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Abstract

Accurate prediction of complex traits based on whole-genome data is a computational prob-
lem of paramount importance, particularly to plant and animal breeders. However, the num-
ber of genetic markers is typically orders of magnitude larger than the number of samples
(o >> n), amongst other challenges. We assessed the effectiveness of a diverse set of
state-of-the-art methods on publicly accessible real data. The most surprising finding was
that approaches with feature selection performed better than others on average, in contrast
to the expectation in the community that variable selection is mostly ineffective, i.e. that it
does not improve accuracy of prediction, in spite of p >>n. We observed superior perfor-
mance despite a somewhat simplistic approach to variable selection, possibly suggesting
an inherent robustness. This bodes well in general since the variable selection methods
usually improve interpretability without loss of prediction power. Apart from identifying a set
of benchmark data sets (including one simulated data), we also discuss the performance
analysis for each data set in terms of the input characteristics.

Introduction

Genomic selection (GS) can be viewed as a form of marker-assisted selection (MAS), where a
statistical model is trained on available genetic and phenotypic data; a genomic estimated
breeding value (GEBV) is then estimated for current or future individuals based only on their
genetic data and the trained model. The GEBV can then be used to select favorable individuals.
In quantitative genetics, EBV’s were first estimated using a linear regression model, called the
infinitesimal model, dating far back to [1]. The covariance between individuals in the popula-
tion were given by a kinship matrix traditionally estimated by pedigree information. In a semi-
nal paper, Meuwissen et al [2] showed through simulations that GEBV’s could be accurately
estimated from a marker effects model using genome wide dense marker data, marking the
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transition of quantitative genetics to genome-wide regression. The relationship between addi-
tive genetic variance of the classical quantitative genetics models and variance of marker effects
in regression models is very well expounded by [3]. In the marker effects model the phenotype
is modeled by a linear model where each marker has an additive contribution. Around the
same time, the infinitesimal model was adapted such that marker data was used to compute the
covariance between individuals, and would later be called the Genomic Best Linear Unbiased
Prediction (GBLUP). In fact, it was later shown by multiple authors that under reasonable
assumptions the GBLUP model and marker effects model (specifically rrBLUP) are identical
[3-6]. Further studies have confirmed that GS using marker effects is an accurate method for
selection, and can often outperform pedigree-based selection even for traits with low heritabil-
ity [7].

Many parametric as well as non-parametric methods have been proposed to tackle GS using
markers, e.g. see [8] for the importance of GS and an overview of some of the most well-known
methods. Moreover, the underlying problem that is at the heart of GS—prediction when the
number of samples is drastically smaller than the number of variables, i.e., “small n, large p
problem”—is certainly not unfamiliar to the statistics and machine learning communities.
Hence, most GS methods build models where either the effect of each marker is forced to be
very small or only few markers are allowed to have any effect, or some combination of both
limitations is used. For background on GS see [9, 10], and for general background on statistical
genetics see [11, 12].

One obvious goal of GS is the practical application to plant and animal breeding programs
where in most cases it is more cost effective to genotype new material and estimate GEBV’s as
opposed to a lengthy breeding program to evaluate actual phenotypes. Many empirical studies
[13, 14] help highlight the myriad of issues that must be tackled in GS, such as high versus low
heritability [15], infinitesimal versus marker effects model on mice [16], what is the reference
population (i.e. on what data is the statistical model trained) [17, 18], how to handle multiple
populations [19], the difference in generations between the reference population and the evalu-
ation population [5], and linkage disequilibrium (LD) between markers and QTL, to name but
a few. See the aptly titled work of [20] for a guide of many GS methods and on their applica-
tions for MAS. Further, [21] shows the usefulness of GS in simulated maize data. However, one
must be aware that certain GS methods may work well in some instances while performing
poorly in other. As such, an important determination of the performance of GS is the nature of
the phenotype being modeled. Complex traits—traits affected by a large number of genes—are
often the most important to researchers and breeders. On the spectrum of fewer to many genes
affecting the trait, oligogenic traits are on the former end while complex traits (polygenic) are
defined as those on the latter end. A few likely examples of complex traits include crop yield,
drought resistance, meat quality, disease resistance, and mass. Indeed, there is a general con-
sensus that most traits are influenced by very large number of markers each with small-effect
and additionally the prediction of complex traits requires concurrent consideration of large
number of markers [8, 22-24]. Additionally, it has been noted in literature that only some but
not all findings from simulations are confirmed by real data [8]. Data simulations suffer from
the inherent difficulty of having to assume some genetic architecture as well as patterns of
inheritance (such as, additive patterns) that could unduly bias the prediction models.

The goal of this analysis was first, to identify a diverse set of publicly available plant and ani-
mal real data sets that can serve as a benchmark for the evaluation of such prediction algo-
rithms. Secondly, assess the effectiveness of a diverse set of (state-of-the-art) methods,
including parametric and non-parametric models. In particular, we also included variable
selection methods in an attempt to assuage the implications of p > > n.
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We identified four publicly available data sets: Rice, Pig, Maize, and QTLMAS 2010 data.
The data sets contain both real plant and animal data as well as simulated data (for complete-
ness), with a range of population structure. The Rice dataset [25] contains 31,633 Single-Nucle-
otide Polymorphism (SNP) variants from 413 accessions of O. sativa, taken from 82 countries
and containing 34 phenotypes. From these we selected pericarp color and protein content as
there were indications each was oligogenic and polygenic respectively [25]. We evaluated the
original phenotypes as well as phenotypes corrected for population structure. The Pig data [26]
contains 52,842 SNPs on 3,534 animals and two of the five available traits were selected. The
QTLMAS data, taken from the QTLMAS 2010 Workshop [27], consists of 2,326 sequenced
individuals over five generations (FO-F4) with 20 founders, five male and 15 females, with
10,031 biallelic SNPs. Two phenotype traits were available, the first a quantitative trait and the
second a binary trait. Lastly, the Maize data [28], used for the European CornFed program,
consists of two maize diversity panels with 261 flint and dent lines, and 29,094 and 30,027
SNPs respectively. The three traits recorded were male flowering time (Tass_GDD6), plant dry
matter yield (DM_Yield), and dry matter content (DMC). See Methods section for more details
on the data sets.

The marker effects GS methods were chosen to reflect traditional as well as recent promising
methods, some taken directly from the machine learning community. The methods applied
were Bayes A, Bayes B, Bayes Cr, rrBLUP, Epistasis-rrBLUP, Elastic Net, Bayesian LASSO,
FOBA, ISIS, SVR, mRMR, and PCA FOBA and are very briefly described here. See Methods
section for more details on each method. Ridge Regression Best Linear Unbiased Predictor
(rrBLUP), Bayes A, Bayes B, and Bayes Crr are all marker effects models [2], i.e. the phenotype
is modeled by a linear model, where each marker has an additive contribution. The rrBLUP
method performs a fit similar to linear regression but also estimates the marker effects (random

variables) such that the squared-normal (|| §||3) of the marker effects is minimal, i.e. the
marker effects can all be non-zero but small overall. It is widely considered one of the best GS
methods yielding good results with low computational requirements. The Bayes A/B/Cn meth-
ods are Bayesian approaches to the marker effects model which allow for each marker’s effect
to have its own variance (Bayes A/B), and/or only some markers having non-zero effect (Bayes
B/Cn). Elastic Net [29] again is based on the marker effects model, this time fitting the model
and estimating marker effects such that their squared-normal and sum of absolute values(/;-

norm) are minimal (4|| |2 4 (1 — 2)(3_ | B, |)), with a A parameter to emphasize one norm
over the other. Both LASSO and Ridge Regression are special cases of Elastic Net. Bayesian
LASSO [30, 31], another marker effects model, is a Bayesian approach to a LASSO solution:
estimating a linear fit while minimizing the /;-norm ((2|3;])). The Forward-Backward (FoBa)
heuristic [32] uses the marker effects model and greedily picks markers (forward step) to
include in the model which minimize the squared error, then trains a model on all features and
greedily removes one feature with smallest increase of squared error (backwards step). FoBa
iterates between the forward and backwards steps towards a solution. Support Vector Regres-
sion (SVR) [33-37] attempts to model the genotype/phenotype relationship by finding a
hyperplane (high-dimensional generalization of a 3d-plane) where all the data points (marker
data) lay on or at least as close as possible to the hyperplane. The real trick being the data are
first mapped to a different high-dimensional space using a kernel, hence the four kernels stud-
ied here: linear, polynomial, radial, and sigmoid. Epistasis-rrBLUP is a method developed by
the authors which uses the rrBLUP method but in addition to the marker effects we also
include all pairwise multiplicative marker interactions, hence the term “epistasis”. With such a
large increase in the number of variables, special computational approaches based on high-per-
formance computing were developed to obtain a solution.
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Yet another consensus in the community is echoed as “overall, it seems that with long spans
of LD and relatively sparse platforms (e.g., 50,000 SNPs) variable selection may not be needed”
[8]. Therefore, we also choose three feature selection methods to test the above claim. In this
context, feature selection is the preliminary process of selecting a subset of markers on which
to train a GS model. ISIS is an Iterative form of Sure Independence Screening (ISIS) [38],
where in basic SIS a subsets of markers are selected according to their correlation to the pheno-
type and a model fit is performed (in our case rrBLUP). In ISIS, the basic SIS step is repeated,
where in subsequent steps the residuals of the rrBLUP are treated as the response variable, and
features are again selected. In Principal Component Analysis FOBA (PCA FOBA), PCA was
used transductively to select a subset of features (PCA features) and FoBa was used to fita
model. Maximum Relevancy Minimum Redundancy (mRMR) [39] is a feature selection
method which attempts to find features that are maximally relevant to the phenotype and
simultaneously the selected features are non-redundant amongst each other. After features are
selected, the rrBLUP method was used for GS on the selected features. mRMR can be viewed as
a somewhat simplistic univariate filter-based variable selection that ranks each features based
on mutual information criterion (note, however, that this univariate ranking criterion also
takes into account feature’s redundancy with respect to other features).

Each GS method was evaluated on all data using ten-fold cross validation, i.e. splitting the
data into ten evenly sized groups, training on 90%, predicting the remaining 10% data, and com-
puting the correlation of the predictions to the given phenotype values. The square of Person’s
correlation of the predicted versus the given phenotypes is called the coefficient of determination
and denoted r* below. Additionally we performed a round of training and testing on all available
data. In the following we present an analysis of the results and discuss possible reasons for the
performance of the GS methods with the hope to guide future researchers and perhaps breeders.

Materials and Methods
Data Sets

Three empirical data sets and one simulated data set from recent publications were identified
as benchmark datasets for this problem.

Rice. The asian rice—Oryza sativa (O. sativa)—dataset was taken from the supplementary
material in [25]. This dataset contains 44,100 SNP variants from 413 accessions of O. sativa,
taken from 82 countries and containing 34 phenotypes. The 31,663 tagging SNPs derived from
the OryzaSNP project as described in the Method section of [25] were used for the genomic
selection study here. Among the 34 phenotypes evaluated, only two phenotypes—pericarp
color and protein content—were chosen for testing. The protein content phenotype was selected
because the associated GWAS p-value plots (supplementary material [25]) indicated a large
number of influential SNPS. In contrast, the pericarp color phenotype was selected as its
GWAS p-value plots indicated only a few influential SNPs. Moreover, each trait seemed to
have separate genetic mechanisms as there was a correlation of only -0.11 between the two phe-
notypes. Additionally, monomorphic markers and markers with call rate < 10% were removed
for the genomic selection study here, the phenotypes were corrected for populations structure
by regressing on a PCA model of the population structure. GS methods in the study were per-
formed on the original phenotypes as well as those corrected for population structure. Missing
genotype data was imputed using fastPHASE [40].

Pig. The Pig dataset—taken from [26]—is a collection data on male and female pigs born
since 2000 consists of 3,534 animals from a single PIC nucleus pig line yielding 52,842 SNPs
with five measured traits (phenotypes). Only traits 2 and 4 were randomly selected for study
here, each a representative of the two types of traits available. In [26], the genotypes were
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sequenced from the Illumina PorcineSNP60 chip and full pedigree information was available,
which we did not use in this study. In the original study, trait 2 was rescaled by a weighted
mean of corrected progeny phenotypes, whereas trait 4 was corrected for environmental factors
such as year of birth and location. Additionally, genotypes were filtered for minor allele fre-
quency less than 0.001 and with missing genotypes less than 10%. The original study used
Alphalmpute to impute any missing data [41]. For our study we used the data as described
above which was given in the supplemental data of the original study [26].

QTLMAS. QTLMAS dataset was taken from the QTL-MAS Workshop, which was held on
May 17-18, 2010 in Poznan Poland [27]. This dataset consists of 3,226 individuals over five gen-
erations (FO-F4) with 20 founders, five male and 15 females. There were two phenotype traits, the
first a quantitative trait and the second a binary trait. Note, however, that epistasis was simulated
only for Trait 1 but not for Trait 2 in this dataset. Only the first four generations (2,326 individu-
als) had phenotype records. The genome is approximately 500 million bp with five chromosomes,
each 100 million bp. In total, each individual was genotyped for 10,031 biallelic SNPs.

Maize. Maize dataset was taken from [28], which consists of two maize diversity panels
with 300 flint and 300 dent lines used for the European CornFed program. This set of lines was
aggregated from at least seven sources with the intent of covering “European and American
diversity of interest for temperate climate conditions.” After quality control, 261 lines from
flint and 261 lines from the dent panel were retained for analysis. Both flint and dent lines were
crossed with a tester from an opposite heterotic pool and evaluated for flowering time and bio-
mass production in two adjacent trials in five locations. The three traits recorded were male
flowering time (Tass_GDD®6), plant dry matter yield (DM_Yield), and dry matter content
(DMC). The two panels, flint and dent, were genotyped using a 50k Illumina SNP array, which
after removing SNPs with high rate of missing markers and high average heterozygosity,
yielded 29,094 and 30,027 SNPs respectively.

Evaluation of Genomic Selection

Each genomic selection method was evaluated on all four datasets (Rice, Pig, QTLMAS, and
Maize) using 10-fold cross-validation and global predictive ability. The 10-fold cross-validation
(10CV) method is the technique of splitting, as close as possible, the samples (individuals) of
the dataset into ten evenly sized sets called folds. Then, nine of the folds are used to train the
genomic selection model and the remaining fold is used to test the predictive ability of the
trained model. This procedure is repeated for all ten possible ways of choosing nine training
folds and one testing fold. For each of the ten cross validations, the ten predicted phenotype
vectors are concatenated and Pearson’s coefficient of correlation, denoted by r, is evaluated
between the vector of all predictions and the vector of the ground truth phenotypes. We then
computed the signed 1, i.e. r* times -1 if the correlation is negative, so that the sign of the corre-
lation is preserved; we will slightly abuse the terminology, and call this score simply 7%, or the
coefficient of determination, assuming by default that it is always signed. For each dataset, and
each phenotype, the folds were pre-computed and every GS method used the same folds. This
ensures that the predictability results are comparable across different GS methods.

Note that we treated the binary trait in QTLMAS similarly to the rest of the traits which
were quantitative, i.e. we computed the r* metric directly between the actual binary trait and
the real-valued predictions made by our methods. Applying binary thresholding to the latter
can be used to obtain the prediction for a binary trait. In general, using binary classifiers instead
of thresholded regression techniques for binary trait prediction can sometimes (though not
always) yield better classification accuracy; however, the focus of current study was rather on
quantitative traits and 7* metric.
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For global predictability, the GS model was trained on all available data and the coefficient
of correlation was taken between the predicted phenotype data and the actual ground truth
phenotype data, also denoted .

Some of the GS methods presented in this paper rely on feature selection; that is, these
methods utilize a reduced set of markers to build/train the model. For these methods, we com-
pute feature selection stability during 10CV. Feature selection stability is computed as follows.
For each of the ten folds, the selected features were recorded. Then, the ratio of the number of
features selected during at least k = 10, 9, . . . folds versus the total number of features selected
across 10CV was computed. That is, if the ratio was 1.0 for k = 10, then all the features selected
during the entire 10CV process were selected in each of the 10 training-testing iterations; if the
ratio was 0.8 for k = 7, then 80% of the features were selected in at least (some) 7 folds out of
10. Note that we count the number of times each feature is selected across the k folds separately
for each feature, e.g., if one considers two features, each occurring in 8 out of 10 folds, those 8
folds are not necessarily the same (in other words, this pair of features does not necessarily
occur in 8 out of 10 folds).

Heritability of a trait is interpreted by assuming a natural statistical model of the contribu-
tion of the genotype and environment to the trait: Phenotype(Y) = Genotype(G) + Environ-
ment(E). The broad sense heritability is defined as the ratio of the genetic and phenotype
variances, 05 /03. The genetic variance can further be divided into its additive(¢2), dominance,
and epistatic effects. The narrow sense heritability is defined as the ratio of the additive and
phenotype variances, 62 /a%. See [42, 43]. In this study, we computed the narrow sense herita-
bility. A GBLUP model and the restricted maximum likelihood method were used to estimate
the additive genetic variance ¢ and phenotype variance o>,

Genomic Selection Methods

We give a brief overview of the GS selection methods used in the analysis of the four empirical
datasets. We label the fifteen methods BayesA, BayesB, BayesCpi, rrBLUP, Epistasis rrBLUP,
Elastic net, Bayesian LASSO, FOBA, ISIS, SVR Linear, SVR Polynomial, SVR Radial, SVR Sig-
moid, mRMR, and PCA-FOBA. The order of the methods was chosen to roughly match their
similarity to one another if possible.

Bayes A, Bayes B, Bayes C (Parametric). Consider the typical situation for genomic
selection, where we have the phenotype y € R, and the genotype data x € R"", The founda-
tional model for Bayes A, Bayes B, and Bayes Cr can be described by

Y =W+ ijkﬁkék + e, (1)
=1

where x;; is the kth marker for individual j. Each method differs on the underlying assumptions
of B, 8, and the error e. In what follows, let oik be the variance of f, 62 be the variance of the

error e, and y is the fixed effect. In practice, each method is solved using MCMC, and, more
specifically, Gibbs Sampling in case of Bayes A.

Bayes A Assumes & = 1 Vk, B, ~ N(0, 07 ) Vk,and e, ~ N(0, 7). That is, assume each
marker k has an effect 8, which has its own variance aik.

Bayes B Assumes 8; ~ Bernoulli(m) Vk, 7 fixed,

{ﬁk ~N(0,0%) if 6, =1
B, =0 else

Vk,
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and e; ~ N(0, ¢2). That is, assume each marker k has a fixed probability 7 of being non-zero. If
marker k is non-zero then assume it has an effect g with variance o7 . Bayes A and B first
appeared in [2].
Bayes Crr 6, ~ Bernoulli(n) Vk, 7 random,
{ B, ~N(0,6%) if 5, =1

p.=0 else

vk,

and e; ~ N(0, 02). That is, assume each marker k has probability 7 of being non-zero. If
marker k is non-zero then assume it has an effect f; with variance 2. Note, there is only a sin-
gle marker variance, 62, for the entire model. Moreover, the probability 7 of non-zero marker
effect is random. Bayes Cr first appeared in [44].

rrBLUP (Parametric)

Ridge regression BLUP can be described by interpreting Eq (1) as a mixed model equation.
Assume &, = 1 for all k, y is the fixed effect, and  and e are the random effects. Moreover
assume f§, ~ N(0,¢2) for all kand e; ~ N(0, ¢2). Given data y and x one can use maximum
likelihood or restricted maximum likelihood to estimate 2 and ¢2 and solve for y, S, and e
using Henderson’s mixed model equations. This approach to genomic selection was originally
given in [2]. rrBLUP is equivalent to ridge regression (see below), if one takes A = 62 /02, and
was used in genomic selection in [45]. More interestingly, rrBLUP is theoretically equivalent to
GBLUP [3-5]. The R package rrBLUP [46] was used to perform rrBLUP analysis labeled
‘rrBLUP’ below.

Epistasis rrBLUP (Parametric)

Epistasis is the interaction of two or more SNP’s which effect the phenotype of interest. It is the
departure of the sum of the marginal effects of each SNP alone. We explored the prediction
accuracy of modeling all possible pairwise epistasis using the rrBLUP model. That is, the origi-
nal set of k SNP features were augmented with an addition k(k — 1)/2 features where each addi-
tion feature was given by the multiplication of all possible pairs of SNP feature. The set of
original features and the pairwise epistais features were then modeled exactly as in Eq (1) and
rrBLUP method was used to solve. However, the rrBLUP R package was unable to handle such
a large input. Therefore, custom software was written to perform rrBLUP, specifically, a spe-
cialized parallel linear algebra algorithm to perform the underlying operations of rrBLUP.

Elastic Net, LASSO, and Ridge Regression (Non-Parametric)

Consider the typical situation for linear regression, where we have the training sety € R’,
x € R, In a standard linear regression, we wish to find parameters f3,, 8 such that the sum of
square residuals, > | (v, — B, — xiTﬁ)Q, is minimized.

The LASSO approach [47, 48] uses an additional /; penalty which aims to achieve a sparse
solution. This idea has even been extended to group LASSO where variable are included or
excluded in groups [49, 50]. Alternatively, ridge regression (or Tikhonov regularization) [51]
uses an I, penalty which is ideal for the case when many predictors have non-zero coefficients.
Elastic Net (EN) uses both an [; and I, penalty with a trade off parameter between the two [29].
Consequently, LASSO and ridge regression can be seen as special cases of Elastic Net. See [52]
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and references therein. The Elastic Net problem can be stated as

(Bo, B)eR"

1< )
min ﬁ; (y,— By —xB)* + 2P, (B) |,
where
1
P,B)= (1~ a)§ | B+l B 1,

Thus, a = 1 corresponds to LASSO and o = 0 corresponds to ridge. The Elastic Net (with non-
zero ) can be easily extended for genome-wide association studies by use of the non-zero 8
parameters selected when training the data. That is, the /; penalty achieves a sparse solution,
and in turn signals which variables contribute most when training on the data.

Let us now assume that each column-vector x; . is centered to have zero mean (thus, no
need for the intercept coefficient ;) and standardized to have unit variance. Another way to
write the Elastic Net problem is to denote A, = 2[Aa and 1, = IA(1 — a), then Eq (2) is equivalent
to

1
min S (x84l By + 2lB | G)
i=1

(ﬂ)E]R'H 1

Note that the Elastic Net avoids some drawbacks of LASSO, such as limitations on the number
of nonzero coefficients (LASSO cannot select more nonzeros than the number of samples), and
a tendency to pick a single representative from a group of highly correlated (and thus jointly
relevant or irrelevant) variables—see [29, 53] for more details. Namely, /; penalty on the regres-
sion coefficients enforces sparsity by “shrinking” some coefficients to zero, while the I, penalty
removes the limitations on the number of nonzeros and enforces grouping effect, i.e. highly
correlated predictors are assigned similar coefficients [29]. This can improve the interpretabil-
ity of the model, for example, by discovering a group of relevant SNPs instead of just single rep-
resentative from the group.

For Elastic Net, we use publicly available Matlab code [54] that implements the LARS-EN
algorithm of [29]. It takes as an input the grouping parameter 1, and the sparsity parameter
that specifies the desired number of selected predictors. Since this number corresponds to a
unique value of 1,, as shown in [53], we will slightly abuse the notation, and denote the sparsity
parameter as A;, while always interpreting it as the number of selected predictors.

Bayesian LASSO (Parametric)

Via the Bayesian LASSO [30, 31], the LASSO estimate for linear regression parameters can be
interpreted as a Bayesian posterior mode estimate when the regression parameters have inde-
pendent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possi-
ble using an expanded hierarchy with conjugate normal priors for the regression parameters
and independent exponential priors on their variances. A connection with the inverse-Gauss-
ian distribution provides tractable full conditional distributions. Eq (1) can also be used to

describe Bayesian LASSO. One assumes 6 = 1, f, ~ N(0, t7), where P(t}) = %exp(—ﬂh2 | 2 1)
for all k (see Eq 3 in [30]).

FoBa (Non-Parametric)

Two heuristics that are widely used in practice are forward and backward greedy algorithms.
The Forward greedy algorithm (a.k.a. Orthogonal Matching Pursuit (OMP)) consists of
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greedily picking an additional feature at every step to aggressively reduce the squared error.
The backward greedy algorithm trains a full model with all the features, and greedily remove
one feature (with the smallest increase of squared error) at a time. Features are removed greed-
ily if their removal does not substantially increase the cost function (i.e. the squared error).
Backward steps aim at correcting for mistakes made in earlier forward steps. The backward
algorithm can be computationally costly since it starts with all the features and has no theoreti-
cal guarantees of success. The FoBa algorithm is a combination of the two, which is based on
the forward greedy algorithm and takes backward steps adaptively whenever beneficial. This
algorithm is superior to OMP as it can correct mistakes made in earlier steps. It also enjoys the-
oretical guarantees of correctness. See [32] for more details.

Support Vector Regression (Non-Parametric)

Support vector machines (SVMs) are a tool in statistics and machine learning for the task of
supervised learning used for either classification or regression [33-37]. Here we are interested
in the latter case. Following [55], given a training set (x;, y;),i =1, ..., where x; € R" and

¥; € R, the goal of £-SV regression (SVR) is to find a “flat” function f(x) such that f(x) is at
most £ deviation from the targets y;, i.e. |f(x;) — y;| < & Vi. In SVR one assumes f(x) is a hyper-
plane (a higher dimensional extension of a plane), that is, f{x) = (w, x) + b where (-) denotes
the dot-product and “flatness” means one seeks a small ||w||. This goal can be visualized by
imagining trying to find a hyperplane in R" with £ thickness such that all the data x; lie in the
£-thickened hyperplane. In most cases this is too strict, so each individual i is allowed to violate
the e-thickened hyperplane by &;, albeit with a penalty. Lastly, a kernel trick is typically per-
formed where the original data is mapped into another space, often to assist with non-linear
data. This entire task is formulated into an optimization framework and training an SVR
requires solving

1 :
min yW WO ¢

subject to  y,(W'd(x,)+b) >1—-¢, —¢, )

£>0.
The data vectors x; are mapped to another space via the function ¢, and SVM attempts to fit
the data in this higher dimensional space. The choice of ¢, or, rather, the associated function K
(x, ') = ¢p(x)¢(x') referred to as the kernel function and has a large impact on the performance
of the regression. Note that for many commonly used types of kernels, the function ¢ maps
into an infinite-dimensional feature space, and is not specified explicitly; instead, it is implicitly

given by the corresponding kernel. The de-facto standard SVM software 1ibsvm [56] pro-
vides four kernels:

Linear : u'v,
Polynomial : (u'v+r), y>0,
Radial : exp(=yllu—v ), y>0,
Sigmoid : tanh(yu'v +r).

Feature Selection Methods

We discuss now the genomic selection methods which use a preliminary round of feature
selection.
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Minimum Redundancy Maximum Relevance (Non-Parametric)

A popular criterion for feature selection is Max-Relevance and Min-Redundancy (mRMR) [39].
In fact, several of the authors have extended mRMR to work in a transductive manner and
showed it can be very accurate at GS [57]. Max-Relevance approach is to search features satis-
tying the Eq (5), which measures the mean value of all mutual information values between indi-
vidual feature x; and class variable c.

max D(S,c),D = ‘1@21(9@'; c) (5)

BASN

where S is the selected feature set, I(x; ¢) is the mutual information between x; and c.

However, feature selection just based on max-relevance tends to select features that have
high redundancy, namely the correlation of the selected features tend to be big. If we remove
some of the features that are highly correlated with other features, the respective class-discrimi-
native power would not change much. Therefore, Min-Redundancy is proposed to select mutu-
ally exclusive features:

min R(S),R=— 3" 1(x, x) (6)

|S‘2 X% €S

An operator ®(D, R) is defined to combine D and R from the above two equations where D
and R are optimized at the same time:

max ®(D,R),® =D —R (7)

An incremental search algorithm is proposed to effectively find the near-optimal features
defined by ®@(.). The incremental algorithm works as the following: Assuming feature set S,,,_;
is already generated, which contains m — 1 features. The m-th feature needs to be selected from
the set X — S,,,_;, which maximizes the following objective function:

1
Max, cx—s, I(xﬁc) Tm—1 Z I(xﬁxi) (8)

Xi€Sm,_1

The computational complexity of every single step in this algorithm is O(|S| x M) where |S] is
the size of the current target feature set, M is the total number of features. Assuming the target
feature set is eventually of size N, the complexity of this algorithm is O(3"} | i x M) =

O(%2 x M).

For genomic selection we combined mRMR with rrBLUP. That is, we first perform a around
of feature selection using mRMR. The target size of the selected feature set is determined using
cross-validation. That is, we further divided the training set into 10 folds and conducted an
internal 10CV to determine the target size. We vary the target size and compute the prediction
accuracy for each target size and select the one with the best prediction accuracy. Note, we con-
duct mRMR only on the training folds in order to select a subset of features and rrBLUP is
trained on these selected features. After the top features are selected we then build a GS model
using rrBLUP only on the top features. For the prediction of new phenotypes we only use the
top features identified in the training round and the previously trained rrBLUP model.
Throughout the remainder of the article we will refer to the GS method where we combine
mRMR and rrBLUP simply as mRMR.
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Mutual Information Estimation

For two given vectors X, Y, their mutual information is computed as follows:

=22 plyleg (p >p<i>) ®)

yeY xeX

where p(x) is the marginal probability p(X = x) and p(x, y) is the joint probability p(X =x, Y =
y). For vectors with discreet values, we can easily compute p(x), p(y), p(x, ) by considering the
frequency of the corresponding values. For continuous values, the summation in the above for-
mula should be replaced with integral, as follows:

I(X,Y)  px.y)log I N (10)
) )

One advantage of the mutual information based method is that in our problem setting, the
genotypes are integers with possible value from the set {0, 1, 2}. Therefore, we can use Eq (9) to
compute the redundancies among them. We do not need any discretization and thus the esti-
mation is accurate. The phenotypes, or genetic traits, have continuous values. When we com-
pute the relevance between phenotype and genotype, we can approximate Eq (10) with Eq (9)
by rounding the continuous phenotype values into integers. However, when the phenotype has
values very close to each other for different samples, rounding the values may introduce large
error. Instead, we perform discretization of the phenotype value. We first compute the z-score
of phenotype value for each sample as =*, where y is the mean and o is the standard deviation.
Then, we assign discretized values to samples according to their z-score using the following for-

mula:
-1 if z—score < —1
discretized value = 1 if z—score > 1 (11)
0 otherwise

PCA FOBA (Non-Parametric)

PCA (Principle Component Analysis) FOBA is a method where PCA is applied first in a trans-
ductive manner then FOBA is applied to accomplish the regression task. As PCA is only depen-
dent on the features, all the training data and unlabeled test data are included. As the number
of features is much more than the number of samples, the transductive PCA takes as many fea-
tures as samples. FOBA is then conducted on the reduced feature set.

ISIS (Non-Parametric)

ISIS is the iterative form of the Sure Independence Screening (SIS) method developed by [38].
The basic SIS procedure selects a subset of predictors/SNPs according to their correlation with
the response. Specifically, given the scaled predictor/SNP matrix X, the vector w = X'y is com-
puted. The top T predictors/SNPs with largest component-wise magnitude |w;| are selected.
For prediction, ridge regression is subsequently applied, using only the subset of predictors/
SNPs selected by SIS. For the tests performed in this analysis, we choose T' = 1000.

ISIS extend SIS as follows. Given a first round of SIS followed with an estimation procedure
such as ridge regression, SIS is applied again treating the residuals of the ridge regression as if
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Rice Pig QTLMAS Maize: Flint Maize: Dent

Trait 2| Trait 4 |Trait 1 |Trait 2 | TASS | DMC PM Tass | DMC I?M
Yield Yield

Pericarp color
Pericarp color
Corrected
Protein content
Corrected

o|[Protein content

[y
w

#Ind 4 413 4 413| 3534 3534| 2100 2100 261 261 261| 261 261 261
# Markers | 36901 36901 36901 3690152843 5284310000 10000(29094 29094 29094 (30027 30027 30027
Heritability 1.00 100 0.63 0.62 027 0.35| 044 027| 095 064 035| 095 093 0.79|Min Avg Med Max STDEV

BayesA 0.38 1 0.24 | 0.16 | 0.09 023 | 022 038 019 047 0.28 | 0.06 059 056  0.30( 046 0.84 | 0.83  0.98 0.91
BayesB 0.27 1013 1 0.17 | 010 ' 0.23 | 0.22/| 039 0.19 047 0.29 | 0.06 ' 0.60 0.56  032| 033 0.84 0.88  1.00/ 1.07
BayesCpi 042 022 018 010 024 022 040 019 047 030 005 059 056 032| 046 0.87 0.89 1.00 0.98
rrBLUP 0.43 [ 0.27 [ 018 | 0.02 024 022  0.36  0.19 047 030 0.06 059 056 032 015 083 0.88 0.99 | 1.20

Epistasis rrBLJ0.49 | 0.33 | ' 0.11 | 0.03  0.23 | 0.22 | 038 0.19 ' 048  0.31  0.05 055/ 055 032 0.23/ 083/ 089/ 099  1.18
Elastic Net 054 040 016 008 021 019 037 019 047 026 003 062 056  030| 034 085/ 086/ 1.00  1.12

Blasso 0391 0.27 1 017 0.0 024 022 038 019 047 030  0.06 059 056  032| 046 0.87  0.89 0.99  0.93
FOBA 03310141 016 0057 0.17 [ 013 037 ' 0.17 [ 0.26 | 0.11 | 0.03 © 0.34 0.32 | 0.25|0.33 | 0.58 [ 0.55 " 0.91 || 0.80
ISIS 021 0.04 0.00 0.02 005 0070197 007 0.02 0.00/ 002 008 021 0.09( 000 0.22 0.18 048 0.63

SVR Linear 0411 025/ 0127 008 1 /010 0.10 0.02 0.027 048 0.24 | 0.04 [ 057 055 0.31| 0.05[ 0.60 [ 0.60 " 1.00 ' 1.37
SVR Polynom|0.45 | 0.31 | 0.11 /' 0.05 | 0.20 | 0.15 " 0.12 | 0.13 " 0.28 | 0.14 | 0.09 | ' 0.22 | 0.30 /" 0.15|7°0.29 | 0.59 [ 0.52 | 1.00 ' 1.08
SVR Radial 0431 023 0217 014 024 021 015 0.16 045 0.27 | 0.08 | 0.43 | 050 ' 0.29( 037 | 0.82 [ 0.85 | 1.00 111
SVR Sigmoid | 0.12 0.02 | 0.15 [ 0.08 | 0.20 | 0.19 | 0.10 | 0.10 = 0.47 | 0.30 | 0.07 | 0.57 | 0.57 | 0.33| 0.05 | 0.68 | 0.82 | 1.00 1.47
mRMR 048 025 020 0.2 024 022 037 018 047 030 0.06 060 057 037 045 090 092 1.00 1.02
PCA-FOBA 0.38 1 ' 0.21 [ 0.16 | 0.11 ' 019 0.11 " 0.28 ' 0.12 1 036 | 034 0.00  0.52 0.54 | 0.31) 0.03  0.70 | 0.74 = 1.00 | 1.24

Min 0.12 0.02 0.00 0.02| 0.05 0.07| 0.02 0.02| 0.02 0.00 0.00f 008 0.21 0.09
Average 038 0.22 015 0.08] 020 0.18| 0.28 0.15| 041 0.25 0.05| 050 0.50 0.29
Median 041 024 016 0.08| 023 0.21| 037 0.18( 047 0.29 0.06|f 057 056 031
Max 0.54 040 0.21 0.4 024 0.22| 040 0.19| 048 034 0.09| 062 057 037
STDEV 0.11 010 0.05 0.04] 005 0.05| 0.13 0.05| 0.13 0.09 0.02f 0.16 0.12 0.07

Fig 1. Coefficient of determination (%) of fifteen GS methods on Rice, Pig, QTLMAS, and Maize data under 10-fold cross-validation (10CV). The
same folds were used across each data set. Each cell contains the numeric r* score. Additionally, for each dataset (vertical column) bar plots are shown. Bar
plots are normalized by the minimum and maximum for each data set. Thus, the best (max) r* for a data set will have a full bar while the worst (min) /> will
have an empty bar. Summarized to the right are the minimum, average, median, maximum, and the standard deviation of the normalized r? scores.
Summarized below are the minimum, average, median, maximum, and the standard deviation of the r* scores for each data set. The number of individuals
(#Ind), number of markers (#Markers), and the heritability are provided for each data set.

doi:10.1371/journal.pone.0138903.g001

they were the response. Then ridge regression is reapplied using the union of predictors/SNPs
selected in the previous iterations. The procedure is then repeated.

As reflected in its name, SIS enjoys the theoretical guarantee of sure screening, namely with
asymptotic probability one, SIS will not discard any relevant predictors.

Results

Fig 1 shows the coefficient of determination r* for the fourteen individual datasets and fifteen
genomic selection methods under 10-fold cross-validation. Additionally, Fig 2 visualizes the
results from Fig 1 in a form of a scatter plot. Finally, Fig 3 shows a bar plot of the average nor-
malized r°, for each of the methods—namely, the results from column Avg in Fig 1.

When comparing the overall quality of different methods across all datasets, measured by
their normalized average r°, as shown in Fig 3, we see that mRMR is a clear winner among all
the methods we tried, with the highest normalized average 7* of 0.90. Moreover, as we can see in
Fig 1, mRMR also has the highest median (0.92), and even its worst performance (minimum of
0.45) is among the best worst-case performances across all methods. When looking at the
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Normalized Accuracies (r2) of Genomic Selection Methods

PLOS | one

@.

o
N
=
o —
> K] 2
@ E_m <
P = < ©
5 o8 §sEE F ]
QL nz cC5 O O
OO0 2G5 o S5fdmoel =
888°58% S praresa =
1 n n n
FEEMoCSO2Z>S>>>E0 o
non twwonrLuonnnn Ea 5
Eqeo0000HmI ko e o
o
|||||||||||||||||||||||||||||| L
) - o
o < ~ PIBIA'NQ U8 8ziep S g
0. o
[7/]
.................... oo g : . -
.............................. ; ] ouios s
& < 0 R}
'y : - ssviwegezen O 3 ] s
* .0 c _—
.............................. g 2 I souss ws
£ 5]
5 * oo (0]
- < T eeewwns
* ~ = —
S, < JJowwen  F8 < D s
................ «____F___ ® 9 2 _ | angu
* <« [~ SSvLli S szie E o 5
gt P R
.............................. k7 S <
*- <5 L zeirsvwiLo 5 3 8
. 23 s D o
.............................. )
PR Jour 88 5 I -
. ¢t ~ LUeIL'SVYINTLO E =2 z
¢ g8 § I v
.................... PO T 22 s
0 | | . . T T T T T T T T T T 1
*o < - veiLbid o8 S @ ©® N © ®w ¥ o o = o
* ir © -~ © ©o © ©o © ©o o o o o
|||||||||||||||||||||||||||||| ]
X o Koeinooy ZI|eulo
M . L Zyei1Big e 2 (@) v pozijeuoN
°m s
g SQ
MM = - Pa)0a.1100 ' JUsjU0D uIR)0Id w e
) oz
|||||||||||||||||||||||||||||| (9
; o=
. (1]
o“ o < [ u8auooulelold &3 m
.............................. T8 2
[ ] L ] < g 7 m
oloo P " | pe108110)10]09°diesuad .m, m =]
o - = S
|||||||||||||||||||||||||||||| o © >
e % ‘o P . |- Jojoo dieouad m...m a
. < 2o 2
|||||||||||||||||||||||||||||| ..nuw - 5
T T T T T T T 5 &
© 0 < ™ N - o a2 5
S ©o o ©o o o o ) S| @
AN @ m
Aoeinooy pezijew.o O 5
() v/ Pazi[eulioN £ B

13/22

Fig 3. Barplot of mean normalized (See Caption in Fig 1) coefficient of determination (%) of fifteen GS
methods where the mean was taken over the Rice, Pig, QTLMAS, and Maize data under 10-fold cross-

validation (10CV). The same folds were used across each data set.

doi:10.1371/journal.pone.0138903.g003
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individual datasets, corresponding to columns in Figs 1 and 2, mRMR is the top performer, or
among several top-performers, on 8 out of 14 datasets (see the columns 3,4,5,6,8,9, 13,14), and
appears well above average, and quite close to the top, on almost all the remaining datasets.
These results suggest that, contrary to popular belief, univariate variable selection methods
such as mRMR can be well-suited for genomic selection problems. We also note that the Elastic
Net, which is a form of embedded variable selection, also performs quite well, even on complex
traits, as we show below. Moreover, on the Rice Pericarp color (normal and corrected), the
Elastic Net outperforms all other methods. This can be possibly explained by the fact that a rel-
atively few input variables are believed to be responsible for this trait, and thus sparse regres-
sion models are well-suited for modeling such data (for more detail, see the Discussion section
below).

Next, as it can be clearly seen in Fig 3, as well as in the Avg column in Fig 1, there is a large
cluster of “second-best” methods, listed here in the decreasing order based on their average
performance (normalized °): BayesCpi, Bayesian LASSO (Blasso), Elastic Net, BayesA, BayesB,
rrBLUP, Epistasis rrBLUP, and SVR Radial. Note that the average performance of those meth-
ods ranges from 0.82 for SVR Radial to 0.87 for Blasso and BayesCpi, as compared to the supe-
rior 0.90 average performance of mRMR. On the other hand, the performance within this
cluster of methods is considerably better than the best performance of 0.70 for the next best
method, PCA-FOBA, as it is evident from Fig 3. Similarly, their median performance ranges
from 0.83 for BayesA to 0.89 for Epistasis rrBLUP, as compared to 0.92 median for mRMR.

Unlike the “second-best” cluster of methods, quite close to the winning performance of
mRMR, the “third-best” cluster that includes PCA-FOBA, SVR Sigmoid, SVR Linear, SVR
Polynomial and FOBA algorithms, performs considerably worse than the previous group, as
we can see from Fig 3. The average performance in this cluster ranges from 0.58 for FOBA to
0.70 for PCA-FOBA, and the median performance ranges from 0.52 for SVR Polynomial to
0.74 for PCA-FOBA, as compared to the lowest median of 0.83 in the second-best cluster. One
likely explanation is these models show evidence of overfitting, looking at the difference of
coefficients of determination computed using 10CV versus training on the entire data set
(global, as shown in Fig 4): see Fig 5 for details.

It is interesting to note that not only SVR Linear, but also SVR Polynomial, and to a some-
what smaller extent SVR Sigmoid, fail to capture predictive structure in the data, while a highly
nonlinear SVR Radial performs much better. While we may not be able to fully explain this
phenomenon, we speculate that the discrete nature of the input variables may result into such
nonlinear structure and/or the Gaussian structure of the Radial kernel more closely matches
the data being modeled.

We note that ISIS was completely dominated by the other techniques—its average perfor-
mance of 0.22 is significantly lower than even the worst performance of the third-best cluster
(see Fig 3). Moreover, it was always the least accurate method, for all data sets: as its normalized
r* (blue bar in Fig 1) is the lowest among all methods, for all columns in Fig 1. ISIS is somewhat
similar to mRMR, except that it does not minimize redundancy within iterations. However, in
contrast to mRMR, ISIS is fully supervised. Though ISIS is meant to alleviate the failure of
“plain vanilla” SIS with respect to correlated features, ISIS still requires very strong assump-
tions on the structure of the predictors. ISIS can be viewed as a form of matching pursuit or a
greedy algorithm for variable selection [58], and requires stringent conditions on the predic-
tors, such as the so-called restricted isometry property, which are actually stricter than those
for LASSO. Also, if T'is set to 1, then ISIS is similar to a matching pursuit method; namely, it
becomes closer to FOBA, though worse, in fact, since there are no backward steps. As we have
already seen above, FOBA’s performance is already somewhat poor, which partially explains
the failure of ISIS, which is close to a suboptimal variant of FOBA (without the backward step).
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Rice Pig QTLMAS Maize: Flint Maize: Dent

Trait 2| Trait 4 |Trait 1 |Trait 2 | TASS | DMC PM Tass | DMC I?M
Yield Yield

Pericarp color
Pericarp color
Corrected
Protein content
Corrected

l|[Protein content

#Ind 4 413 4 413| 3534| 3534| 2100 2100 261 261 261| 261 261 261
# Markers | 36901 36901 36901 3690152843 (5284310000 10000 (29094 29094 29094 (30027 30027 30027
Heritability 1.00 100 0.63 0.62 0.27| 0.35| 044 0.27| 095 064 035| 095 093 0.79|Min Avg Med Max STDEV

[ury
w

BayesA 1.00 100  0.81 ' 0.80  0.59 | 0.64 | 058 040 1.00  0.96 0.86  1.00 1.00 0.99( 0.41 0.84 [ 0.93 | 1.00  6.81
BayesB 100/ 1.00 " 0.75 [ 0.74 | 0.53 | 0.58 | 0.56 | 0.37 | 1.00 | 0.93 | 0.79 | '1.00 | 1.00 = 0.98( 0.38 | 0.81 0.88 | 1.00 | 6.85
BayesCpi 1.00 © 1.00 ' 0.71 " 0.71 7 0.51 [ 0.55 [ 0.53 [/ 0.35 [ 1.00 " 0.90 | 0.76 | 1.00 | 1.00 = 0.96( 10.36 | 0.79 [ 0.85 | 1.00 | 6.86
rrBLUP 1.00 100/ 0.71 0.337.0.51 0 055/ 054 036 1.00 " 091 0.77  1.00 | 1.00 = 0.96( 0.33 1 0.77 | 0.85 [ 1.00 | 6.95

Epistasis rrBLJ.0.96 | 0.46 | 0.36 | |0.56 | 0.74 | 0.74 | 0.61 [ 041 1.00  1.00 0.99  1.00 0.5  0.86( 0.41 0.77 [ 0.80 | 1.00 ' 7.00
Elastic Net 099 099 0557 0557 05070471 043 027 085" 0.79 099 1.00 1.00  0.79|" 0.28 [ 0.73 [ 0.79 | 1.00 | 7.03

Blasso 100 1.00 7 0.74 | 0.73 | /0.51 | 0.55 [ 0.55 | 0.36 [ 1.00 ' 0.91 [ 0.79 [ '1.00 | 1.00 = 0.96( '0.36 | 0.80 | 0.87 \ 1.00 | 6.85
FOBA 0.99 | 0.76 | 0.84 | 091 ' 049 043 0557 0397 1.00  1.00 0.99 1.00 0.99 | 0.99| 0.40 0.82 | 0.96 ' 1.00 | 6.95
ISIS 096 | 075 071 099 053 046 067 056 0.29| 076 0.76  1.00 0.99 | 1.00| 0.29 | 0.76 | 0.76 | 1.00 | 6.91

SVR Linear 075 099 0.89 099 099 100 098 09 099 099 099 099 099 099 075 098 100 1.00 6.41
SVR Polynom|0.59 | 0.83 | |0.44 [ 0.57 | 0.85 | 0.70 | 10.49 | 0.85  0.95 | 094 | 092 096 088 0.78| 0.49 | 0.78 | 0.84 | 0.96 || 6.50
SVR Radial 0.48 [ 0.62 | 0.46 | 0.66 | 085 045 038 0.60  0.94 | 0.96 | 091 094 088 0.79(°0.39 [ 0.72 [ 0.73 [ 0.96 | 16.62
SVR Sigmoid| 0.29 018 0.20 039 039 0.18 026 0.20 091/ 090/ 081 088 078 0.63| 018 050 039 091 6.56
mRMR 0.71 7091 0517055 032 026/ 048 029 0.90 0.74 0.73 7 .094 [ 090 | 0.86| 0.26 | 0.66 | 0.72 [0.94 | 6.59
PCA-FOBA 0.89 | 0.67 ° 0.70 ° 0.79 " 0391 0321 048 036 096 096 092 093 091 0.87| 0327073 0.83 0.96 | 6.58

Min 029 018 0.20 0.33| 032 0.18| 026 0.20| 029 0.74 0.73| 088 0.78 0.63
Average 0.84 081 063 0.69| 058 053] 054 045 092 091 087 098 095 0.89
Median 096 091 0.71 0.71| 051 055/ 054 037 099 093 0.86| 1.00 099 0.96
Max 100 100 0.89 099 099 1.00( 098 0.96| 1.00 1.00 0.99| 1.00 1.00 1.00
STDEV 023 025 0.20 0.20f 0.19 0.20| 0.16 0.21| 0.18 0.08 0.10| 0.04 0.07 0.11

Fig 4. Coefficient of determination (%) of fifteen GS methods on Rice, Pig, QTLMAS, and Maize data where each method was trained on the entire
dataset (global). Each cell contains the numeric r* score. Additionally, for each dataset (vertical column) bar plots are shown. Bar plots are normalized by the
minimum and maximum for each data set. Thus, the best (max) 12 for a data set will have a full bar while the worst (min) 2 will have an empty bar.
Summarized to the right are the minimum, average, median, maximum, and the standard deviation of the normalized r* scores. Summarized below are the
minimum, average, median, maximum, and the standard deviation of the r* scores for each data set. The number of individuals (#Ind), number of markers
(#Markers), and the heritability are provided for each data set.

doi:10.1371/journal.pone.0138903.g004

Some of the genomic methods used in this analysis were previously compared on maize and
barley data in the paper by [14]. For example, [14] used rrBLUP, Bayes Cr, a variant of Bayes B
(wBSR), Elastic Net, and SVR. We note that we observed several trends that are similar to the
above work, such as, for example, rrBLUP, Elastic net, Bayes Cr, and Bayes B performing
somewhat similar to each other. Moreover, our analysis of SVR linear did not perform as well
in the analysis of [14], most likely due to overfitting as the difference between global and 10CV
correlation was large. Also, as discussed above, SVR Linear does not seem to be a natural
modeling space for the data, as compared to SVR Radial or SVR Sigmoid.

We note that Epistasis rrBLUP performance varies greatly. For example on QTLMAS Trait
2, it performs very well relative to the other methods; however, on Rice Protein content cor-
rected it performs poorly. Both are polygenic traits, i.e. many influential markers. Thus, Epista-
sis rrBLUP may be overly sensitive to population structure. Additionally, given the addition of
nearly a square factor of the number of parameters with respect to the number of SNPs, one
would suspect Epistasis rrBLUP to overfit. Surprisingly, this seems to not be the case consider-
ing Figs 4 and 5 showing the coefficient of determination (r*) of methods trained on all data
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Fig 5. Difference of coefficients of determination (%) for global (each method trained on the entire dataset) and 10CV of fifteen GS methods on
Rice, Pig, QTLMAS, and Maize data. Each cell contains numeric difference of 10CV r? and global 2. Additionally for each dataset (vertical column) bar plots
are shown. Bar plots are normalized by the minimum and maximum for each data set. Summarized to the right are the minimum, average, median, maximum,
and the standard deviation of the normalized difference scores. Summarized below are the minimum, average, median, maximum, and the standard
deviation of the difference scores for each data set. The number of individuals (#Ind), number of markers (#Markers), and the heritability are provided for
each data set.

doi:10.1371/journal.pone.0138903.g005

(global) and the difference between 10CV and global r*. More than likely, the regression
parameters used were insufficient to properly model the data; either they were too restrictive or
not restrictive enough. Further study should be conducted to explore the usefulness of the new
epistasis parameters and how to best choose the regression method and parameters. It is also
interesting to note that, contrary to what it is supposed to be modeling, Epistasis rrBLUP per-
formed well on more oligogenic traits, such as the Rice Pericarp color. In this case, it may be
that all the pair-wise parameters involving the causal markers have high estimated values. That
is, if a marker X has high correlation with the trait, then all parameters for pairs X x Y for all Y
may have high estimated marker effects. This seems plausible as in the non-epistasis case,
rrBLUP searches for solutions where all markers have equal variance and are all small. Thus, if
there are relatively few causal markers as we speculate, traditional rrBLUP would want to
“push down” the causal marker effects.

We now focus on the comparative analysis of different datasets rather than different meth-
ods, i.e. on the column-wise analysis, using the row Max in Fig 1 to compare best performances
achievable on each of the data sets. We immediately notice that the highest accuracies of r* =
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Fig 6. Stability analysis of fifteen GS methods on Rice, Pig, QTLMAS, and Maize data under 10-fold cross-validation (10CV). Reported is the ratio of
the number of features selected during atleastk =10, 9, ... folds versus the total number of features selected across 10CV (note that, for each feature, we
count separately the number of folds when the feature is selected). The number of individuals (#Ind), number of markers (#Markers), and the heritability are
provided for each data set.

doi:10.1371/journal.pone.0138903.9006

0.57-0.62 (mean 7> of 0.50, and median 7* = 0.56-0.57) are achieved on the Maize dent data, for
the two out of three traits: dent male flowering time (Tass_GDD6) and dry matter content
(DMCQ), i.e. for those two datasets, genotypic information appears to be the most informative
about the trait, i.e. these traits have high heritability. The second-best group of data sets, with
respect to the best achievable accuracy, included: the Rice dataset for ‘pericarp color’ trait,
where the best accuracy was * = 0.54 achieved by the Elastic Net, and the mean and median r
across all methods were 0.38 and 0.41, respectively, and the Maize dataset, for both flint male
flowering time (Tass_GDD6) and dent plant dry matter yield (DM_Yield), where the best
result of r* = 0.48 was achieved by SVR Linear and by Epistasis rrBLUP, though the mean 0.41
and median 0.47 for the former trait are considerably better than the mean 0.29 and median
0.31 for the latter trait.

Finally, Fig 6 summarizes feature-selection stability of the two best performing approaches
we used, mRMR and Elastic Net. As described earlier, each of the 10CV folds produces a differ-
ent subset of selected features. For each feature, we compute the number of folds when this fea-
ture was selected. Then, for a given number of folds k, we computed the number of features
selected in at least k folds, and divided it by the total number of features selected across 10CV.
These ratios are presented in Fig 6, with k = 9 and 10 for mRMR, and k = 5,6,7,8,9,10 for the
Elastic Net. Note that mRMR solutions appear to be considerably more stable then those of the
Elastic Net. This is an interesting phenomenon that stems from the nature of each variable-
selection method. Recall that the predictor variables, corresponding to SNPs, tend to be corre-
lated with each other, i.e. may form multiple clusters of correlated predictors. If the whole clus-
ter of highly correlated variables is also highly relevant to the target variable, i.e. phenotype,
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then the original LASSO method—which is practically equivalent to the Elastic Net with suffi-
ciently low values of the grouping parameter A,—tends to choose an arbitrary predictor out of
such cluster, which can lead to highly unstable solutions. In a sense, this instability is a feature
of the data, since in presence of highly correlated predictors there are, indeed, multiple predic-
tive sparse solutions. The Elastic Net attempts to alleviate the instability issues of LASSO in
such scenarios, by grouping the correlated variables, i.e. including or excluding them as clus-
ters. However, some of the instability inherent to LASSO-like approaches still remains. On the
other hand, mRMR uses a different approach to variable-selection; instead of solving a convex
optimization problem, it ranks the variables univariately, based on their individual relevance
(mutual information) to phenotype, as well as on their lack of redundancy. Such univariate
ranking turns out to be much more stable across the cross-validation folds.

Discussion

Although it is difficult to make global conclusions using only twelve data sets, given the abun-
dance of data available we still are able to draw some meaningful conclusions in order to guide
future researchers and breeders. Our main observation is that, somewhat surprisingly, the uni-
variate feature selection approach, mRMR, comes out as a clear winner. It outperformed all
other methods on average; moreover, it performed surprisingly well even on complex traits
where one expects many markers to have an effect. The mRMR method has an added benefit
of providing an interpretable model, pointing out the important markers and their relationship
to the trait. Secondly, mRMR was remarkably stable in the selection of its features during each
of the 10 folds during cross validation. This is likely due to the fact that mRMR takes into
account the information gain that a feature provides about the target variable, while being non-
redundant with respect to the other features. Moreover, another variable-selection method—
Elastic Net, an example of the so-called sparse regression—also performed quite well overall,
though it fell into the second-best group of methods, closely following the winner, mRMR.

An intuitive explanation of good performance demonstrated by feature-selection
approaches, such as mRMR and the Elastic Net, on specific datasets, can be potentially linked
to observations made in the original paper by [47], and reinforced by more recent studies (see,
for example, Chapter 3 in [59]). In [47], a simulation study compared univariate feature selec-
tion (subset selection regression) versus sparse regression (the LASSO approach) and versus
the ridge regression (closely related to rrBLUP). It was observed that the univariate feature
selection works best when there is a very small number of large effects, i.e. a small number of
predictive variable highly relevant to the target variable. When this number increases to some
moderate size, sparse regression performs best. However, neither the subset selection nor the
sparse regression appear to work well when there is a large number of small effects, i.e. there is
no clear distinction between the relevance of the predictors. In our experiments, mRMR is a
more sophisticated version of a univariate feature selection, as it considers both relevance to
the target and redundance across the features; the Elastic Net is an augmented version of the
original LASSO method, while rrBLUP is closely related to ridge regression. While we do not
expect the exact correspondence with the observations made by [47], it is interesting to see
somewhat similar behavior. In Fig 7, we plot the relevance scores of different features, ranked
from best to worst, for each dataset. Note that for the Rice dataset, Pericarp color trait, there is
clearly a small number of highly relevant features, followed by a large number of much less rel-
evant ones, i.e., we have a relatively small number of large effects; note that mRMR and espe-
cially the Elastic Net, indeed, works best on this data, outperforming rrBLUP and other
competitors, as shown previously in Fig 2. Similar behavior is observed for the Maize.Dent.
DM.Yield dataset in Fig 2, shown as Dent 3 plot in Fig 7: a small subset of high-relevance (top-
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Fig 7. Relevance scores for all features, ranked from the most- to the least-relevant, for each dataset. The correspondence between the legend
notation herein and in Fig 2 is as follows: ‘Rice29’ denotes ‘Rice Pericarp color’, ‘Rice34’ denotes ‘Rice Protein content’, ‘QTL1’ and ‘QTL2’ denote QTLMAS
traits 1 and 2, respectively, while ‘pig2’ and ‘pig4’ denote the Pig data traits 2 and 4, respectively. Finally, ‘Flint1’, ‘Flint2’ and ‘Flint3’ correspond to the ‘Maize.
Flint. TASS’, ‘Maize.Flint. DMC’ and Maize.FlintDM.Yield’, respectively, while ‘Dent1’, ‘Dent2’ and ‘Dent3’ correspond to ‘Maize.Dent. TASS’, ‘Maize.Dent.
DMC’, and ‘Maize.Dent.DM.Yield’, respectively.

doi:10.1371/journal.pone.0138903.9007

ranked) features, followed by the much lower-relevance majority; mRMR performs best here,
clearly outperforming rrBLUP; however, the Elastic Net is also outperformed by mRMR, per-
haps due to small (rather than moderate) number of large effects. On the other hand, on the
two Pig datasets, practically all features have almost the same relevance scores, i.e. fall into the
last category, large number of small effects. Note that on these datasets, mRMR and the Elastic
net are, respectively, only as good as, or worse, than rrBLUP.

Overall, that standard rrBLUP approach, while performing fairly well, still fell into the large
second-best category of methods, that also included methods such as Blasso, BayesCpi, Elastic
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Net, BayesA, BayesB, Epistasis rrBLUP, and SVR Radial. The remaining methods, including
PCA-FOBA, SVR Sigmoid, SVR Linear, SVR Polynomial and FOBA algorithms, performs con-
siderably worse than the second-best group, and ISIS appears to be particularly inaccurate on
the data sets we considered.

Finally, it still remains to be explored what data properties are essential for a specific method
to work well (or poorly). One hypotheses we propose is that the discrete, rather than continu-
ous, nature of the genomic data, where the variables are ternary, with a highly skewed distribu-
tion towards two out of three values being most frequent, may play an important role, affecting
performance of some of the methods.
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