
that while cliques are observed in the structural core, cycles
enclosing topological cavities are observed to link regions of
subcortex, frontal cortex, and parietal cortex in long loops,
underscoring their unique role in controlling brain function
(Gu et al. 2015a; Betzel et al. 2016; Muldoon et al. 2016b).
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2 Materials and methods

2.1 Data acquisition, preprocessing, and network
construction

Diffusion spectrum imaging (DSI) data and T1-weighted
anatomical scans were acquired from eight healthy adult
volunteers on 3 separate days (27 £ 5 years old, two
female, and two left-handed) (Gu et al. 2015a). All partic-
ipants provided informed consent in writing according to
the Institutional Review Board at the University of Califor-
nia, Santa Barbara. Whole-brain images were parcellated
into 83 regions (network nodes) using the Lausanne atlas
(Hagmann et al. 2008), and connections between regions
(network edges) were weighted by the number of stream-
lines identified using a determistic fiber tracking algorithm.
We represent this network as a graph G(V, E) on V nodes
and E edges, corresponding to a weighted symmetric adja-
cency matrix A. For clique calculations in the main text,
the original network (p = 0.9552) was thresholded at p =
0.25 (corresponding to a weight = 261) to remove spurious
connections (Zalesky et al. 2010; Zalesky et al. 2016; van
den Heuvel et al. 2012) and for consistency with previous
work (Sizemore et al. 2016). See Supporting Information
and Refs (Cieslak and Grafton 2014; Gu et al. 2015a) for
detailed descriptions of acquisition parameters, data prepro-
cessing, and fiber tracking. In the supplement, we provide
additional results for the case in which we correct edge
weight definitions for the effect of region size Fig. 23.

2.2 Cliques versus cycles

In a graph G(V, E) a k-clique is a set of k all-to-all con-
nected nodes. It follows that any subset of a k-clique is
a clique of smaller degree, called a face. Any clique that
is not a face we call maximal. To assess how individual
nodes contribute to these structures, we define node partic-
ipation in maximal k-cliques as Py (v), and we record the
total participation of a node as P(v) = ZZ:] Pr(v).

To detect cycles which enclose topological cavities,
we computed the persistent homology using (Henselman
and Ghrist 2016). We restrict our attention to dimensions
1-2 after finding no persistent features in dimension 3
(Sizemore et al. 2016).

Computing persistent homology involves first decom-
posing the weighted network into a sequence of binary
graphs beginning with the empty graph and adding one
edge at a time in order of decreasing edge weight (also
called a Weight Rank Clique Filtration (Petri et al. 2013a,
b). Formally, we translate edge weight information into a
sequence of binary graphs called a filtration,
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beginning with the empty graph G¢ and adding back one
edge at a time following the decreasing edge weight order-
ing. To ensure all edge weights are unique we added random
noise uniformly sampled from [0, 0.0001]. However, this
has essentially no effect on the persistence diagrams, as
stability theorems ensure that small perturbation of the
filtration leads to small perturbation of the persistent homol-
ogy (Chowdhury and Mémoli 2016; Cohen-Steiner et al.
2007). Noise can have a small effect on cycle representa-
tives but in this study a great majority of edges within the
thresholded networks are unique so the noise is not expected
to largely alter cycle representatives — only to order those
edges with tied edge weights.

Within each binary graph of this filtration, we extract the
collection of all k-cycles, families of (k + 1)-cliques which,
when considered as a geometric object, form a closed shell
with no boundary. Formally, as we are working with coef-
ficients in Zj, these are collections of (k + 1)-cliques
{o1, ...0,} such that every k-subclique of some o; (called a
boundary) appears as a subclique in the collection an even
number of times. Two k-cycles are equivalent if they dif-
fer by a boundary of k + 1-cliques. This relation forms
equivalence classes of cycles with each non-trivial equiva-
lence class representing a unique topological cavity. (In the
mathematical literature, these are called non-trivial homol-
ogy classes. However, due to the extensive and potentially
confusing collision with the use of the word “homology”
in the study of brain function, here we elect to use this
new terminology outside of references and necessary math-
ematical discussion in the Methods and Supplementary
Information. Throughout, the word “homology” refers to
the mathematical, rather than the biological, notion.)

Constructing the sequence of binary graphs allows us
to follow equivalence classes of cycles as a function of
the edge density p. Important points of interest along this
sequence are the edge density associated with the first G; in
which the equivalence class is found (called the birth den-
sity, ppirtn) and the edge density associated with the first
G; in which the enclosed void is triangulated into higher
dimensional cliques (called the death density, pgeqrr). One
potential marker of the relative importance of a persistent
cavity to the weighted network architecture is its lifetime
(Pdeath — Pbirth)- A large lifetime indicates topological cav-
ities that persist over many edge additions, suggesting a
greater importance of that cavity to the intrinsic structure of the
complex. An alternative measure is the death to birth ratio
T = Pdeath/ Pvireh Which highlights topological cavities that
survive exceptionally long in spite of being born early, a
feature that is interesting in geometric random graphs (see
Bobrowski et al. 2015 and Supporting Information).

To study the role of each topological cavity in cog-
nitive function, we extract the minimal representatives of
each non-trivial equivalence class at the birth density. For
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unfiltered complexes, the problem of finding a minimal
generator for a given homology class is well known to be
intractable (Chen and Freedman 2011; Dey et al. 2011).
However, leveraging the filtration, we are able to answer the
corresponding question in this context with relative ease.
We used the persistent homology software Eirene (Hensel-
man and Ghrist 2016) which returns the birth density and
consequentially the starting edge of each persistent homol-
ogy class. To recover the minimal cycle, we threshold the
network at the density immediately preceding op;r+, then
perform a breadth-first search (Rubinov and Sporns 2010)
for a path from one vertex to the other, taking all minimum
length paths as solutions. If for one persistent cavity we find
multiple possible minimum-length paths arising from differ-
ent equivalence classes, we still record and analyze each of the
possible minimal generators, since any could be the homology
class. For higher dimensional cycles we perform a similar
process by hand, but we note that they could be algorith-
mically identified using appropriate generalizations of the
graph search method and other approaches (Dey et al. 2011).

2.3 Standard graph statistics

In addition to the notions of cliques and cavities from alge-
braic topology, we also examined corresponding notions
from traditional graph theory including communicability
and rich-club architecture, computed using the Brain Con-
nectivity Toolbox (Rubinov and Sporns 2010).

We first considered nodes that participated in many maximal
cliques, and we assessed their putative role in brain commu-
nication using the notion of network communicability. The
weighted communicability between nodes i and j is

Ci,j = (exp(D™2AD™1/?));;

with D := diag(s;) for s; the strength of node i in the
adjacency matrix A, providing a normalization step where
each q;; is divided by ,/d;d; (Crofts and Higham 2009;
Estrada and Hatano 2008). This statistic accounts for all
walks between node pairs and scales the walk contribution
according to the product of the component edge weights.
The statistic also normalizes node strength to prevent high
strength nodes from skewing the walk contributions. We
refer to the sum of a node’s communicability with all other
nodes as node communicability, C;.

Intuitively, nodes that participate in many maximal
cliques may also play a critical role in the well-known rich
club organization of the brain, in which highly connected
nodes in the network are more connected to each other than
expected in a random graph. For each degree k we compute
the weighted rich club coefficient

W>k
E- . ranked
2wy

9" (k) =
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where W.; is the summed weight of edges in the sub-
graph composed of nodes with degree greater than k, E-j
is the number of edges in this subgraph, and w; anked g
the /-th greatest edge weight in A. Rich club nodes are
those that exist in this subgraph when ¢" (k) is signifi-
cantly greater (one sided z-test) than ¢ . (k), the rich
club coefficient calculated from 1000 networks constructed
by randomly rewiring the graph A while preserving node
strength (Rubinov and Sporns 2010).

Furthermore, highly participating nodes may also con-
tribute to a hierarchical organization of the network. To
evaluate this contribution, we compute the k-core and s-
core decompositions of the graph (Hagmann et al. 2008;
Chatterjee and Sinha 2007). The k-core is the maximally
connected component of the subgraph with only nodes hav-
ing degree greater than k. The s-core is similarly defined
with summed edge weights in the subgraph required to be at
least s.

2.4 Null model construction

We sought to compare the empirically observed network
architecture to that expected in an appropriate null model.
Due to the well-known spatial constraints on structural
brain connectivity (Klimm et al. 2014; Lohse et al. 2014;
Bullmore and Sporns 2012; Betzel et al. 2016) as well
as the similarity in mesoscale homological features to the
Random Geometric network (Sizemore et al. 2016) we con-
sidered a minimally wired network in which nodes are
placed at the center of mass of anatomical brain regions.
Each pair of nodes are then linked by an edge with weight
w;,j = 1/d(, j), where d(i, j) is the Euclidean distance
between nodes i and j. For consistency with the empiri-
cal data, we threshold this complete weighted network at
an edge density of 0.25 for analyzes in which the DSI net-
work is also thresholded. In each scan, the locations of
region centers were collected. Thus, we considered a pop-
ulation of 24 model networks where differences between
model networks arise from differences between scans. This
null model allows us to assess what topological properties
are driven by the precise spatial locations of brain regions
combined with a stringent penalty on wiring length. Note
that defining edge weights to be the inverse pairwise dis-
tance between points creates a filtered complex similar to
that of either the Vietoris-Rips (Vietoris 1927; Hausmann
et al. 1995) or Cech complex with an axis adjusted for
edge rank instead of weight. We use the edge rank filtration
for the null model here for consistency with the empiri-
cal data. Many ways of constructing simplicial complexes
from graphs exist (Bergomi et al. 2017) but we have cho-
sen the above methods because they are reletaively well
understood and do not require further assumptions about the
data.
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2.5 Cycles in individuals

Though we detected persistent cavities in the group-
averaged DSI network using persistent homology, we also
ask whether these patterns of connectivity and the corre-
sponding cavities exist in multiple individuals and in mul-
tiple scans acquired from the same individual. To address
this question, we asked whether a similar geometric loop
is seen and whether a similar topological cavity is present
in each scan. However, identifying similar topological cavi-
ties is not trivial and we next thoroughly discuss our method
including our definition of “similar topological cavities”.

2.5.1 Considerations in per scan cycle validation

Persistent homology is a powerful tool with which to under-
stand the mesoscale homological features of a weighted
network. Determining all minimal generators for each of
the long-lived topological cavities gives a finer resolution
of such features, which can have biological implications as
is the case with our DSI data. Isolating all minimal genera-
tors for each homology class additionally gives a geometric
interpretation to these cavities. Then each cavity can be
viewed from a biological, topological, and to a lesser extent
geometric perspective.

This presents a challenge when looking for the “same”
persistent homology classes in another clique complex.
From the neuroscience perspective, two minimal cycles may
be similar if the cycles include the same brain regions, or if
the group of regions forming the second cycle performs the
same function as those in the first. Geometrically we would
perhaps require the same rigid shape of two cycle repre-
sentatives to call them similar. Finally, through the lens of
topology we might call two minimal cycles in two different
complexes similar if we can find a map between the com-
plexes which takes one cycle to the other. Less abstractly, we
could instead ask if the minimal cycle of a homology class
in the first clique complex exists in the second as a cycle in
a nontrivial homology class but not necessarily as the min-
imal generator. The development of other definitions is an
area of active research (Carlsson and De Silva 2010; Dey
et al. 2014).

Because no universal method is available, we opt for a
domain-specific heuristic to determine whether a persistent
homology class found in an individual scan was the “same”
as the persistent homology class in the average network.
These requirements for similarity adequately capture some
flexibility of topological similarity while being conservative
enough to generally preserve the biological function of the
cycle as well.

We consider each persistent homology class in turn. For
a given persistent homology class found in the average DSI
connectome, we denote the set of minimal generators of

the homology class at pp;rsn by L with elements ¢; for
i =0,1,2,...m. Then for each ¢; there is a set of nodes N;
containing the nodes within this representative. We require
both a non-trivial cycle formed by connections between at
least one of Ng, Ny, ..., Ny and a similar topological cavity
to exist.

1. Nodes connected in a cycle. We first take the sub-
graph on N; and ask if there is precisely one non-trivial
homology class at any edge density. We then show the
connection pattern at the edge density at which this
class first appears. This first allows us to ask if these
nodes ever form a non-trivial cycle throughout the filtra-
tion, which is possibly of interest from a geometric and
neuroscience perspective. We also use this first test as a
filter to see in which scans could these nodes surround
a topological cavity. Then if we find a non-trivial cycle
formed by any of Ny, Ny, ..., Ny, this scan passes to
the next stage.

2. Similar topological cavity. We then ask if a similar topo-
logical cavity exists. The algorithm from Henselman
and Ghrist (2016) returns the birth density (and thus
birth edge) of each persistent homology class. In order
of increasing birth density, we ask if any of the nodes in
No, N1, ..., Ny, are in the birth edge. If this is true, we
call this a similar cavity in an individual scan if any of
the following hold:

(a) Let mo,...,m; be minimal generators of this
homology class in the individual scan at pp;,s.
If any of myg,...,m; are the same as one of
Lo, ..., €y or are in the same equivalence class,
then we call this a similar topological cavity and we are
done. This is the most straightforward and was most
frequently observed within the unnormalized data.

(b) If there is some cycle within this non-trivial homol-
ogy class at pp;,s; formed by at least all but one
node of some N;, along with no more than two
additional nodes, and nodes from N; are in the
original order along the cycle, we call this similar.

(c) If either (a) or (b) hold for some p with pp;rp <
0 < Pdeath, We call this a similar topological cav-
ity. At ppirti, @ minimal cycle contains seven nodes,
four of which are the thalamus and caudate nucleus
from both hemispheres. Following the minimal
cycles throughout the lifetime of this persistent cav-
ity we find at some edge density before pgeqrn, a
minimal representative consists of exclusively the
thalamus and caudate nucleus regions from both
hemispheres.

The first test covers the possibility of the same bio-
logical and geometric feature occurring in the individual
scan. The second is perhaps the most important, however,
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because it allows for matching the topological cavity itself.
It is important to remember that the topological cavities are
the features of interest, not the precise cycles themselves,
though the two are clearly related. With the focus on the
topological holes, the rationale for the three subrules 2a,
2b, and 2c, is more clear. Though labor intensive, this lets
us keep the topological perspective when determining cycle
similarity. Moreover, the rationale for focusing on cavities
and not specific connections is similar to why large-scale
organization such as communities (Betzel et al. 2016), cores
(Hagmann et al. 2008), and rich-club organization (van den
Heuvel and Sporns 2011) are studied with increased inten-
sity. Composed of a plurality of interacting brain regions,
these types of structures, and not the individual brain regions
nor connections, form computational units that theoretically
act to help segregate and integrate information flow across
the brain.

One clear drawback of this method is the possibility of
false negatives. For example, a persistent homology class
may have been born which is similar to the cycle in the
average data, yet the beginning edge did not include any of
the cycle nodes and thus we would not detect this following
the above procedure. This is a first attempt to identify simi-
lar topological cavities across subjects, and we expect more
robust algorithms to be a topic of future research.

~

4
s

Fig. 1 Cliques are features of local neighborhoods in structural brain
networks. a Diffusion spectrum imaging (DSI) data can be sum-
marized as a network of nodes corresponding to brain regions, and
weighted edges corresponding to the density of white matter stream-
lines reconstructed between them. Here we present a group-averaged
network, where each edge corresponds to the mean density of white
matter streamlines across eight subjects scanned in triplicate. We show
the network at an edge density p = 0.25, and display its topology
on the brain (top), and on a circle plot (bottom). This and all brain
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3 Results

To extract relevant architectural features of the human
structural connectome, we first encoded diffusion spectrum
imaging (DSI) data acquired from eight subjects in triplicate
as undirected, weighted networks. In this network, nodes
correspond to 83 brain regions defined by the Lausanne
parcellation (Cammoun et al. 2012) and edges correspond
to the density of white matter tracts between node pairs
(Fig. 1a). We initially study a group-averaged network, and
then demonstrate that our results are consistently observed
across individuals in the group as well as across multiple
scans from the same individual.

3.1 Cliques in the human structural connectome

Here, we use the group-averaged network thresholded at an
edge density (p) of 0.25 to remove spurious edges (Zalesky
etal. 2010, 2016; van den Heuvel et al. 2012) and for consis-
tency with previous studies (Sizemore et al. 2016). Results
at other densities are similar, and details can be found in the
Appendix. As a null-model, we use minimally wired net-
works (Fig. 1d) created from assigning edge weights to the
inverse Euclidean distance between brain region centers (see
Methods) observed in each of 24 scans. This model mimics

I 3-clique 4-clique ‘

*—.

2-clique

w,, = 1/d(ij)

networks are drawn with BrainNetViewer (Xia et al. 2013). b All-to-
all connected subgraphs on k nodes are called k-cliques. For example,
2-, 3-, and 4-cliques are shown both as schematics and as features of
a structural brain network. ¢ A maximal 4-clique has 3-, 2-, and 1-
cliques as faces. d For statistical validation, we construct a minimally
wired null model by linking brain regions by edge weights equal to
the inverse of the Euclidean distance between nodes corresponding to
brain region centers. Here we show an example of this scheme on 15
randomly chosen brain regions
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the tendency of the brain to conserve wiring cost by giv-
ing edges that connect physically close nodes higher weight
than edges between distant nodes.

The first step in a topological analysis is an enumeration
of all maximal k-cliques in the average structural network.
Recall that a k-clique is a set of k nodes having all pairwise
connections (see Fig. 1b for 2-, 3-, and 4-cliques repre-
senting edges, triangles, and tetrahedra, respectively.) By
definition, a subgraph of a clique will itself be a clique of
lower dimension, called a face. A maximal clique is one that
is not a face of any other (see Fig. 1c for a maximal 4-clique,
which contains 3-, 2-, and 1-cliques as faces).

To understand the anatomical distribution of maximal
cliques in both real and null model networks, we count
the number of maximal k-cliques in which a node is a
member, and refer to this value as the node participation,
Pr(v) (see Methods). Summing over all k£ gives the total
participation, P (v). We observe that the distribution of max-
imal clique degrees is unimodal in the minimally wired
null model and qualitatively bimodal in the empirical data
(see Fig. 2a), though we report statistically that we cannot
reject that it is unimodal (p = 0.210, dip test (Hartigan
and Hartigan 1985)). Anatomically, we observe a general
progression of maximal clique participation from anterior
to posterior regions of cortex as we detect higher degrees
(Fig. 2a, bottom and Fig. 8). Indeed, maximal cliques of
12—-16 nodes contain nearly all of the visual cortex. This
spatial distribution suggests that large interacting groups of
brain regions are required for early information processing,
while areas of frontal cortex driving higher-order cogni-
tion utilize smaller working clusters. We also observe that
the human brain displays preferences for small (4—-6 node),
and large (12—-16 node) processing units instead of medium-
sized (approximately 8 node) units as in the minimally
wired null model.

a Maximal clique degree (k) b
4 6 8 10 12 14 185 100

The anterior-posterior gradient of maximal clique size
can be complemented by additionally analyzing regional
variation in the cognitive computations being performed.
Specifically, we ask whether node participation in maximal
cliques differs in specific cognitive systems (Power et al.
2011) (Fig. 2b). We observe that the largest maximal cliques
are formed by nodes located almost exclusively in the sub-
cortical, dorsal attention, visual, and default mode systems,
suggesting that these systems are tightly interconnected
and might utilize robust topologically-local communication.
This spatial distribution of the participation in maximal
cliques differs significantly from the minimally wired null
model, particularly in the cingulo-opercular and subcorti-
cal systems. We hypothesized that these differences may
be driven by the excess of maximal 8-cliques in the mini-
mally wired network (Fig. 2a). Expanding on the difference
in node participation (PkDSI (v) — P,f” W (v)), we see that
the large discrepancies between empirical and null model
networks in cingulo-opercular and subcortical systems are
caused by a difference in maximal cliques of approximately
eight nodes (Fig. 2b, bottom). Finally, we observe that the
systems involved in the two peaks of the maximal clique dis-
tribution shown in Fig. 2a differ greatly from one another.
The first peak composed of smaller cliques involves regions
from nearly all systems, while the second peak is almost
exclusively composed of regions in the default mode, sub-
cortical, and visual systems. We observe the largest cliques
in the subcortical, default mode, dorsal attention, and visual
systems, though only the visual and dorsal attention sys-
tems have maximal clique distributions with significantly
higher means than the rest of the brain regions (p <<
0.001, p < 0.05, respectively). These data suggest that
small, local processors may be a common feature across sys-
tems, while larger cliques may allow for rapid multi-system
cross-talk.
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Fig. 2 Spatial distribution of maximal cliques varies between aver-
age DSI and minimally wired null model. a Distribution of maximal
cliques in the average DSI (black) and individual minimally wired
(gray) networks, thresholded at an edge density of p = 0.25.
Heat maps of node participation on the brain for a range of clique
degrees equal to 4-6 (left), 8—10 (middle), and 12-16 (right). b Node

participation in maximal cliques sorted by the putative cognitive sys-
tem to which the node is affiliated in functional imaging studies (Power
etal. 2011). We show individual node values (top) as well as the differ-
ence between real and null model (PkD ST _ PkM W bottom) according
to the colormap (right). Individual node labels are listed in Fig. 9
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We next check that the building blocks, here k-cliques,
behave consistently with more common graph theoretic
metrics. A node with high participation in maximal cliques
must in turn be well connected locally (though the converse
is not necessarily true — consider a node that only partici-
pates in one maximal 16-clique). Therefore we expect the
participation of a node to act similarly to other measures of
connectivity. To test this expectation, we examine the corre-
lation of node participation with node strength, the summed
edge weight of connections emanating from a node, as well
as with node communicability, a measure of the strength of
long distance walks emanating from a node (Fig. 3a). We
find that both strength and communicability exhibit a strong
linear correlation with the participation of a node in maxi-
mal cliques (Pearson correlation coefficient r = 0.957 and
r = 0.858, respectively).

These results indicate that regions that are strongly con-
nected to the rest of the brain by both direct paths and
indirect walks also participate in many maximal cliques.
Such an observation suggests the possibility that brain hubs
— which are known to be strongly connected with one
another in a so-called rich-club — play a key role in max-
imal cliques. To test this, we measure the association of
brain regions to the rich-club using notions of coreness.
A k-core of a graph G is a maximal connected subgraph
of G in which all vertices have degree at least k, and an
s-core is the equivalent notion for weighted graphs (see
Methods). Using these notions, we consider how the k-core
and s-core decompositions align with high participation
(Fig. 3b). In both cases, nodes with higher participation
often achieve higher levels in the k- and s-core decompo-
sition. Moreover, we also observe the frequent existence of
rich club connections between nodes with high participa-
tion (Fig. 3b, bottom). Together, these results suggest that

rich-club regions of the human brain tend to participate in
local computational units in the form of cliques.

3.2 Cavities in the structural connectome

Whereas cliques in the DSI network act as neighborhood-
scale building blocks for the computational structure of
the brain, the relationships between these blocks can be
investigated by studying the unexpected absence of strong
connections, which can be detected as topological cavities
in the structure of the brain network. Because connections
are treated as communication channels along which brain
regions can signal one another and participate in shared
neural function, the absence of such connections implies
a decreased capacity for communication which serves to
enhance the segregation of different functions.

To identify topological cavities in a weighted network,
we construct a sequence of binary graphs, each included in
the next (Fig. 4a), known as a filtration. Beginning with the
empty graph, we replace unweighted edges one at a time
according to order of decreasing edge weight, and we index
each graph by its edge density p, given by the number of
edges in the graph divided by the number of possible edges.
After each edge addition, we extract motifs of k-cliques
called (non-trivial) (k — 1)-cycles, each of which encloses a
k-dimensional topological cavity in the structure. This shift
in index is due to geometry: a 2-clique is a 1-dimensional
line segment, a 3-clique is a 2-dimensional triangle, etc.
When £ is clear or not pertinent, we will suppress it from the
notation, and refer simply to “cycles” and “cavities”. While
any cavity is surrounded by at least one cycle, often multiple
cycles surround the same cavity. However, any two (k-1)-cycles
that detect the same cavity will necessarily differ from one
another by the boundaries of some collection of (k + 1)-
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cliques (see Supporting Information and Fig. 15). Any two
such cycles are called topologically equivalent, so each
topological cavity is detected by a non-trivial equivalence
class of cycles. The equivalence class containing the cycle
consisting of a single vertex is called trivial and bounds
the “empty” cavity. We can represent a topological cavity
using any of the cycles within the corresponding equiv-
alence class, but for purposes of studying computational
architectures it is reasonable to assume information will pri-
marily travel along paths of minimal length; thus, in this
analysis we will consider the collection of cycles in an
equivalence class with the minimal number of nodes and
call these the minimal cycles representing the cavity. Note
in the absence of a filtration, there are serious computa-
tional issues involved in locating minimal-size representa-
tives of equivalence classes. However, in this setting the

computation is easily performed using standard algorithms
(see Methods).

As we move through the filtration by adding edges, the
structure of the cycles, and thus of the cavities they rep-
resent, will evolve. We consider an example in Fig. 4a,
showing a green minimal cycle surrounding a 2D cav-
ity which first appears (is born) in the graph sequence at
ppirth (cyan). As an edge completing a 3-clique is added,
the minimal cycle representative shrinks to four nodes in
size, then finally is tessellated by 3-cliques (dies) at pgearh
(orange). We record ppirn, and pgeq:n for all topologi-
cal cavities (e.g., non-trivial equivalence classes of cycles)
found within the filtration, and display them on a persis-
tence diagram (Fig. 4b). Cavities that survive many edge
additions have a long lifetime, defined as pgearh — Pbirth,
or a large death-to-birth ratio, pgeq:n/pPpirtn- Such cycles
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Fig. 4 Tracking clique patterns through a network filtration reveals
key topological cavities in the structural brain network. a Example fil-
tration of a network on 15 nodes shown in the brain across edge density
(p). Blue line on the axis indicates the density of birth (pp;,;) of the
2D cavity surrounded by the green minimal cycle. As edges are added,
3-cliques (cyan) form and shrink the cavity and consequentially the
minimal green cycle is now four nodes in size. Finally, the orange line
marks the time of death (pgeq:n) When the cavity is now filled by 3-
cliques. b Persistence diagram for the cavity surrounded by the green
cycle from panel a. ¢ Persistence diagrams for the group-averaged DSI
(teal) and minimally wired null (gray) networks in dimensions one

Accumbens Nucleus Insula Superior Parietal

(left) and two (right). Cavities in the group-averaged DSI network with
long lifetime or high death-to-birth ratio are shown in unique colors
and will be studied in more detail. d Box plots of the death-to-birth
ratio 7w for cavities of two and three dimensions in the group-averagd
DSI and minimally wired null networks. Colored dots correspond to
those highlighted in panel c. The difference between 7 values for 3D
topological cavities in the average DSI data versus the minimally wired
null model was not found to be significant. € Minimal cycles repre-
senting each persistent cavity at pp;,¢; noted in panels ¢, d shown in
the brain (top) and as a schematic (bottom)
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are commonly referred to as persistent cavities and in many
applications are considered the “topological features” of the
system.

We investigate the persistence of 2D and 3D cavities
(respectively represented by equivalence classes of 1- and
2-cycles) in the group-average DSI network and minimally
wired null networks (see Fig. 4c). There are substantially
fewer persistent cavities in the group-average DSI network
than in the null models. To illustrate the structure of these
cavities, we select four representative cavities with exceed-
ingly long lifetimes or a high pgeqrh to ppiren ratio (Fig. 4c,
d) in the empirical data, and for each we find the minimal-
length representative cycles at pp;-, (Fig. 4e). Such cycles
for all of the persistent cavities found in the empircal data
are illustrated in Figs. 20 and 21. The first persistent cavity
appears as early as p = 0.003 and is minimally enclosed
by the unique blue cycle composed of the thalamus and
caudate nucleus of both hemispheres. The green cycle con-
necting the medial and lateral orbitofrontal, rostaral anterior
cingulate, putamen, and superior frontal cortex is the only
minimal cycle surrounding a long-lived cavity in the left
hemisphere. The final persistent 2D cavity in the average
DSI data is found in the right hemisphere between the
medial orbitofrontal, accumbens nucleus, any of the sub-
cortical regions hippocampus, caudate nucleus, putamen,
thalamus, and amygdala, and any of the rostral middle
frontal, lateral orbitofrontal, medial orbitofrontal of the left
hemisphere, and rostral anterior cingulate from both hemi-
spheres (see Fig. 4e for all 12 minimal representatives).
Finally, the purple octahedral cycle made from 3-cliques
contains the inferior and middle temporal, lateral occipital,
inferior parietal, supramarginal, superior parietal, and either
of the superior temporal and insula of the left hemisphere,
and encloses the longest-lived 3D cavity in the structural
brain network. Though each minimal generator may have
distinct biological implications, we observe a global pattern
of subcortical—cortical connections within cycles. Indeed,
18 of the 20 recovered 1-cycles and both 2-cycles contain
this motif. Additionally, the two persistent cycles that do
not follow this motif comprise a third of persistent cycles
robustly seen in the minimally wired network, suggest-
ing that within-subcortical loops are more probable in this
maximally efficient scheme.

3.3 Test-ReTest reliability and other methodological
considerations

It is important to ask whether the architectural features
that we observe in the group-averaged DSI network can
also be consistently observed across multiple individuals,
and across multiple scans of the same individual to ensure
these cavities are not artifacts driven by a few outliers.
Comparison of persistent cavities arising from two different
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networks is complicated by our notion of equivalence of
cavities, and our desire to work with particular representa-
tive cycles. To capture the extent to which the cavities and
their minimal representatives in the average DSI data are
present in the individual scans, we record the collection of
cliques that compose each minimal cycle representing the
equivalance class (as seen in Fig. 4e), and check both for the
existence of one of those collections of cliques, correspond-
ing to the existence of the same strong fiber tracts, and,
more stringently, for the presence of a topological cavity
represented by that cycle in each individual’s DSI network
(see Supporting Information for more details). We observed
that the subcortical cycle (Fig. 4e, blue) exists and these
nodes (thalamus and caudate nucleus of both hemispheres)
surround an equivalent 2D cavity in at least one scan of
all individuals and the late-developing subcortical-frontal
cycle (Fig. 4e, red) surrounds a cavity found in seven of
the eight individuals in at least one of three scans (Fig. 5b,
f). The earlier arriving subcortical-frontal cycle (Fig. 4e,
green) is present in all individuals and a similar cavity is
seen at least once in all individuals (Fig. 5d). Finally, we
observe that the octahedral connection pattern in posterior
parietal and occipital cortex (Fig. 4e, purple) is present at
least once in seven of eight individuals and these regions
enclose a similar cavity at least once in six of these indi-
viduals (Fig. Sh). In the opposite hemisphere, the cyclic
connection patterns and similar cavities appear though not
as regularly (Fig. 5). Finally we check the existence of sim-
ilar cavities within the minimally wired null models, and
see cavities denoted by the green and purple cycles are
never seen (Fig. 5). However, similar cavities to those repre-
sented by the red and blue minimal cycles appear frequently
in the null model, though with different birth/death densi-
ties and lifetimes. In summary we find topological cavities
observed in the group-averaged DSI network appear consis-
tently across individuals, suggesting their potential role as
conserved wiring motifs in the human brain.

In addition to consistency across subjects and scans, it
is important to determine whether the known high connec-
tivity from subcortical nodes to the rest of the brain may
be artificially obscuring non-trivial cortico-cortical cavities
important for brain function. To address this question, we
examined the 66-node group-average DSI network com-
posed only of cortical regions, after removing subcortical
regions, insula, and brainstem. We recovered a long-lived
topological cavity surrounded by four cycles of minimal
length composed of nine nodes connecting temporal, pari-
etal, and frontal regions (Fig. 6). Note in the schematic of
Fig. 6a we see clearly two 2D cavities. The birth edge here
was between the lateral orbitofrontal and superior tempo-
ral regions, which prevents us from determining whether
the exact minimal cycle surrounding this cavity follows
the superior frontal (LH)/posterior cingulate or the superior
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Fig. 5 Cycles and similar
cavities in the average DSI
network are consistently seen
across individuals. a, c, e, g
Edge weights connecting nodes
seen in the minimal cycle(s)
recovered from the average DSI
were summed then normalized
for all individual scan data. b, d,
f, h (Top) Within each scan, the
network was thresholded at the
minimal weight of any edge
which would form the cycle
seen in the average DSI data. At
this threshold, any connection
which exists between these
cycle nodes is shown. A gray
background indicates a similar
cavity found in this scan. For
those cycles seen which are not
tessellated by higher cliques yet
there is no gray background,
there must exist some set of
nodes which cone this cycle and
thus make this loop equivalent
to a point. (Bottom) Similar
cycles found represented by
vertical bars from birth to death
density in the individual DSI
networks, minimally wired
networks, normalized data, and
contralateral (cont.) hemispheres
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frontal (RH)/caudal middle frontal branch of the top loop.
Following either of these two branches (then either of the
banks of the superior temporal sulcus or middle temporal
route) gives four cycles in which two are equivalent to each
other but not to either cycle in the other pair. We will accept
all of these four as minimal maroon cycles since any of the
four could be minimal representatives. Moreover, at least
one of these minimal cycles and corresponding cavity was
observed in each scan of every individual (Fig. 26c), and
often in the opposite hemisphere as well (Fig. 26d). These
results reveal that cortico-cortical cycles are indeed present
and suggest their potential utility in segregating function
across the brain.

4 Discussion

In this study, we describe a principled examination of multi-
node routes within larger connection patterns that are not
accessible to network analysis methods that exclusively
consider pairwise interactions between nodes. Our approach
draws on concepts from a discipline of mathematics known
as algebraic topology to define sets of all-to-all connected
nodes as structural units, called cligues, and then to use
the clique architecture of the network to detect structural
topological cavities, detected by the existence of non-
trivial representative cycles. Using this approach, we show
that node participation in maximal cliques varies spatially
and by cognitive systems, suggesting a global organization
of these neighborhood-scale features. These cliques form
encapsulating patterns of connectivity in the human struc-
tural connectome, which separate relatively early-evolving
regions of the subcortex with higher-order association areas
in frontal, parietal, and temporal cortex that evolved on
more recent time scales. We found the recovered topologi-
cal cavities exist consistently across individuals and are not
expected in a spatially embedded null model, emphasizing
their importance in neural wiring and function. These results
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offer a first demonstration that techniques from algebraic
topology offer a novel perspective on structural connec-
tomics, highlighting cavernous spaces as crucial features in
the human brain’s structural architecture.

4.1 Algebraic-topological tools for neural data analysis

Algebraic topology is a relatively young field of pure math-
ematics that has only recently been applied to the study of
real-world data. However, the power of these techniques to
measure structures that are inaccessible to common graph
metrics has gained immediate traction in the neuroscience
community. Here, we highlight a few notable examples
from the growing literature; a more comprehensive recent
account can be found in Giusti et al. (2016). At the neuron
level, persistent has been used to detect intrinsic structure in
correlations between neural spike trains (Giusti et al. 2015),
expanding our understanding of the formation of spatial
maps in the hippocampus (Dabaghian et al. 2012). More-
over, at the level of large-scale brain regions, these tools
have been exercised to characterize the global architecture
of fMRI data (Stolz 2014). Based on their unique sensitiv-
ity, we expect these algebric-topological methods to provide
novel contributions to our understanding of the structure and
function of neural circuitry across all scales at which combi-
natorial components act together for a common goal: from
firing patterns coding for memory (Rajan et al. 2016; Leen
and Shea-Brown 2015) to brain regions interacting to enable
cognition.

Our study uses algebraic topology in the classical form
to obtain a global understanding of the structure, and in
conjunction, it investigates particular topological features
themselves and relates these features to cognitive function.
Cycle representatives have previously been considered in
biology (Chan et al. 2013; Petri et al. 2014; Lord et al.
2016; Kim et al. 2014; Emmett et al. 2016; Mamuye et al.
2016), but to our knowledge this is a first attempt to compare
topological features in multiple brains.
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4.2 Cliques and cavities for computations

Cliques and minimal cycles representing cavities are struc-
turally positioned to play distinct roles in neural compu-
tations. Cliques represent sets of brain regions that may
possess a similar function, operate in unison, or share
information rapidly (Sizemore et al. 2016). Furthermore,
the hierarchical organization of small cliques located more
anteriorly and larger cliques connecting multiple systems
allows for swift global sharing of information produced by
local processing. Conversely, minimal cycles correspond to
extended paths of potential information transmission along
which computations can be performed serially to affect cog-
nition in either a divergent or convergent manner. Indeed,
the capsule-like or chain-like nature of cycles is a struc-
tural motif that has previously been — at least qualitatively
— described in neuroanatomical studies of cellular circuitry.
In this context, such motifs are known to play a key role
in learning (Hermundstad et al. 2011), memory (Rajan
et al. 2016), and behavioral control (Levy et al. 2001;
Fiete et al. 2010). The presence of cycles suggests a possi-
ble role for polysynaptic connections and their importance
to neural computations, consistent with evidence from the
field of computational neuroscience highlighting the role of
highly structured circuits in sequence generation and mem-
ory (Rajan et al. 2016; Hermundstad et al. 2011). Indeed,
in computational models at the neuron level, architectures
reminiscent of chains (Levy et al. 2001; Fiete et al. 2010)
and rings are particularly conducive to the generation of
sequential behavioral responses. It is interesting to speculate
that the presence of these structures at the much larger scale
of white matter tracts could support diverse neural dynamics
and a broader repertoire of cognitive computations than pos-
sible in simpler and more integrated network architectures
(Tang et al. 2016).

Another consideration concerns the apparent asymmetry
of our results with respect to left and right cerebral hemi-
spheres. While unanticipated, we note that in some cases
they have intuitive mathematical underpinnings. For exam-
ple, in Fig. 3, we explicitly count maximal cliques, so one
edge difference between a region in the left and right hemi-
sphere could result in a large difference in the number of
observed maximal cliques. Interestingly, despite this fact
we still observe a strong correlation between node strength
and P (v), instilling confidence in these results. From a neu-
roscience point of view, brain asymmetries are not wholly
unexpected. There is a storied and ever-growing literature
describing the lateralization (i.e., asymmetries) of brain
function (Galaburda et al. 1978). While speech genera-
tion (Rasmussen and Milner 1977) and language processing
(Desmond et al. 1995; Thulborn et al. 1999) are among
the most commonly-cited functions to exhibit lateralization
(Doron et al. 2012; Chai et al. 2016), such effects have also

been linked to a diverse group of other cognitive domains.
These include emotion (Wager et al. 2003), processing of
visual input (Sandi et al. 1993), and even working memory
(Carpenter et al. 2000). In addition, a number of studies have
also reported the emergence of pathological lateralization
or the disruption of asymmetries with neurocognitive dis-
orders including ADHD (Oades 1998). Our study does not
offer a conclusive demonstration that the observed asym-
metries arise from the lateralization of any specific brain
function; we merely wish note that there is a precedent for
such observations.

4.3 Evolutionary and developmental drivers

Network filtration revealed several persistent cavities in the
macroscale human connectome. While each minimal cycle
surrounding these cavities involved brain regions interacting
in a distinct configuration, we also observed commonalities
across these structures. One such commonality was these
minimal cycles tended to link evolutionarily old structures
with more recently-developed neo-cortical regions (Rakic
2009). For example, the green cycle depicted in Fig. 4e
linked the putamen, an area involved in motor behavior
(Middleton and Strick 2000), with the rostral anterior cingu-
late cortex, associated with higher-order cognitive functions
such as error-monitoring (Braver et al. 2001) and reward
processing (Kringelbach and Rolls 2004). This observation
led us to speculate that the emergence of these cavities may
reflect the disparate timescales over which brain regions and
their circuitry have evolved (Gu et al. 2015b), through the
relative paucity of direct connections between regions that
evolved to perform different functions. This hypothesis can
be investigated in future work comparing the clique and
cavity structure of the human connectome with that of non-
human connectomes from organisms with less developed
neocortices.

4.4 Toward a global understanding of network
organization

Though we highlighted minimal cycles in the brain, by
nature persistence describes the global organization of the
network. Often regions in the brain wire minimally to con-
serve wiring cost (Bassett et al. 2010; Bullmore and Sporns
2012; Klimm et al. 2014; Lohse et al. 2014), though there
are exceptions that give the brain its topological properties
such as its small-world architecture (Bassett and Bullmore
2006; Pessoa 2014; Hilgetag and Goulas 2016; Muldoon
et al. 2016a; Bassett and Bullmore 2016). Following this
idea, we could interpret the difference in the number of
persistent cavities between the minimally wired and DSI
networks as a consequence of the non-minimally wired
edges, which tessellate cavities in the brain itself. Yet when
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the subcortical regions are removed, the persistent cavities
of the minimally wired and DSI networks are much more
similar (Fig. 6b). This suggests that the wiring of cortical
regions may be more heavily influenced by energy conser-
vation than the wiring of subcortical regions. Additionally
the drop in the number and lifetime of persistent cavities
when subcortical regions are included indicates that these
subcortical regions may prematurely collapse topological
cavities. The often high participation of subcortical regions
in maximal cliques suggests these well-connected nodes
may have hub-like projections to regions involved in corti-
cal cycles, thus tessellating the cortical cavity with higher
dimensional cliques (topologically these subcortical nodes
are cone points). Previous studies have found that networks
with “star-like” configurations are optimally efficient in
terms of shortest-path efficiency, but also efficient in terms
of a random walk-based measure of efficiency (Goni et al.
2013). That is, networks optimized to have one or the other
type of efficiency tend to have stars. Thus, stars appear to
be useful configurations for fast communication, both along
shortest paths and also in an unguided sense along random
walks. The fact that we see star-like projections to cycles
from subcortical regions may suggest that they are useful
for efficient communication.

4.5 Methodological considerations

An important consideration relates to the data from which
we construct the human structural connectome. DSI and
tractography, non-invasive tools for mapping the brain’s
white-matter connectivity, have some limitations. Tractog-
raphy algorithms trade off specificity and sensitivity, mak-
ing it challenging to simultaneously detect true connections
while avoiding false connections (Thomas et al. 2014),
fail to detect superficial connections (i.e. those that do
not pass through deep white matter) (Reveley et al. 2015),
and have challenges tracking “crossing fibers”, connec-
tions with different orientations that pass through the same
voxel (Wedeen et al. 2008). Nonetheless, DSI and tractogra-
phy represent the only techniques for non-invasive imaging
and reconstruction of the human connectome. While such
shortcomings limit the applicability of DSI and tractogra-
phy, they may prove addressable with the development of
improved tractography algorithms and imaging techniques
(Pestilli et al. 2014).

4.6 Individual cavities in neuroscience applications

Though comparing persistent homology of weighted net-
works at the global level has been successful (for example
Benzekry et al. 2015; Horak et al. 2009), scrutinizing
individual persistent features may have more clinical rele-
vance due to their size and understandability. Yet, multiple
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questions remain to be answered before this goal can be
achieved.

The first question pertains to the choice of representative
cycle. As the current study presents an initial consideration
of the persistent features of the structural connectome, we
record all minimal generators, which reduces the number
of choices made, and we define minimality using topologi-
cal (hop) distance, which simplifies our analysis. However,
a case could be made for using the representative with the
minimal summed edge weight (Dey et al. 2011). Such a
definition would further simplify the analysis by potentially
giving a unique ‘minimal’ generator for each equivalence
class. Additionally one might ask if a ‘minimal’ generator is
even the appropriate representative cycle in the first place.
Perhaps cycles of longer length have cognitive or clinical
relevance beyond information distribution.

Second, it will be necessary to further develop the con-
cept of similar persistent cavities. Here we used a region-
matching process in order to incorporate perspectives from
neuroscience and topology. An important open question is
whether a more algorithmic matching could be devised that
is better suited to the perspectives from both fields. Along
the same lines, it is important to consider the birth, death
time, and lifetime of a given persistent cycle (Stolz et al.
2017). We interpret longer-lived and earlier-born persistent
cycles as more essential to the global architecture, and we
hypothesize that this translates to healthy cognitive control
and function as well. Then if two cavities are similar in
terms of their regional composition, but are not similar in
terms of birth or death times (for example, the blue cycle in
the DSI versus MW networks in Fig. 5), it remains an open
question whether the two cavities should be considered truly
similar in a biological context.

Thirdly, with the development of algebraic-topological
tools as described above, we speculate that comparing
late-arriving persistent features could be important for clin-
ical applications. Weaker connections have been shown
to distinguish between health individuals and those with
schizophrenia (Bassett et al. 2012), and have also been
shown to predict individual differences in intelligence (Cole
et al. 2012). Since late-born persistent cycles are a very
particular arrangement of weak edges, we hypothesize that
such cavities may be powerful biomakers of individual
brains, capable of distinguishing between diseased and nor-
mal connectomes.

5 Conclusion

In conclusion, we offer a unique perspective on the struc-
tural substrates of distinct types of neural computations.
While traditional notions from graph theory and network
science preferentially focus on local properties of the
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network at individual vertices or edges (Bassett and Bull-
more 2006, 2009; Bullmore and Sporns 2009; Bullmore and
Bassett 2011), here we utilize an enriched network formal-
ism that comes from the field of algebraic topology (Ghrist
2014). These tools are tuned to the interplay between weak
and strong connections (Bassett et al. 2012), and therefore
reveal architectural features that serve to isolate informa-
tion transmission processes (Giusti et al. 2016). It will be
interesting in the future to compare human and non-human
connectomes across a range of spatial scales (Betzel and
Bassett 2016) to further elucidate the evolutionary develop-
ment of these features, and to link them to their functional
(Hermundstad et al. 2013) and behavioral (Hermundstad
et al. 2014) consequences.
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Appendix: Data acquisition

All participants volunteered with informed consent in
writing in accordance with the Institutional Review
Board/Human Subjects Committee of the University of Cal-
ifornia, Santa Barbara. Diffusion spectrum imaging (DSI)
scans were acquired from eight subjects (mean age 27+5
years, two female, two left handed) on 3 separate days, for
a total of 24 scans (Cieslak and Grafton 2014). DSI scans
sampled 257 directions using a Q5 half-shell acquisition
scheme with a maximum b-value of 5000 and an isotropic
voxel size of 2.4 mm. We utilized an axial acquisition with
the following parameters: repetition time (TR) = 11.4 s,
echo time (TE) = 138 ms, 51 slices, field of view (FoV)
(231,231,123 mm).

DSI data were reconstructed in DSI Studio (www.dsi-
studio.labsolver.org) using g-space diffeomorphic recon-
struction (QSDR) (Yeh and Tseng 2011). QSDR first recon-
structs diffusion-weighted images in native space and com-
putes the quantitative anisotropy (QA) in each voxel. These
QA values are used to warp the brain to a template QA vol-
ume in Montreal Neurological Institute (MNI) space using
the statistical parametric mapping (SPM) nonlinear registra-
tion algorithm. Once in MNI space, spin density functions
were again reconstructed with a mean diffusion distance
of 1.25 mm using three fiber orientations per voxel. Fiber
tracking was performed in DSI studio with an angular cut-
off of 55 degrees, step size of 1.0 mm, minimum length
of 10 mm, spin density function smoothing of 0.0, max-
imum length of 400 mm and a QA threshold determined
by DWI signal in the colony-stimulating factor. Determin-
istic fiber tracking using a modified FACT algorithm was
performed until 100,000 streamlines were reconstructed for
each individual.

In addition to diffusion scans, a three-dimensional high-
resolution TI1-weighted sagittal sequence image of the
whole brain was obtained at each scanning session by
a magnetization-prepared rapid acquisition gradient-echo
sequence with the following parameters: TR = 15.0 ms; TE
= 4.2 ms; flip angle = 9 degrees, 3D acquisition, FOV =
256 mm; slice thickness = 0.89 mm, matrix = 256 x 256.
Anatomical scans were segmented using FreeSurfer (Dale
et al. 1999) and parcellated according to the Lausanne 2008
atlas included in the connectome mapping toolkit (Hagmann
et al. 2008). A parcellation scheme including 83 regions
was registered to the BO volume from each subject’s DSI
data. The BO to MNI voxel mapping produced via QSDR
was used to map region labels from native space to MNI
coordinates. To extend region labels through the gray—white
matter interface, the atlas was dilated by 4 mm. Dilation was
accomplished by filling non-labeled voxels with the statisti-
cal mode of their neighbors’ labels. In the event of a tie, one
of the modes was arbitrarily selected. Each streamline was
labeled according to its terminal region pair.

Additional neighborhood-scale computations

In the main text we count maximal cliques at an edge den-
sity of 0.25 (Fig. 2). To ensure our interpretation would not
fluctuate based on this choice of p, we also show the max-
imal clique distribution for 0 < p < 0.25 for the average
DSI network (Fig. 7a). For comparison, we include the aver-
age maximal clique distribution for 0 < p < 0.25 of the
minimally wired null models (Fig. 7b).

To address the extent to which an anterior-posterior gra-
dient of maximal cliques exists, we calculated the correla-
tion coefficient of Py (v) with the position of the node along
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this axis. Fig. 8 shows generally the maximal participation
of a node is more highly correlated with anterior-posterior
position for higher degree cliques. To complement this
calculation, Fig. 8b shows the normalized Pi(v) of each
node for all maximal clique degree k.

We then asked if node participation varies by cognitive
system, perhaps reflecting each system’s unique function.
Results are shown in Fig. 2. The specific ordering of nodes
for this figure are shown below (Fig. 9b). For each (right,

left) hemisphere pair, the brain region in the right hemi-
sphere was listed first, immediately followed by that in the
left hemisphere.

Additionally we are interested in comparing node partic-
ipation to other measures of connectedness, as we expect
they should generally agree. One such measure is the rich
club. Following the work of van den Heuvel and Sporns (van
den Heuvel and Sporns 2011), we calculated ¢, ¢4, and
Pnorm for each value of k (Fig. 10).

Fig. 8 Maximal clique
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Banks of superior temporal sulcus (RH, LH)

Auditory Superior temporal (RH, LH)

Transverse temporal (RH, LH)

Pars orbitalis (RH, LH)

Pars opercularis (RH, LH)

Rostral middle frontal (RH, LH)

Cingulo-Opercular
Rostral anterior cingulate (RH, LH)

Caudal anterior cingulate (RH, LH)

Supramarginal (RH, LH)

Superior frontal (RH, LH)

Posterior cingulate (RH, LH)
Default Mode

Isthmus cingulate (RH, LH)

Precuneus (RH, LH)

Dorsal Attention Superior parietal (RH, LH)

Frontal pole (RH, LH)

Medial orbitofrontal (RH, LH)

Pars triangularis (RH, LH)

Fronto-Parietal
Caudal middle frontal (RH, LH)

Inferior parietal (RH, LH)

Insula (RH, LH)

Parahippocampal (RH, LH)

Entorhinal (RH, LH)

Temporal pole (RH, LH)
Other

Inferior temporal (RH, LH)

Middle temporal (RH, LH)

Brainstem

Precentral (RH, LH)

Somatosensory Paracentral (RH, LH)

Postcentral (RH, LH)

Thalamus proper (RH, LH)

Caudate (RH, LH)

Putamen (RH, LH)

Subcortical Pallidum (RH, LH)

Accumbens area (RH, LH)

Hippocampus (RH, LH)

Amygdala (RH, LH)

Ventral Attention Lateral orbitofrontal (RH, LH)

Cuneus (RH, LH)

Pericalcarine (RH, LH)

Visual Lateral occipital (RH, LH)
Lingual (RH, LH)

Fusiform (RH, LH)

Fig. 9 Order of brain regions for Fig. 2b

Persistent homology

We are interested in finding mesoscale structural features,
specifically non-trivial minimal cycles within our weighted
network. Though these minimal cycles may geometrically

be quite large and span a large portion of the brain, we
emphasize that these are mesoscale features from a topolog-
ical perspective. Persistent homology strings together these
features across network snapshots in a filtration, offering a
global picture of network architecture. We include a brief
description of the method here, and we advise the interested
reader to consult (Carlsson 2009; Ghrist 2014; Zomorodian
and Carlsson 2005) for additional details.

Complexes

Cliques First, we will transform our network (equivalently,
graph) of interest into an algebraic object so that we can use
powerful computational tools from linear algebra to com-
pute intuitive topological features. We begin by selecting
building blocks from which to assemble larger, mesoscale
structures. Drawing on classical graph theory and our intu-
ition about the type of structures we are looking for, we are
led to a natural (and well studied) choice of such blocks:
sets of all-to-all connected nodes called cligues. In the con-
text of brain networks, cliques are groups of brain regions
that are able to rapidly and effectively share information.
Formally, a (k 4 1)-clique of a graph G as a set of (k + 1)
nodes for which all pairwise edges are in G. Thus, a single
node is a 1-clique, an edge a 2-clique, a triangle a 3-clique,
and so on. Any subgraph of a clique must itself be a clique
of lower degree, called a face. A maximal clique is thus any
clique that is not a face. Intuitively, we will think of cliques
as “filled in” regions, rather than hollow collections of edges
(Fig. 11a).

Clique complex We study the structure formed by all
cliques induced by the graph G, a combinatorial object
called the clique complex (Fig. 11b). More specifically, we
build the abstract simplicial complex formed from the corre-
spondence of k-simplices and (k + 1)-cliques. See Carlsson
(2009), Hatcher (2002), and Ghrist (2014) for more details.
The clique complex of a graph G is the collection
of all the cliques in G, formally denoted X(G) =
{X0(G), X1(G), ..., Xn(G)} where X} (G) is the set of all
(k + 1)-cliques in G. Historically, the index is chosen to
correspond to the dimension of the enclosed region, and
we adopt this index shift here for consistency. The clique
complex is an object which allows us to formally manipu-
late certain important geometric properties (as we explore
in more detail in the following sections), and, through these
computations, discover mesoscale features of interest.

Chain group In order to perform computations, we move
from sets of cliques to vector spaces. We define the chain
group Cy(X(G)) (abbreviated to C; when the underlying
clique complex is understood) as the vector space with
basis X;(G). We denote by oj, i,,...;i; € Cr(X(G)) the
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Fig. 10 Defining the rich club 1

of the DSI network. Rich club

coefficient of the DSI network
(¢ (k)) is shown in black, the
average rich club coefficient of
randomized networks (¢, 4nq (k))
in gray, and the normalized rich

— 0
Pnorm

0

club coefficient ¢4, (k)) in 0.5 1
blue. Shaded regions indicate
values of k for which ¢ (k)

significantly exceeded ¢yqnq (k)
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basis element corresponding to a (k 4 1)-clique on nodes
{io, i1, ... ix}. Though this definition can be made for any
scalar field, we use vector spaces over the field with two
elements, F, = {0, 1}, as is standard in topological data
analysis. Elements of Cx (X (G)) are linear combinations of
k-chains which correspond to collections of (k + 1)-cliques.

For example, consider the clique complex X (G) shown
in Fig. 12. Elements of C| are linear combinations of edges,
or 2-cliques. One such element is b = 05,6 + 06,7 + 073,
shown in blue in Fig. 12. This is intuitively an undirected
path from vs to vg that passes through ve and vy. We could
also take the purple path a € Cj. This path begins at vg
and follows 09,1, 01,2, 02,5, then g 5 which returns us to
vo. Because we work over [F,, this algebraic encoding is not
sensitive to clique direction, only the parity of the number
of times a clique appears in a chain. In C3, an element is
a linear combination of 3-cliques. Highlighted in Fig. 12
(right) is one such example: the element ¢ € Cy with ¢ =
02.3.4 + 02,45. Because we are working in [, if we took
this path twice, we would have the chain ¢ + ¢ = 0235 +
02,45+ 0235+ 0245 =20235+20245=0.

Boundary operator Recall that our goal is to detect topo-
logical cavities in our algebraic object. Note the structure
of cycles is subtle and not necessarily indicative of physi-
cal cavities in a general sense. However, in the case of these
relatively sparse 3D graphs this is usually the case. Cavi-
ties exist when cliques are arranged in a loop or capsule,
but there are no higher dimensional cliques that “fill in”

Fig. 11 From cliques to a
clique complex. a Cliques are
all-to-all connected sets of
nodes which we use as “filled
in” building blocks. bThe clique
complex is created by inserting
these building blocks into the
completely connected subgraphs
of G

s
I
&
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the enclosed space — that is, the capsule is not the “bound-
ary” of some collection of higher dimensional cliques. To
detect this computationally, we use the boundary operator
Ok : Cr — Ci—1, which takes a collection of (k+ 1)-cliques
(an element of Cy) and sends them to their boundary (an
element of Cj_1).

Geometrically, the boundary of a k-clique is the family
of (k — 1)-cliques obtained by removing each vertex in suc-
cession. The boundary of a contiguous collection of (one or
more) k-cliques is a “capsule” of (k — 1)-cliques surround-
ing the original collection, inside of which the boundaries
of neighboring (k — 1)-cliques overlap. We can detect this
pattern computationally when chains corresponding to the
shared faces cancel. In Fig. 13 the boundary of ¢ € C; is
the chain corresponding to the surrounding four edges (2-
cliques), as the interior edge (02,4) cancels. Formalizing this
intuition, we define the boundary operator (with coefficients
in [F) on the basis Xy (G) to be

k
0k (00,1,..k) = Z OO0k
=0

where i indicates that vertex i is not included in the set
of vertices that form the clique, and we extend this map
linearly to all of Cr(X(G)). Then, for example, in Fig. 13,

02(c3) = 0(02,3,4 + 02.4,5) = 02(02,3,4) + 02(02,4,5)
= (03,4 +024+023) + (045 + 025+ 024)

=034+ 023+ 045+ 025.

K 4
/

Graph G

Clique Complex X(G)
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Fig. 12 Chain group elements

are linear combinations of s % J¢
cliques. See Appendix text for a

complete description of these 0,

graphs s

0y

0, 03

Clique Complex X(G)

Because the boundary of ¢3 € C; is itself an element of
C1, we can apply 9 to it in turn. As illustrated in Fig. 13,

01(92(c3)) = 01(02,3 + 034 + 04,5+ 025)
=03+ 02+ 04+ 03+ 05+ 04+ 05+ 02
=209 + 203 + 204 + 205
=0.
This example illustrates a crucial property of the bound-

ary operator: dx_1 o dx = 0, which will be more thoroughly
discussed in the Homology section below.

Chain complex We now have a boundary operator that lets
us move from k-chains to (k — 1)-chains for every k. Note
the boundary of a 0-chain is defined to be 0, since a node is
a single point with no geometric boundary. These operators
link together the chain groups into a sequence

9p=0

I+1=0 0, Ok—1 0 )
St =1 S035 50

Ck —k> Ck,1 —_— ...
called the chain complex for X(G). This is our fundamen-
tal algebraic tool for studying the structure of the clique
complex.

In summary, we have taken an unweighted, undi-
rected graph G and, from an enumeration of its cliques,
formed the clique complex X (G) (Fig. 14, left). We then
used the cliques of each dimension as basis elements
in the chain groups Co(X (G)), C1(X(G)), ..., Cn(X(G))
(Fig. 14, middle). Finally, we defined the boundary opera-
tor d that finds the boundary of a chain (which represents
a collection of (k + 1)-cliques), itself a (possibly empty)

025 %5
62 /
> 024 4
02,4
O34
€3 = Op34F0z45 ‘T‘

= 0¢,1 + 01,2 + 025 — 0o5
= Oge + Og,7 + 078

€ (; = O34+ 0245 € C,

chain representing a collection of k-cliques, and we used
this function to string together the chain groups into the
chain complex (Fig. 14, right).

Homology

We turn now to the definitions and concepts needed to com-
pute homology. Homology discoveres features of interest in
the clique complex by separating cycles, mesoscale patterns
constructed from cliques, which surround a cavity from
those that are the boundary of a collection of cliques.

Cycles Though we have seen examples of cliques strung
together as paths, we are particularly interested in paths that
form closed structures called cycles, the 1-dimensional ana-
log of which are graph-theoretic circuits. Consider the three
closed circuits in Fig. 15, each can be thought of as a linear
combination of elements in C(X{(G)). If we begin at any 1-
clique (node) on the cycle, for example o7 in £1, and traverse
each 2-clique in the cycle in order, we will end at our start-
ing 1-clique. Since the boundary of any path € C(X(G))
iS Oend + Opegin» the boundary of any cycle £ € C(X1(G))
must be

01(€) = Oena + Obegin = 2O'begin =0.

Though we have thus far focused on the familiar notion of
cycles built of 2-cliques, the notion that boundaries should
cancel allows us to construct cycles in any dimension. We
define a k-cycle to be any element £ € Cy with 9x(£) = 0.
Since the cycles are exactly the elements that are sent to 0 by

* @ gUs
025 a5
0 g,
1 ® Iy -0
—2 ® o,
02
03,4 ®
053 [ %,
g, g3 3

Fig. 13 Example of the boundary operator in C. See Appendix text for a complete description of these graphs
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Fig. 14 Tllustration of creating
from G the clique complex

X (G). Also shown are the
induced chain complex
C«(X(G)) and an example of
boundary calculations on an
element in C5(X (G))

Graph G

the boundary operator, the subspace of k-cycles is precisely the
kernel (or nullspace), denoted ker(d;) C C(Xx(G)).

As noted above, cycles can surround either cavities or a
collection of cliques, and since we are strictly interested in
cycles of the first type, we must determine how to differ-
entiate between these two options. Figure 15 depicts three
I-cycles found in the clique complex shown on the left.
Looking strictly at X1(G), we cannot distinguish which of
these three cycles belong to which category.

However if we include information about 3-cliques, the
separation becomes apparent, in the same way looking at
the full depiction of the clique complex in Fig. 15 (left)
makes it apparent that this object surrounds one cavity. We
need consider only the image of the boundary map from
dy : C2(X(G)) — Ci1(X(G)): if a 1-cycle £ surrounds
a collection of higher dimensional cliques, it must in par-
ticular surround a collection of 2-cliques (2-faces of these
larger cliques). In our example in Fig. 15, this means ¢; is
the boundary of some element in C>(X (G)) (this element is
0234+ 02.45).

e N

C3(X(6)

E

C:(X(6))3

L]

C1(X(G6) 3

5 e @ lal l

Co(X(G)) > 0

X3(6)

X,1(6)

Clique Complex X(G)

°
L]

Xo(6)

Chain Complex
C(X(G))

We can repeat such an argument for any k-cycle that sur-
rounds a collection of higher dimensional cliques, which
allows us to define k-boundaries as elements in im(dg+1) S
Ck (X (G)). Furthermore it must be true that im(dxy1) C
ker(041) per our previous observation that dx o dg+1 = 0.

However, not all cycles are necessarily boundaries: £,
and ¢3 are in ker(d;) but neither are elements of im(d;).
The k-cycles that surround cavities are thus those that are
in ker(d;) but not im(dx). However, enumerating cycles in
ker(dx) — im(9g) is not enough to produce a proper list of
cavities in our clique complex, because we will suffer from
redundancy. For example, knowing either €, or {3 tells us
the cavity they both enclose exists. Certainly £, # {3, but
we should consider them equivalent since they both reveal
the same feature of our complex. So we need a way to count
more carefully.

Equivalence The solution to our enumeration problem will
depend on what we regard as “the same”. Above we men-
tioned we should consider ¢; to be equivalent to £3 because

e\
L7

19.2] ~

Fig. 15 Cycles. Examples of a cycle that is also a boundary (£1) and two equivalent, non-boundary cycles (¢2 and £3)
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> Gis

—  X(Gis)

L] L] L] L] L]
L] L] L
® L] L] L]
Weighted graph G Gy —> Gy
X(Go) — X(G) — ... X(Go)

Fig. 16 Filtrations and inclusion maps. Edge weights indicated by line thickness induce a filtration on the weighted graph G. The inclusion maps
G; — G;4 induce inclusion maps on the corresponding clique complexes X (G;) — X (Gi+1)

they surround the same cavity. How is it that we under-
stood this? We see they both enclose this cavity, while £
also surrounds one 3-clique. But this 3-clique (specifically
00,5,7) does not change the cavity or add a new one, so
we decided this difference of a higher dimensional clique
should be insubstantial, and thus the two cycles are equiv-
alent. Generalizing this example provides a method for
correctly enumerating the cavities in the complex.

Two k-cycles, £; and £ ;, are called equivalent if their sum,
(working over IF2) £; + £ is the boundary of a (k + 1)-chain,
eg l; ~4L;iff; +£; € im(dk41). In Fig. 15, we have

ly+ 483 = (025 + 057+ 070+ 001+ 012)
+(02,5 + 05,0 + 00,1 + 01,2)
= 05,7+ 07,0+ 005
= 02(00,5,7) € im(d2)

so indeed we see {7 ~ {3.

This, finally, provides us with a proper count: if we only
count one cycle from each set of (non-trivial) equivalent
cycles, then we will have precisely the number of topologi-
cal cavities of a given dimension within the clique complex.
The clique complex in Fig. 14 by eye has only one cavity
surrounded by 1-cycles, and our computations agree. Any
closed loop of 2-cliques either is equivalent to ¢, or it is
strictly a boundary of higher dimensional cliques and thus is
trivial. So, as desired, we have a sole 2-dimensional cavity.

The equivalence class of a k-cycle £ is [£] = {v €
Zr|lv ~ £}. Note the equivalence class of boundary loops
b € im(0g) contain the empty set, since b—@ = b € im(dg).
This means for any £ € ker(d¢) and b € im(dx), we have
£+ b~ €+ ~ £, confirming our requirement that cycles
differing by boundaries are equivalent. By abuse, it is com-
mon to refer to an equivalence class of k-cycles as a k-cycle,
and we will continue with this convention.

Homology groups The heavy lifting is now complete and
we are left with only the formal definition of homology to
conclude the section. Recalling the equivalence classes we

have discussed above, we define the homology group of
dimension n as

H, = ker(ail)/im(8n+1)

which is simply the vector space spanned by equivalence
classes of n-cycles. The dimension of H, is the number
of nontrivial n-cycles and thus the number of (n + 1)-
dimensional topological cavities of our clique complex. In
summary we can now take a graph of nodes and edges, con-
vert it to an algebraic object called the clique complex, then
use the boundary operator to find equivalence classes of
cycles that describe essential mesoscale architecture of our
network in the form of topological cavities.

Homology for weighted networks: persistent homology

While homology detects cavities in binary graphs, the DSI
data (and many other sources in biology) create a weighted
network. Persistent homology was originally developed
(Carlsson 2009; Zomorodian and Carlsson 2005) to describe
topological features of high-dimensional point clouds, but
has since been adapted to address the current problem of
finding topological cavities within weighted networks. This
method uses the edge weights to unravel the weighted net-
work into a sequence of binary networks on which we can
then compute homology, in a manner related to but more
principled than standard thresholding techniques. Overall
persistent homology perceives how the features seen with
homology evolve with the weighted network.

Filtrations Given G a weighted network, we first con-
struct a sequence of binary graphs that will allow us to
use homology on each graph in the sequence. The edge
weights induce a natural ordering on the edges from highest
to lowest weight. Then, beginning with the empty graph, we
replace edges following this ordering. This process creates
a filtration

GoCGIC--CG=6G

@ Springer



136 J Comput Neurosci (2018) 44:115-145

= 2

X(Gl3)

Fig. 17 Inclusion maps between
clique complexes induce maps
between the corresponding
chain complexes. See Appendix
text for a complete description
of these graphs

<_>

!

f*(x)ZC*(X(Gm)) - C*(X(G14))

X(G14)

S A\,

f2:C; (X(G13)) - (; (X(G14))

P = 0578+ 0567 [2(p) = 0578+ 0567

= 4

fi: C1(X(G13)) - ( (X(G14))

] =033+ 034+ 045+ 035 [1(q) = 023+ 034 + 045+ 055

SRV

fo: Co(X(G13)) - CO(X(GI4))
r =09+ 0y + 0g fo(r) =09 + 01 + 0¢

where each G;4| contains one more edge than G;. Since
Gy contains G; (and one more edge), we obtain an inclu-
sion map i : G; <> G;41 which describes how G; maps
into G;41. In our case this is quite natural, G; is sent to

@ Springer

itself, now a subgraph of G;4 (Fig. 16, top row). This pro-
cess to create a filtration from a weighted graph has been
used previously in Petri et al. (2013a, b) and Giusti et al.
(2015).
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Fig. 18 Illustration of the
persistence complex of the

weighted graph G. The green CX(G))

1-cycle is first seen in X (G12),

is mapped through filtrations,

and finally becomes the

boundary of a collection of

3-cliques (pink) in X (G14) Co(X(GY)
C(X(G)

N

C.(X(G11)

Having an inclusion of G; into G4 means we can also
get an inclusion of X (G;) into X (G;41) in a similar fashion,
where cliques in X (G;) map to their corresponding selves
in X (G;41) (Fig. 16, bottom row).

But now knowing how one clique complex maps into the
next clique complex means we get maps between the chain
groups as well. For example, in Fig. 17 we look only at
the inclusion of X (G13) into X (G14). This inclusion map
tells us how to take cliques from X (G13) and fit them into
X (G14), which means we can figure out how to take some
combination of cliques and fit them into X(G14) as well.
The functions that perform this task are defined

Ji 1 Cx(X(G13)) = Ci(X(G14))

where the * refers to the set of functions indexed by dimen-
sion. We show the first three with examples in Fig. 17. If
we have a O-chain r = o¢g + 01 + 0 € Co(X(G13)), it
gets mapped by fy to a chain in Cy(X(G14)), explicitly
fo(r) = oo + o1 + 06.

We can do this in the higher dimensions as well.
Figure 17 also shows the green 1-chain g = 023 + 034 +
045+025 € C1(X(G13)) and how it maps into C1(X (G14))
as well. It is interesting here to note that in C1(X (G13)), the
1-chain ¢ is also a 1-cycle, but is equivalent to the trivial
cycle in C1(X(G14)). Again we can move to the 2-chains
and observe how p = 05738 + 0567 is sent to f2(p) =
0578+ 05,67 € C2(X(G14)).

Generally filtrations are a powerful way to understand
weighted networks. Here, we will use these chain maps f
to track particular chains throughout the filtration to see how
they may change as new edges (and thus cliques) are added.

Persistent homology As we are interested in cycles, we
now turn to tracking specifically cycles throughout the
filtration. A k-loop is a k-chain, so it can be tracked hor-
izontally from clique complex to clique complex in the

C.(X(G14))

C.(X(G12)) C.(X(G13))
filtration. Additionally, we have vertical boundary maps that
tell us if the k-loop in question is a cycle or a boundary
loop within the particular clique complex. More generally
we are combining the information from the filtration and
its between-complex induced maps (Figs. 16, 17) with the
boundary loop information from the within-complex bound-
ary operators (Fig. 14) to observe how cycles change as we
add edges of decreasing weight.

Formally these maps and complexes form the persistence
complex of our weighted graph G (Fig. 18). Armed with
inclusion and boundary maps between chain groups, we
can compute the homology of each graph in the filtration
and therefore obtain maps H.(X(G;)) — H«(X(Gi+1))
that describe how cycles (equivalence classes of cycles) in
X (G;) change (map directly, shrink in length, become a
boundary loop) in X (G;1).

For example, in Fig. 18 we see the green 1-cycle first
appears in G12. We say the cycle is born at this edge density
prirth = (# edges present) /(# edges possible) = 12/36.
The green cycle continues to exist until it maps to a cycle
that is the boundary of the pink 2-chain in C2(X(G14)).
Since this cycle is now a boundary, it is equivalent to the
trivial cycle in H;(X(G14)). We say the cycle dies at this
edge density pgeqrn = 14/36.

Cycles that exist over many edge additions must evade
becoming triangulated by cliques, thus becoming a bound-
ary. Therefore we consider such cycles more essential if
they persist for many edge additions. We measure cycle
persistence in two ways. First we record cycle lifetime
l = pgeath — Ppirth, Which is commonly used in persis-
tent homology calculations (Carlsson 2009) and displayed
on a persistence diagram. For our cycle which is born at
p = 12/13 = 1/3 and dies at p = 14/36 = 7/18, we
see an example persistence diagram in Fig. 19. However,
recent work (Bobrowski et al. 2015) suggests alternatively
considering @ = pgearn/Ppirth Which allows for cycle
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Fig. 19 Example persistence diagram for green cycle shown in
Fig. 18. See Appendix text for a complete description of these graphs

persistence comparison at difference scales and underscores
the importance of cycles forming at low edge densities.

To summarize, persistent homology tracks interest-
ing connection patterns (cycles) through network frames
induced by edge weights, recovering a parameter-free per-
spective on essential structural features in a weighted net-
work.

Comparison with alternative loop-finding algorithms

One may ask how our method compares with other loop-
finding algorithms. While such programs can be powerful,
two fundamental differences exist. The first is in the defini-
tion of cycles identified. Recall that we extract equivalence
classes of cycles, so we will find only cycles that enclose a
structural cavity, while loop-finding algorithms will extract
all loops that are boundaries of higher cliques (Tucker
2006). Additionally, persistent homology detects cycles in
multiple dimensions with much less computational effort
than loop algorithms (Johnson 1975).

Additionally one might ask how small changes in edge
weights or edge ordering may affect these findings. Cohen-
Steiner et al. showed generally small changes in the edge
ordering will result in small changes in the persistence dia-
gram (Cohen-Steiner et al. 2007). This makes persistent
homology relatively robust to noise and consequentially a
powerful tool in neuroscience (Giusti et al. 2016).

Cycles in the average DSI data

To understand the function non-boundary cycles may have
in the structural brain network, we recover all minimal gen-
erators at ppir; for each persistent homology class found
in the averaged DSI data (Fig. 4c). These cycles for all 20
of the 2D cavities and the two 3D cavities are shown below
in Figs. 20, 21, respectively. To summarize this informa-
tion we plot all minimal representatives with edges weighted
by their participation in minimal representatives. This sum-
marization is similar to the frequency scaffold (Lord et al.
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2016; Petri et al. 2014) in Fig. 22, though here we are
unable to assign one minimal representative to each persis-
tent equivalence class so if an edge is part of any of the
minimal representatives of one equivalence class it gets an
added weight of one. Cycles reach most areas of the brain,
and as seen in Fig. 20, many follow the cortical to subcor-
tical theme. The edge involved in the highest number of
dimension-one minimal generators in the average DSI data
links the left and right thalamus. For dimension 2 we see
each edge only exists within one minimal generator.

Confirming topological cavities in contralateral
hemisphere

In the main text we show validation of the four high-
lighted cycles in individual scans. Following the procedure
above, we next ask if these cycles are seen in the con-
tralateral hemisphere to asses symmetry of these features.
Figure 23 shows these features are seen in the contralateral
hemisphere, though with less frequency than in the original.

Cavities in the normalized dataset

When studying the network formed from DSI, it is impor-
tant to consider any potential bias created by the dif-
ferent sizes of the 83 brain regions. To account for
this potential bias, we normalized the original network
of streamline counts by the geometric mean of the end
point region sizes and checked to see which cycles were
still present (Hagmann et al. 2008). More precisely, the
normalized edge weight A;; between nodes i and j
is streamline count;; /(volume; volume j)l/ 2 (Bassett et al.
2011).

After this normalization, we asked if the cycles found
in the streamline counts data are present in the normal-
ized networks. Figs. 23 (DSI Norm, DSI Norm cont) show
the cycles are found to a similar extent across scans in the
original and contralateral hemispheres.

Locating all cavities from the group-averaged DSI in
the minimally wired networks

Noting many persistent cycles seem likely sampled from
the minimally wired distribution of persistent cycles, we
asked if we detect the 20 cycles observed in the average
data in the null model. Figure 24 show the lifespan of
each of these persistent cycles within the individual scans
(black) and the minimally wired null model (gray). Each
vertical bar represents a persistent cavity within a scan, and
scans where the cavity was not validated are removed. Aver-
age birth and death densities are indicated with horizontal
dashed lines. We surprisingly see very few of the persistent
homology classes of the DSI data have counterparts in the
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the brain, and schematic is shown. For the third, seventh, and tenth
appearing cavities, we could not isolate exactly one unique equivalence

class

Fig. 20 Minimal representatives at pp;r;, of all 2D cavities found
in the average DSI data, listed in order of increasing birth density.
For each topological cavity, the lifespan (opirth - Pdearn), location in
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Fig. 21 Minimal

representatives at pp;,¢;, of all
3D cavities found in the average L]
DSI data, listed in order of

Lifespan: 0.104 - 0.109

increasing birth density. For 55

each, the lifespan (opiyr - «

Pdeath), location in the brain, o ‘ .

and schematic is shown o &
Insula (RH)

Superior Parietal (RH)

Inferior Parietal (RH)

Hippocampus (RH)

Precuneus (RH)

minimally wired null model. Of those that do, often the aver-
age birth and death times are quite different, underscoring the
importance of the filtration in this method (Figs. 24 and 25).

Cortical cavities

Densely connected subcortical nodes may prevent the
longevity of nonzero homology classes by forming cross-
cycle edges or cliques which tessellate the cycle completely.
We asked what cavities could be found when removing
these subcortical nodes, forming DSI°°"" as described in
the main text. Here, Fig. 26 shows a 1-cycle on nine nodes
recovered from DS1°"" within the brain and as a schematic
(panel (a)). The persistence diagram for 2D cavities within
DSI°" in Fig. 26b shows the four minimal cycles marked

Fig. 22 Spatial distribution of

o o ¢

Lateral Occipital (RH)

Lifespan: 0.199 - 0.269

° ® e

[ ]
o'.,
]

Ve G
% o

Inferior Temporal (LH), Middle Temporal (LH)

Lateral Occiptioal (LH)
Inferior Parietal (LH)

Superior Temporal (LH),

Supramarginal (LH)
Insula (LH)

Superior Parietal (LH)

in maroon. Importantly, because of the connection patterns
between nodes at the density of cycle formation, we will
refer to any of these four cycles as the minimal cycle. Two
of these cycles are equivalent loops which involve the supe-
rior frontal (RH) and the caudal middle frontal regions. The
other two are equivalent to each other but not to the first two
loops, and involve the superior frontal (LH) and posterior
cingulate (LH). The edge added at pp;,s;, connects the lat-
eral orbitofrontal to the superior temporal. The cycle formed
by the superior frontal (RH, LH), caudal middle frontal,
precentral, and posterior cingulate (LH) is itself a minimal
cycle surrounding a separate topological cavity. This infor-
mation along with the connection patterns at pp;,;;, mean
we cannot claim either pair are the two minimal generators,
instead it is either one pair or the other. The smaller, five

Dimension 1

minimal generators at pp; s, of
2D (top) and 3D (bottom)
persistent cavities. Edge
thickness reflects the number of
minimal generators in which
they participate

@ Springer




J Comput Neurosci (2018) 44:115-145 141

Fig. 23 ' ValldaFl'on (?f 51m1.la‘1r Thelamus (LH) N T T T
topological cavities in additional Caudate ‘é o1r 7
data. For each of the four z‘L':j)'e“S g
minimal generators highlighted (apamus g 0051 ‘ ‘ 7
in the main text, bars indicate fvt (- | i P
. lf . f 11 11 d Caudate Nucleus (RH) 0 i L L
cavity lifetime for all collecte oS! e oS! Norm
data. Dotted lines indicate
average birth or death edge Lateral Orbitofrontal T T T T T
K Medial Z
density Putamen Otbitofrontal @ 0.2 ‘ 4
S i
! I, ]
o i
he]
Eupfirilor Eoslr&:l Anterior w ) ) . ) )
rontal ingulate 0
9 DsI MW DSI Norm DSl cont DSI norm cont
Rostral anterior cingulate (LH, RH), T T T T T
Medial orbitofrontal (LH), Lateral >
orbitofrontal, £ o3} ‘ |
Rostral middle L.
frontal q’:)
X A 02rF | ( 8 -
Medial o \ { '
Orbitofrontal Subcortical* S o1f | " ‘ “ 4
i
A b Nucl 0 1 1 1 1 1
ceumbens Rucleus oSl MW DSI Norm DS! cont DS norm cont
Inferior Temporal, 04F T T T T T 3
Middle Temporal >
Lateral Occipital &5 0.3 | N" m B
) c
Inferior Parietal 8 02k i
)
Superior Supramarginal .g‘ 01 | -
Temporal, w
Insula Superior Parietal 0 1 1 1 1 1
DsI MW DSI Norm DSl cont DSI norm cont
Lifespan: 0.003 - 0.027 Lifespan: 0.006 - 0.016 Lifespan: 0.013 - 0.018 Lifespan: 0.022 - 0.032
S o041 0.06
2 0.04 0.03
2 0.04
5 0.02
0.05
g 0.02 0i0
o) t 0.01
kel
w o 0 0 0
Lifespan: 0.023 - 0.037 Lifespan: 0.025 - 0.043 Lifespan: 0.032 - 0.058 Lifespan: 0.032 - 0.058
>0.04 0.08 0.06 o
g 0.06 0.04
© 0.02 0.04 L 0.02 0.05
S 0.02 :
°
w o 0 0 0
Lifespan: 0.034 - 0.060 Lifespan: 0.038 - 0.058 Lifespan: 0.038 - 0.059 Lifespan: 0.046 - 0.064
= 0.08
- 0.08 0.08 o106
£0.06 0.06 0.06
= ) 0.04
20.04 0.04 0.04
& 0.02 0.02 0.02 0.02
©
w o 0 0 0
Lifespan: 0.058 - 0.102 Lifespan: 0.067 - 0.082 Lifespan: 0.081 - 0.083 Lifespan: 0.105 - 0.108
3 0.1 01 0.15
>
g 0.1 0.1
g 0.05 0.05
@ 005 0.05
o
°
w 0 0 0 0
Lifespan: 0.151 - 0.159 Lifespan: 0.174 - 0.187 Lifespan: 0.175 - 0.178 Lifespan: 0.198 - 0.241
= 0.2
502 0.3
z 0.2
0.2
801 01
® 01 0.1
=)
o
w o 0 0 0
DSl MW DSI MW DSI MW DSl MW

Fig. 24 Lifetimes of all 20 persistent 2D cavities in the individuals (black bars) and minimally wired models (gray bars). Dashed lines indicate
the average birth and death densities of each class

@ Springer



142 J Comput Neurosci (2018) 44:115-145
Fig. 25 Lifetimes of both Lifespan: 0.104 - 0.109 Lifespan: 0.199 - 0.269
persistent 3D cavities in the | 03l M )
individuals (black bars) and = o041 = AL
minimally wired models (gray :_,; :_;
bars). Dashed lines indicate the @ @02
average birth and death densities 3 0.05 35
of each class S $0.1

© kel

i i}

0 i R 0 i .
DSI MW DSl MW

node cycle was already in existence, so either of these possi-
ble paths (but not both simultaneously) completes the larger
maroon cycle.

We see the pattern of connectivity is not often exactly
seen in all individuals, yet the large 2-dimensional cavity

Fig. 26 Recovered 1-cycle on

. . a
nine nodes. a Minimal

representatives at pp;r;, shown

in the brain (left) and as a

schematic (right). b Persistence
diagram of DSI"" and
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enclosed is present in every scan (Fig. 26¢) in the orig-
inal hemisphere, and often in the opposite hemisphere
(Fig. 26d), suggesting its importance in neural structure.
The number and pattern of persistent cycles in Fig. 26b
matches that of the minimally wired null model much more

b Persistent 2D Cavities
Caudal middle Precentral 0.25
frontal supramarginal
0.20
Superior 2
frontal 20.15
i 3
Superior (LH) < g °
Rostral frontal (LH) gO10[ Ol % 0
middle . (=] 0 0.0
frontal Middle o5} a9 ° © DSl
temporal },ﬂ Mwert
Lateral orbitofrontal Superior temporal 0
0 0.05 0.10 0.15 0.20 0.25
Birth Density
Individuals

Individuals

QOO LU0
WO LI
GG 0

OO

Similar topological cavity detected



J Comput Neurosci (2018) 44:115-145

143

Cone
point

=

Fig. 27 Subcortical regions as cone points in the brain network. A
loop (maroon, left) may be the base of a cone, where the cone point
(gray) triangulates the loop interior thus making the loop a boundary
loop. In the brain, the greater number and longevity of topological cav-
ities seen after removing subcortical nodes indicates these subcortical
regions (gray, right) may act as cone points for many cortical cycles

Coned cycle

closely than the full DSI network. This suggests first that
the cortical wiring of the brain is globally arranged as if it
was wired minimally. Yet the difference in the cortical only
and full DSI persistence diagrams also implies the subcor-
tical regions drive the reduction of homology. Knowing the
subcortical regions are highly connected and participate in
many high-dimensional cliques (Fig. 2), we conclude the
subcortical regions are acting as cone points in the brain
network (Fig. 27, left). Finally, this adds more detail to our
understanding of the global wiring of the brain, as we imag-
ine many cortical loops that are coned by sets of subcortical
regions (Fig. 27, right).
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