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Although anti-PD-1 inhibitors exhibit impressive clinical results in non-small cell lung

cancer (NSCLC) cases, a substantial percentage of patients do not respond to this

treatment. Moreover, the current recommended biomarkers are not perfect. Therefore,

it is essential to discover novel molecular determinants of responses to anti-PD-1

inhibitors. We performed Whole Exome Sequencing (WES) in a cohort of 33 Chinese

NSCLC patients. Patients were classified into the durable clinical benefit (DCB) and

no durable benefit (NDB) groups. Infiltrating CD8+ cells in the tumor microenvironment

(TME) were investigated by immunohistochemistry. We also used public datasets to

validate our results. In our cohort, good clinical responses to anti-PD-1 inhibitors were

more pronounced in younger patients with lower Eastern Cooperative Oncology Group

(ECOG) scores and only extra-pulmonary metastasis. More importantly, we identified a

novel MUC19 mutation, which was significantly enriched in DCB patients (P = 0.015),

and MUC19-mutated patients had a longer progression-free survival (PFS) (hazard ratio

= 0.3, 95% CI 0.1–0.9; P = 0.026). Immunohistochemistry results indicated that the

MUC19 mutation was associated with increased infiltration by CD8+ T cells in the TME

(P= 0.0313). When combiningMUC19mutation with ECOG scores and intra-pulmonary

metastasis status, patients with more positive predictors had longer PFS (P = 0.003).

Furthermore,MUC19mutation was involved in immune responses and associated with a

longer PFS in the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort. Collectively,

we identified that MUC19 mutations were involved in immune responses, and NSCLC

tumors harboring mutated MUC19 exhibited good responses to anti-PD-1 inhibitors.
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INTRODUCTION

The PD-1/PD-L1 blockade, which reactivates the anti-tumor
activity of CD8+ T cells by blocking T cell signals, has
dramatically revolutionized the management of non-small cell
lung cancer (NSCLC) over the past decade (1). Although
treatment with anti-PD-1 inhibitors has demonstrated
impressive response rates and durable disease remission
(2), only a small subset of patients can benefit from them (3).
Currently, anti-PD-1 inhibitors that have been approved or
are in clinical research include pembrolizumab, nivolumab,
atezolizumab, toripalimab, and sintilimab. Apart from their high
efficacy, these drugs also display significant immunotoxicity in
clinical practice (4), and the cost is high. Therefore, identifying
which patients might most likely derive clinical benefit from
PD-1/PD-L1 blockade is an essential challenge to be resolved (5).
Thus, effective biomarkers for predicting PD-1/PD-L1 inhibitor
efficacy are urgently needed in clinical practice.

PD-L1 expression is the earliest and most widely used
predictive biomarker for PD-1/PD-L1 inhibitors (6), but it
is limited by the detection technology employed (multiple
detection antibodies, instrument platforms, different thresholds
for positivity) and histological sources of PD-L1 (immune
and tumor cells, primary and metastatic tumor sites, and
dynamic changes in PD-L1 after treatment) (7). Consequently,
additional biomarkers, including microsatellite instability (8)
and tumor mutational burden (TMB) (3), have been evaluated.
Recently, TMB has also been approved by the Food and Drug
Administration as a new predictive biomarker for patients with
unresectable ormetastatic solid tumors receiving pembrolizumab
(9). Nevertheless, similar to PD-L1 expression, TMB is not
perfectly correlated with immunotherapy responses, with only
a 30–50% objective response rate for TMB-high patients (10).
An increasing number of studies have suggested other potential
biomarkers, including somatic mutations in specific genes
(11, 12), copy number alterations affecting immune-related
genes (13), tumor infiltrating lymphocytes (14), and inflamed
gene expression profiles (15, 16). Therefore, identification of
additional novel biomarkers or combining different biomarkers
with greater predictive values is crucial for stratifying populations
potentially benefiting from immunotherapy (17).

In this context, we performed Whole Exome
Sequencing (WES) to explore and uncover novel molecular
determinants of anti-PD-1 inhibitors. In order to explore
the underlying mechanisms, we detected CD8+ T cells by
immunohistochemistry. MUC19 mutation was associated with
good responses to anti-PD-1 inhibitors. These results were
further validated in public datasets, encompassing lung cancer
patients receiving immunotherapy with MUC19 mutation data,
which further confirmed the association of MUC19 mutation
with good efficacy of anti-PD-1 inhibitors.

Abbreviations: BMI, body mass index; DCB, durable clinical benefit; ECOG,

Eastern Cooperative Oncology Group; GO, Gene Ontology; MSKCC, Memorial

Sloan-Kettering Cancer Center; NDB, no durable benefit; NSCLC, non-small

cell lung cancer; OS, overall survival; PFS, progression-free survival; TMB,

tumor mutational burden; TME, tumor microenvironment; WES, whole exome

sequencing.

MATERIALS AND METHODS

Patient Recruitment and Sample Collection
A total of 99 NSCLC patients receiving anti-PD-1 inhibitors at
the Department of Respiratory and Critical Care Medicine of the
Affiliated Jinling Hospital, Medical School of Nanjing University,
betweenMay 19, 2017, and April 26, 2019, were enrolled. Among
them, we were able to assess efficacy in 65 patients using Response
Evaluation Criteria In Solid Tumors (version.1.1). The clinical
benefits of anti-PD-1 inhibitors were defined as durable clinical
benefit (DCB: complete response, partial response, or stable
disease lasting> 6months) and no durable clinical benefit (NDB:
progression disease or stable disease that lasted ≤ 6 months).
Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared. WES was performed in
33 patients who could be defined as DCB and NDB and had
tumor tissue/matched control samples prior to immunotherapy
(Figure 1A). The time from the beginning of immunotherapy to
the date of disease progression was defined as progression-free
survival (PFS). The study was approved by the Ethical Review
Committee of the Affiliated Jinling Hospital and all patients had
signed informed consent. The clinical characteristics of the 33
patients were presented in Table 1.

In addition, we also used public datasets (cBioPortal:
https://www.cbioportal.org/, and International Cancer Genome
Consortium Data Portal: https://dcc.icgc.org/) to validate our
results (Figure 1B). Among them, the Memorial Sloan-Kettering
Cancer Center (MSKCC) cohort was used to verify the
relationship betweenMUC19mutation and response to immune
checkpoint inhibitors. Data from the MSKCC cohort (18)
were downloaded from the cBioPortal website, which contained
WES results of 75 NSCLC patients treated with nivolumab
plus ipilimumab.

WES
Tumor tissues/matched control samples were sent to Geneseeq
Inc. (Nanjing, China) for WES. The mean target coverage was
150× for tumor tissue and 60× for normal controls.

CD8 Immunohistochemistry
Four micrometer-thick paraffin-embedded tissue sections
were used for CD8 immunohistochemistry. Tissue sections
were stained with monoclonal anti-CD8 antibody (clone
C8/144B, 70306S) from Cell Signaling Technology. Lymphocytes
with membranous staining were regarded as positive for
CD8. All immunohistochemical sections were independently
evaluated by two pathologists, and all evaluation scores were
recorded. Two pathologists independently counted CD8+

cells and randomly selected 4–6 fields (200 ×) for each
immunohistochemical section.

Statistical Analysis
Fisher’s exact test or Chi-squared test was used to compare
clinical parameters and gene mutation status between DCB and
NDB patients. Differences in CD8+ T cells and TMB were
examined using the non-parametric Mann-Whitney U test. The
Kaplan-Meier method was used to analyze survival [PFS/overall
survival (OS)]. Univariate Cox regression analysis was used
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FIGURE 1 | Patient flow of our cohort and public datasets. (A) Patient flow of our cohort. (B) Patient flow of public datasets.

to define hazard ratios. SPSS v.23.0 and GraphPad Prism v.6
were used for analysis, and P values < 0.05 were considered
statistically significant.

RESULTS

Clinical Characteristics of Patients in Our
Cohort and MSKCC Cohort
In our cohort, we performed WES in 33 patients who could
be defined as DCB and NDB groups and who had tumor
tissues/matched control samples prior to immunotherapy. Their
clinical characteristics were presented in Table 1. Among them,
18 patients (54.5%) were younger than 65 years, and 25
patients (75.8%) were male. Adenocarcinoma was the most
common histology, found in 48.5% of cases, followed by
squamous cell carcinoma, found in 45.5% of cases. 42.4% patients
had previously received platinum-based chemotherapy, 24.2%
patients had previously received TKIs and anti-angiogenesis
therapy, and the remaining 33.3% patients had no prior therapy
before immunotherapy. The immunotherapy regimens included
combination of PD-1 inhibitors and chemotherapy (75.8%), and
monotherapy (PD-1 inhibitors, 24.2%). Table 2 showed that
good responses were more pronounced in younger patients and
those with lower Eastern Cooperative Oncology Group (ECOG)
scores, and only extra-pulmonary metastasis. In addition,
patients with lower ECOG scores (P = 0.023) (Figure 2A) and
only extra-pulmonary metastasis exhibited more prolonged PFS
(P = 0.029) (Figure 2B).

In MSKCC cohort, we chose 75 patients who received
immunotherapy and who had MUC19 mutation data. Their

clinical characteristics are presented in Supplementary Table 1.
Among them, 39 (52.0%) patients were younger than 65 years,
37 patients (49.3%) were male, and 16 (21.3%) had squamous
cell carcinoma. We also found that a lower ECOG score was
significantly correlated with better clinical benefits of anti-PD-1
inhibitor treatment (P = 0.0139).

Association of MUC19 Mutation With
Clinical Benefits of Anti-PD-1 Inhibitors
and Infiltration of CD8+ T Cells in Our
Cohort
To investigate whether individual gene mutations were
associated with response or resistance to anti-PD-1 inhibitor
treatment, we first focused our analysis on total gene mutations.
The top gene mutations in our cohort were shown in Figure 3A;
approximately half of the patients harbored a TP53 mutation
(57.6%). In addition to TP53 mutations, we also found that the
mutation rates of TTN (45.5%) andMUC19 (42.4%) were both>

40%. Other common mutations, involving genes such as EGFR,
ERBB2, KRAS, PTEN, and BRAF, were identified in 15.2, 9.1, 9.1,
9.1, and 3% of patients, respectively, and the related percentage
was similar to a prior WES study performed in Chinese NSCLC
patients (3). We further compared the gene mutations between
DCB and NDB patients. Interestingly, we found that there were
large differences in high-frequency mutations between the DCB
and NDB groups (Figure 3B). Of these, mutations involving
MUC19 (P = 0.015) and PKD1L2 (P = 0.017) were significantly
enriched in the DCB and NDB groups, respectively. We also
found that the mutation rate of PTEN (DCB vs. NDB, 5 vs.
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TABLE 1 | Baseline clinical characteristics of NSCLC patients in our cohort.

Characteristics Total (N = 33) %

Age (years), median range 64 (36–83)

< 65 18 54.5

≥ 65 15 45.5

Sex

Male 25 75.8

Female 8 24.2

Performance status

0–1 25 75.8

≥ 2 8 24.2

Smoking status

Former/Current 19 57.6

Never 14 42.4

Histology

Adenocarcinoma 16 48.5

Squamous cell carcinoma 15 45.5

Other 2 6.1

Clinical benefit

DCB 20 60.6

NDB 13 39.4

Actionable drivers

Yes 8 24.2

- EGFR mutation 4

- ALK rearrangement 1

No 25 75.8

Stage

III 10 30.3

IV 23 69.7

Metastasis site

Lymph node (yes/no) 25/8 75.8/24.2

Lung (yes/no) 14/19 42.4/57.6

Bone (yes/no) 9/24 27.3/72.7

Liver (yes/no) 2/31 6.1/93.9

Brain (yes/no) 6/27 18.2/81.8

Adrenal (yes/no) 4/29 12.1/87.9

Previous treatment

No prior therapy 11 33.3

Platinum-based chemotherapy 14 42.4

Others 8 24.2

Immunotherapy regimen

PD-1 inhibitors 8 24.2

PD-1 inhibitors + Chemotherapy 25 75.8

Therapy Line

1st 11 33.3

2nd 7 21.2

≥ 3rd 15 45.5

15.3%) and BRAF (DCB vs. NDB, 0 vs. 7.7%) were higher in
the NDB group, while KRAS was higher in the DCB group
(DCB vs. NDB, 10 vs. 7.7%), which was consistent with previous
reports (19), although it did not reach statistical significance,
likely owing to small numbers. In addition, we calculated TMB

TABLE 2 | Associations of anti-PD-1 inhibitor efficacy with clinical characters in

our cohort.

Parameter DCB NDB P value

Age 0.038

<65 14 4

≥ 65 6 9

Sex 0.681

Male 16 9

Female 4 4

Performance status 0.035

0–1 18 7

≥ 2 2 6

Smoking status 1.000

Former/Current 12 7

Never 8 6

Histology 0.393

Adenocarcinoma 8 8

Squamous cell carcinoma 11 4

Other 1 1

Stage 1.000

III 6 4

IV 14 9

Metastasis site

Lymph node (yes/no) 14/6 11/2 0.432

Lung (yes/no) 5/15 9/4 0.012

Bone (yes/no) 6/14 3/10 1.000

Liver (yes/no) 1/19 1/12 1.000

Brain (yes/no) 5/15 1/12 0.364

Adrenal (yes/no) 3/17 1/12 1.000

Therapy Line 0.698

1st 7 4

2nd 5 2

≥3rd 8 7

Treatment 0.681

Monotherapy 4 4

Combination therapy 16 9

results. Although TMB is a predictive biomarker for the efficacy
of immunotherapy recommended by guidelines (9), there
were no significant differences involving TMB in our cohort
(Supplementary Figure 1).

We next evaluated the association between gene mutations
and patient survival. Of all the patients included, 16 died
at the time of data collection. The median PFS for all 33
patients was 9.5 months (95% CI 4.5–14.4) and median OS
was 26.2 months (95% CI 11.6–40.7). We examined PFS
and gene mutations and found that compared with wild-
type patients, MUC19-mutated patients had significantly longer
PFS (P = 0.024) (Figure 2C), while PKD1L2-mutated patients
had a shorter PFS (P = 0.006) (Figure 2D). In addition,
we also discovered that FNDC1, FSIP2, GSE1, KIAA1217,
LRRK2, OTOGL, SCN5A, SRRT, and TOPAZ1 gene mutations
were potentially poor prognostic factors for immunotherapy
(Supplementary Table 2).
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FIGURE 2 | Association of clinicopathological characteristics and gene mutation with anti-PD-1 inhibitor responses in our cohort. (A) Kaplan-Meier curves of PFS

comparing patients with low performance (PS 0–1) and high performance (PS ≥ 2). (B) Kaplan-Meier curves of PFS comparing patients with or without

intra-pulmonary metastasis. LM+, intra-pulmonary metastasis in the presence or absence of other extra-pulmonary metastases; LM-, only extra-pulmonary

metastasis. (C) Kaplan-Meier curves of PFS comparing patients with mutant and wild-type MUC19. (D) Kaplan-Meier curves of PFS comparing patients with mutant

and wild-type PKD1L2. (E) Effect of MUC19 mutation status combined with performance and intra-pulmonary metastasis status on PFS in our cohort. (F) Histograms

depicting proportions of patients who experienced DCB or NDB in different groups, defined by performance status (PS 0–1 or PS ≥ 2), intra-pulmonary metastasis

(yes or no), and MUC19 mutation status (mutant or wild-type), as indicated.

FIGURE 3 | Summary of molecular features associated with anti-PD-1 inhibitor responses. (A) The top mutation genes revealed by WES are listed. Sample IDs are

shown at the bottom. Mutation frequencies are displayed on the left, and gene abbreviations are listed on the right. Icons representing mutation types are listed in

different colors (red = frameshift, blue = missense, green = inframe-indel, purple = nonsense, yellow = splice, and orange = others). The top three mutation genes

are TP53, TTN, and MUC19 [71.4% (10/14) missense, 21.4% (3/14) inframe-indel, 14.2% (2/14) nonsense, and 7.14% (1/14) splice]. (B) Different high-frequency

mutations in patients with DCB (left, blue) and NDB patients (right, red).

According to the above results, PFS was significantly
prolonged in patients with lower ECOG scores, only extra-
pulmonary metastasis, and MUC19 mutation. Each of these

variables is important for predicting sensitivity or resistance to
immunotherapy; however, each also has limitations in its ability
to explain immune checkpoint inhibitor responses. Combining
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FIGURE 4 | Summary of MUC19 mutation and differential mutated genes between our cohort and MSKCC cohort. (A) MUC19 mutation map of 14 patients including

12 DCB and 2 NDB patients. Sample IDs are shown at the bottom, mutation types on the top and mutants on the right. Icons representing mutation types are listed in

different colors (blue = missense, green = inframe-indel, purple = nonsense, yellow = splice). (B) Volcano plot displaying differential mutated genes between our

cohort and MSKCC cohort. X axis: difference value between gene mutation frequency of our cohort and MSKCC cohort. Y axis: -log10 (pval). Significant events refer

to (|difference value| > 0.1 and p < 0.05); compared to our cohort, significantly higher mutation genes in MSKCC cohort are in red, significantly lower in blue, others in

gray. (C) Lolliplot of MUC19 mutations.

different biomarkers is crucial in stratifying populations
benefiting from immunotherapy (17). Therefore, we combined
the above variables to test whether this could lead to improved
PFS. Intriguingly, when we combined these variables, patients
with more positive predictors had longer PFS (Figure 2E). The
combination of the three factors together was best in predicting
clinical outcomes (Figure 2F).

In our study, there were 14 patients with MUC19 mutation
(Figures 4A,C). Among them, 71.4% (10/14) were missense,
21.4% (3/14) were inframe-indel, 14.2% (2/14) were nonsense,
and 7.14% (1/14) were splice; 2 patients had two types
of MUC19 mutation. In DCB patients (12 patients), the
mutation types were missense, inframe-indel, nonsense and
splice; in NDB patients (2 patients), the mutation type was
missense. In addition, the MUC19 mutants (E4378K, G2108E,
G5360E, G5833_Q5834INS, G6046W, G7489W, G8041D,
I3666_S3668DELINS, K3376SFS∗12, M7441I, P7380L, P77380L,
P7739T, S3679VFS∗3, S694F, T5832_G5833INS, V1493T,
X6426_SPLICE) had the same mutant frequency. To uncover the
underlying reason for MUC19 mutation being associated with
clinical benefits of anti-PD-1 inhibitor treatment, we performed

CD8 immunohistochemical staining. Compared to MUC19
wild-type patients, MUC19-mutated patients exhibited more
infiltration of CD8+ T cells (P = 0.0313) (Figures 5A,B). And
patients with higher CD8+ T cells showed a significantly longer
PFS (P = 0.00021) (Figure 5C).

Association of MUC19 Mutation With
Immune Responses and Clinical Benefits
of Anti-PD-1 Inhibitors in Public Datasets
MUC19 is located on the long arm of chromosome 12 and
encodes a member of the gel-forming mucin protein family
which constitute the physical barrier, and protect epithelial cells
from stress-induced damage (20, 21).MUC19 is highly expressed
in the corneal conjunctiva, lacrimal glands, and gastrointestinal
glands, and is also expressed in the subtracheal glands (22).
From the GeneCards website (https://www.genecards.org/), we
identified that MUC19 was similarly expressed in the lung,
bone marrow, lymph node, thymus, and other immune system
organs (Supplementary Figure 2A). It has been reported that
MUC19 expression is involved in the pathogenesis of Sjogren
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FIGURE 5 | Association of MUC19 mutation with CD8+ T cell infiltration. (A) Representative images of CD8 staining in MUC19-mutant (left) and wild-type (right)

patients. Acquired at × 200 magnification. Scar bar = 100µm. (B) Manually-counted average CD8+ cells/HPF are shown in the bar. HPF: high-power field. (C)

Kaplan-Meier curves of PFS comparing patients with high and low CD8. *P < 0.05.

syndrome and breast cancer; and breast cancer patients with
higher MUC19 expression exhibited worse prognosis (23).
In addition, MUC19 mutation was found in inflammatory
bowel disease, melanoma, colorectal adenocarcinoma, and
esophageal squamous cell carcinoma (24–27). At present, what
we understand regarding MUC19 is limited, and the role
of MUC19 in lung cancer also remains unclear. This is the
first study to explore and uncover the role of MUC19 in
lung cancer.

Using the cBioPortal website, we downloaded all lung
cancer datasets containing MUC19 mutations (Figure 1B).
These six studies included a total of 2,323 patients/2,672
samples, which included 1.5% Asian and 98.5% non-Asian
populations. The mutation rate of MUC19 was between 2 and
7% (Figure 6A). Surprisingly, from the International Cancer
Genome Consortium Data Portal website, we found that the

mutation rate ofMUC19 was 63.53% in a Korean cohort (LUSC-
KR), which was very close to that of our study. However, the
MUC19 mutation rate in the LUSC-US and LUAD-US cohorts
was < 6% (Figure 6A). The differential mutated genes between
eastern (our cohort) and western (MSKCC cohort) people were
shown in Figure 4B; compared to our cohort, the significantly
higher mutation genes in MSKCC cohort were KRAS, CTNND2,
OBSCN, and DYNC2H1, the significantly lower mutation genes
were NEFH, MUC19, ZNF141, PTH2, ZNF492, ADAMTSL4,
MUC4, HOXB3, MUC5AC and MUC22. Furthermore, we
compared the difference of clinical characteristics between
MUC19mutants versusMUC19 wide-type patients in our cohort
(Table 3), there were no statistical differences between them. As
for the role of MUC19 mutation on OS, we found that wild-type
patients presented significantly lower OS compared to MUC19-
mutated patients (P = 0.002) (Supplementary Figure 2B).
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FIGURE 6 | Association of MUC19 mutation with immune responses and clinical benefits of anti-PD-1 inhibitors in public datasets. (A) Mutation rates identified using

different public datasets. The LUSC-KR, LUSC-US, and LUAD-US data sets were downloaded from the International Cancer Genome Consortium website. The

TRACERx 2017, MSKCC, Lung squ (TCGA), Lung adeno (TCGA), Lung adeno (TCGA PanCan), Lung squ (TCGA PanCan) were downloaded from the cBioPortal

website. (B) Pathway mapper analysis of patients with or without MUC19 mutation using the cBioPortal website. TP53-RB1 signaling pathway was the most

frequently altered pathway. (C) Comparison of mutation count between patients with or without MUC19 mutation in TRACERx 2017. (D) Kaplan-Meier curves of PFS

comparing patients with mutated and wild-type MUC19 in the MSKCC cohort.

We further explored the role ofMUC19mutations in immune
responses. Gene Ontology (GO) annotation revealed that the
MUC19 gene is involved in innate immune response activating
cell surface receptor signaling pathway (GO: 0002220). When
using pathway mapper analysis on the cBioPortal website, the
TP53-RB1 signaling pathway was the most frequently altered
in the MUC19 mutation group compared to the non-mutated
group (Figure 6B). According to recent studies, TP53 mutations
could have a major impact on the lung tumor microenvironment
(TME) and increase sensitivity to anti-PD-1 inhibitors in lung
cancer (8). We also analyzed the mutation count in 100
patients/327 samples from another public dataset (TRACERx)
through the cBioPortal website (28). MUC19-mutated patients
had higher mutation counts than the non-mutated group (P
< 0.001) (Figure 6C). It has been suggested that mutation
count could reflect the whole exome mutational burden and
that the mutation count of certain genes could be used as a
new predictive marker to guide immunotherapy for NSCLC
patients (29, 30).

More importantly, we validated our results in the MSKCC
cohort containing 75 American lung cancer patients receiving
immunotherapy and with MUC19 mutation information.

Although there was no significant difference, PFS of the MUC19
mutation group was longer than that of the non-mutated patients
(19.7 vs. 7.6 months, P = 0.413) (Figure 6D), which was
consistent with our results.

DISCUSSION

Although the emergence of immunotherapy has dramatically
changed treatment paradigms in NSCLC, only 20% of patients
are able to benefit from immunotherapy (3). It is worth noting
that some patients might suffer from significant immunotoxicity
(4), and a large proportion of patients in China cannot
afford them. Considering the low efficacy rate, immunotoxicity,
and the drug cost, stratifying patients by specific biomarkers
is essential. However, currently recommended biomarkers by
National Comprehensive Cancer Network guidelines, such as
PD-L1 and TMB, are not perfect biomarkers (31). Therefore, it
is essential to discover novel biomarkers that are predictors of
immunotherapy responses.

WES is a new method for identifying abnormalities in any
gene. Compared to targeted gene panel sequencing, WES can

Frontiers in Oncology | www.frontiersin.org 8 March 2021 | Volume 11 | Article 596542

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. MUC19 Mutation and Anti-PD-1 Inhibitors

TABLE 3 | Associations of MUC19 mutation status with clinical characters in our

cohort.

Parameter MUC19

wild-type

MUC19 mutant P value

Age 1.000

<65 10 8

≥ 65 9 6

Sex 0.416

Male 13 12

Female 6 2

BMI 0.455

<24 12 11

≥ 24 7 3

Performance status 0.416

0–1 13 12

≥2 6 2

Smoking status 0.286

Former/Current 9 10

Never 10 4

Histology 0.854

Adenocarcinoma 10 6

Squamous cell carcinoma 8 7

Other 1 1

Stage 0.257

III 4 6

IV 15 8

Metastasis site

Lymph node (yes/no) 16/3 9/5 0.238

Lung (yes/no) 10/9 4/10 0.286

Bone (yes/no) 5/14 4/10 1.000

Liver (yes/no) 1/18 1/13 1.000

Brain (yes/no) 3/16 3/11 1.000

Adrenal (yes/no) 3/16 1/13 0.62

PD-L1

<1% 4 4 0.716

≥1% 7 6

Unknown 8 4

TMB 0.363

<10 mut/Mb 17 10

≥10 mut/Mb 2 4

discover abnormalities that have not been previously associated
with any disease (32). Therefore, we chose WES to uncover
novel gene mutations to identify immune checkpoint inhibitor
responders in NSCLC. We identified a novel MUC19 gene
mutation from our data. In our study, both tumor tissue samples
and matched control samples were tested, and patient matched
control samples were used as negative controls. And none of
these mutations detected in negative controls are included in our
analysis, therefore, MUC19 mutations found in our study are
somatic mutations.

To our knowledge, this is the first study characterizing
MUC19 in lung cancer. We found that the mutation rate of

MUC19 in lung cancer was higher in Asian patients than
in non-Asian patients (LUSC-KR 63.53% vs. LUSC-US 5.15%;
LUSC-US 5.15% vs. LUAD-US 1.16%). Consistent with other
studies (33, 34), we also found the different mutation rate of
KRAS influenced by ethnicity in our study (Figure 4B). In
addition, environmental factors could also affect gene mutations.
Bacterial infection (F. nucleatum and B. fragilis) led to gene
mutations (35), tobacco exposure had an effect on intestinal
microbiome and could also produce new gene mutations
(36, 37). More interestingly, bacterial infection (Streptococcus
pneumoniae, nontypeable Haemophilus influenzae) upregulated
MUC19 expression (38). Hence, the effect of microbiome and
tobacco exposure onMUC19mutation needs further research.

Remarkably, for the first time, we uncovered a predictive
role ofMUC19mutation in NSCLC patients receiving anti-PD-1
inhibitors. We aimed to understand the underlying mechanism
behind this phenomenon. First, we detected infiltration of CD8+

T cells in the TME.We found an association ofMUC19mutation
with more CD8+ T cells (Figure 7), which suggests a “hot”
TME (39). Second, we searched public datasets to uncover
the inner connections and causality of MUC19 mutations
with immune responses. Both GO annotation and cBioPortal
pathway mapper analysis indicated the involvement of MUC19
mutation in immune responses. Lastly, but most importantly,
we validated our results in the MSKCC cohort. Compared to
wild-type patients, MUC19-mutated patients showed a trend
for increased PFS, although this was not statistically significant,
likely owing to the small number of patients studied. The
MSKCC group is an American cohort, so the mutation rate
was relatively low in this cohort. Therefore, it was difficult
to observe a predictive role for MUC19 mutations in this
cohort. In the future, larger studies are needed to validate our
results, especially in Asian patients. In addition to MUC19
mutation, we also found that gene mutations such as those
involving PKD1L2 and OTOGL were poor prognostic factors
for immunotherapy. Considering the low numbers of mutation-
positive patients, we did not analyze the related information
in public datasets. Additional studies are needed to confirm
these results.

Although TMB is recommended by the Food and Drug
Administration as a new predictive biomarker for patients
with unresectable or metastatic solid tumors receiving
pembrolizumab, new KETNOTE021 data showed no association
of TMB with the efficacy of pembrolizumab plus carboplatin
and pemetrexed (40). In our cohort, 75.8% of patients received a
combination of immunotherapy and chemotherapy. Therefore,
it is not difficult to understand that there were no differences
between the two groups.

Taken together, the originality of our work relies on the fact
that we uncovered a novel role ofMUC19mutation in predicting
the efficacy of anti-PD-1 inhibitors. Furthermore, we analyzed
the association of MUC19 status with infiltration by CD8+ T
cells in the TME. As the sample size in our study was small
and represented only a single center investigation, we validated
our results using public datasets. Although not perfect, we have
discovered potential influencing factors surrounding the clinical
benefits of anti-PD-1 inhibitors. Future studies should aim to
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FIGURE 7 | Proposed role of MUC19 mutation in predicting clinical benefits of immunotherapy. MUC19-mutated NSCLC patients are associated with more infiltration

of CD8+ T cells and higher mutation count, therefore, they are more likely to be responders to immunotherapy.

characterize the role of MUC19 mutation in mediating cancer
immune responses, and large-scale prospective studies will be
required to validate our results.
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