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ABSTRACT: Since the discovery of petrol-based products, a surge in energy-requiring equipment has been established across the
world. Recent depletion of the existing crude oil resources has motivated researchers to opt for and analyze potential fuels that could
potentially provide a cost-effective and sustainable solution. The current study selects a waste plant known as Eichhornia crassipes
through which biodiesel is generated, and its blends are tested in diesel engines for feasibility. Different models using soft computing
and metaheuristic techniques are employed for the accurate prediction of performance and exhaust characteristics. The blends are
further mixed with nanoadditives, thereby exploring and comparing the changes in performance characteristics. The input attributes
considered in the study comprise engine load, blend percentage, nanoparticle concentration, and injection pressure, while the
outcomes are brake thermal efficiency, brake specific energy consumption, carbon monoxide, unburnt hydrocarbon, and oxides of
nitrogen. Models were further ranked and chosen based on their set of attributes using the ranking technique. The ranking criteria
for models were based on cost, accuracy, and skill requirement. The ANFIS harmony search algorithm (HSA) reported a lower error
rate, while the ANFIS model reported the lowest cost. The optimal combination achieved was 20.80 kW, 2.48047, 150.501 ppm,
4.05025 ppm, and 0.018326% for brake thermal efficiency (BTE), brake specific energy consumption (BSEC), oxides of nitrogen
(NOx), unburnt hydrocarbons (UBHC), and carbon monoxide (CO), respectively, thereby furnishing better results than the
adaptive neuro-fuzzy interface system (ANFIS) and the ANFIS−genetic algorithm model. Henceforth, integrating the results of
ANFIS with an optimization technique with the harmony search algorithm (HSA) yields accurate results but at a comparatively
higher cost.

1. INTRODUCTION
Diminishing oil reserves, escalating crude oil prices, and the
ecological impact of conventional fuel utilization in engines have
motivated researchers to discover feasible energy sources with a
cleaner carbon footprint.1,2 Besides the above problems, the
transport-related zone, which is often considered an imminent
player in the development of the economy of a nation, is often
seen struggling when completely dependent on fossil resources.3

The ever-increasing population has put surplus load on the
existing crude oil resources, which are estimated to deplete

before their allotted time period.4 Combustion of fossil fuels is
another problem that is responsible for degrading the environ-
ment and spreading viruses such as MERS, SARS, and COVID-
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19.5 These particles are capable of amalgamating with existing
emission particles, thereby spreading among communities.
Thus, economic dependency, social insecurity, enormous
petrodollar reserve, and effluents damaging the environment

have led to various studies being carried out in nonconventional
oil-based resources, which have been established as suitable and
efficient alternatives for fossil oils in engines.6

In view of the above predicaments, investigators were inspired
to find a feasible, justifiable alternative to petro-diesel, which
could completely or moderately replace them. Among the
several options of nonconventional resources, biofuels have
foundwide acceptance probably due to their similarities to diesel
fuel with respect to physiochemical properties. Biodiesel has
emerged as a viable alternative to crude oil as it can be directly
used in the existing transportation sector without implementing
major modifications in engine design.7 People have started
considering biofuel as an alternative to diesel fuel probably due
to escalation in oil prices coupled with the excessive impact of
combustion of fuel on the environment. Therefore, to move
toward a sustainable category of fuel, the biodiesel production
system has been enhanced as a result of growing popularity. This
wide acceptance among the masses is probably due to biodiesel
being biodegradable, easily available, nontoxic, readily available,
portable, oxygenated, and environmentally safe.8

Figure 1. Hierarchy of literature selection and review process for the
study.

Figure 2. Structure of the research along with the flowchart for various models.
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This results in a small variation in engine performance as
compared to engines running on only diesel.9 This decrement in
performance characteristics is often seen in consumption levels
of the fuel, which increases probably due to the higher viscosity
and density levels found in biofuels.10 To further enhance
performance of biodiesel in diesel engines, the mixing process is
performed, where biodiesel is mixed with several potential
nanoadditives.11 This has been validated by several researchers
in the past where engine performance was substantially
enhanced and, in some cases, was even better than diesel
engines while simultaneously decreasing the emission levels.
The nanoparticle acts as a thermal bridge between the biodiesel
and the nanoparticle as it increases the thermal conductance of
the biofuel. This keeps in check the A/F ratio, mitigating the
knocking process and simultaneously increasing engine life. The
literature survey is comprehensively performed by considering
several articles, case studies, expert opinions, etc. as shown in
Figure 1.
Biodiesel can be attained from multiple resources that are

both sustainable and environment-friendly, primarily from
nonedible-based oils as they elude the food vs fuel debate.
The production of biofuels can be accomplished using different
types of raw materials by applying appropriate chemical
reactions and extraction techniques. Örs et al.12 examined the
performance and emission levels of WCO biodiesel, amalga-
mated with titanium dioxide (TiO2) in a diesel engine. The
study established that the presence of nanoadditives aids in the
burning process leading to a wholesome combustion process,
which eventually results in lowered emission. Hoseini et al.13

investigated the blends of Ailanthusaltissima biodiesel and
graphene oxide for diesel engine performance and emission
characteristics. An enhancement in BTE and reduction in BSFC,
CO, and UBHC were observed since nanoparticle blended
biofuels have superior air−fuel mixing properties, thereby
changing the delay period for a stabilized combustion reaction.
Gad et al.14 applied blends of WCO enhanced with carbon
nanoadditives for combustion and exhaust performance of diesel
engines. The blends achieved lower emissions (NOx, smoke,
and UBHC) while concurrently improving the ignition delay of
the engine. This is quite evident since the presence of
nanoparticles considerably reduces the evaporation time,
eventually lowering the ignition delay effect and simultaneously
enhancing ignition-based prospects of the blended biofuel.
Rezania et al.15 reported improved BTE and ignition pressure
with lower emission levels for blends of lanthanum titanium
dioxide (LaTiO3) nanoparticles and mustard seed oil. The
literature review specified above clearly presents an immediate
desire and need to research and model diesel engines on the
basis of various nanoparticles and its combinations with the aid
of artificial intelligence, which still remains an unexplored zone
in diesel engines similar to other problems of engineering.16,17 If
input parameters are designed and predicted based on a
specified model while applying the optimization method, it will
result in lowered biofuel production cost and time, thereby
aiding in commercializing it at the global and industrial
levels.18,19

This paper explains a technique to contemplate and predict
the performance of diesel engines when fueled with nano-
particles and biodiesel in varying combinations through soft
computing and metaheuristic techniques.20 The elementary
process comprises establishing a feasible relationship among
multiple constraints over available outcomes in diesel engines
established by employing various algorithms, thereby success-

fully predicting the performance and emission parameters of
biofuel-induced engines.21 This ultimately delivers effective
models with enhanced performance and lower exhaust
pollution. Application of prediction models effectively decreases
the experimental runs in diesel engines, thus reducing the cost,
labor, and time of experimentation.22,23 The prediction models
combined with optimization tools produce a pareto-optimal
combination of inputs. Soft computing models are capable of
applying the nonlinear framework on numerous constraints
being interconnected among one another. Prior literature
regarding the engine-related models being evolved soft
computing methods tend to lessen the complete experimenta-
tion data with noteworthy results.24,25 Additionally, the genetic
algorithm technique is also applied to produce effective
optimized results for performance and emission characteristics
in diesel engine arrangement.26−28 In earlier experimentation
cases on large diesel engines, like marine engines, to build a
feasible interrelationship between input and output variables, a
large data set was required, with ∼10 000 to 12 000 values. This
consumed time, cost, fuel, and labor. By application of smart
models, the data can be predicted by training and testing the
engine with a smaller data set. This would decrease the large
experimentation process and furnish values with an uncertainty
acceptable to the investigator.

Rahman et al.29 discussed essential physicochemical charac-
teristics of various biofuels and ranked them according to these
properties based on performance outcomes in diesel engines.
The study furnished Brassica Juncea, Cardoon, and poppyseed
biodiesels as themost feasible biofuel feedstocks when applied in
IC engines. Najafi et al.30 explored the feasibility of waste
cooking oil with the help of ANN and RSM techniques.
Experimental parameters considered in this study were alcohol
type, catalyst concentration, mixing intensity, and temperature
within the production process. Anwar31 ranked various biofuels
by employing soft computing techniques by considering 15
various performance parameters such as economic aspects
(extraction biofuel cost), technical aspects (physicochemical
characteristics), and chemical structure (FFA content) of basic
oil. Outcomes designate coconut as the most favorable biofuel,
whereas soybean was established as the least performing biofuel
in diesel engines. Khan et al.32 optimized vital constraints of
biodiesel in diesel engines with the aid of the ANFIS-RSM
method on biodiesel hydrogen blends. Anwar33 classified
various biofuels with soft computing techniques on the basis
of four criteria such as potential (microalgae oil), prevalent
(palm oil), popular (soybean oil), and proven (coconut oil).
Consequently, preceding established models clearly explain the
importance of applying soft computing procedures and
metaheuristic techniques as accurate predicting models with
additional benefits of optimization, producing a human-like
reasoning style of decisions.34,35

The current paper primarily employs the ANFIS model as the
outcome predictor and additionally combines the hypothetical
function by optimizing the outcomes with the assistance of
genetic algorithms (GAs) and the harmony search algorithm
(HSA). Preceding models established in earlier studies evidently
validate the importance of combining the ANFIS prediction
model with metaheuristic systems, which is capable of delivering
an improved ideal grouping for engine performance and exhaust.
Predicted responses achieved through the model implementa-
tion were in accordance with the achieved experimental values,
thereby enabling an effective background. Hereafter, using a
smaller set of input variables (load, blend percentage, nano-
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particle concentration (NPC), and injection pressure (IP)) can
efficiently estimate the outcomes by applying these models in a
cost-effective manner. The projected outcomes from the ANFIS
model were associated with data attained during engine
investigation and were found to be in accordance with applied
real-time values. The ANFIS-GA combination is undoubtedly
proficient in duplicating the conventional experimental method
for engine outcome assessments with reduced uncertainty levels.
Additionally, one more optimization procedure called the
harmony search algorithm (HSA) is combined with the initial
ANFIS algorithm to examine the feasibility of the model, thus
comparing the outcomes of each model with one another.
Finally, considered models are ranked according to different
criteria using the TOPSIS method to provide future researchers
with some groundwork before opting for a prediction process.
Summarizing the above trends, the following points are

coined and presented.
• Premixing EC oils with nanoadditives was found to be a

reasonable and possible option to be used in diesel
engines due to its easy accessibility and sustainable nature.

• Examination of engine outcomes for multiple nano-
additives varied in different proportions, while engaging
soft computing36 and metaheuristic methods37 such as
ANFIS, ANFIS-GA, and ANFIS-HSA have seldom been
addressed in the literature as per the authors’ knowledge.

• Previous studies have emphasized the reputation of
combining soft computing prediction models with
metaheuristic models, yielding accurate engine character-
istics with reduced effort, cost, labor, time, and energy.38

Literature studies specified above clearly indicate the
prevalence of significant work in biofuel optimization and

performance boost with the help of statistical software and soft
computing techniques. The novelty of the existing study is
prevalent since absolutely no previous work has been reported
for boosting engine performance and reducing emissions (using
nanoparticles) while employing prediction models (ANFIS)
and optimization techniques (GA and HSA) for Eichhornia
crassipes oils. The exceptional implemented model applied in
diesel engines reduces the number of trial or experimentation
runs with proper prediction, which happens by training and
testing the data inputs, making the current work innovative,
specific, and accurate. The application of artificial intelligence
techniques integrated with optimization techniques will yield
revolutionary results in the current field of petro-diesel engines.
The structure of the research has been explained in Figure 2.

2. MATERIALS AND METHODS
After establishing the potential of biodiesels in diesel engines,
researchers have moved toward experimental analysis of the

Figure 3. E. crassipes site (a) and E. crassipes stems (b).

Figure 4. Experimental setup of the PETTER-AV engine.

Table 1. Technical Details of the Engine

sl. no. component specification

1 engine make PETTER-AV1
2 engine type CRDI, 4-stroke, DI, water-cooled
3 bore 80 mm
4 stroke 110 mm
5 rated power 5 BHP at 1500 rpm
7 compression ratio 19:1
8 dynamometer Eddy current
10 load sensor load cell, type strain gauge
11 compression pressure 6.2 MPa
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prepared blends of fuel. To furnish the experimental values, a
specified data set is prepared, which predicts and replicates the
experimentation values. Primarily, the inputs and outputs of the
research data are classified and categorized into different levels.
Further, the interrelationship between variables and outcomes is
established by modeling the parameters. The experimental
inputs were load applied, blend percentage, nanoparticle
concentration, and injection pressure. It is upon this benchmark
that the input proposed will be evaluated for maximum brake
thermal efficiency, minimum brake specific fuel consumption,
and minimum emission exhaust gases such as CO, NOx, and
UBHC. Soft computing techniques integrated with metaheur-
istic approaches have been explored in this research to compare
the investigational and algorithm-derived data explained in four
successive steps: (a) gathering the investigational data from the
engine and grouping the data sets based on training and testing,
(b) recognizing the finest performing model within the ANFIS
network for evaluating the performance and exhaust attributes of
diesel engines, (c) combining the outcomes of the ANFISmodel
with GA and HSA optimization techniques, and (d) finally,
ranking the models on the basis of various criteria, which will
provide a foundation to future researchers while opting for
models.

2.1. Data Compilation. The investigational data set
required for developing the prediction model was generated
from the diesel engine test setup provided with EC biofuel.
These oils were simultaneously combined with couple nano-
particles, namely, aluminum oxide (Al2O3) and zinc oxide
(ZnO), in variable proportions. The performance and exhaust
attributes were estimated for the developed couple mixtures on a
petro-diesel engine, generating a data set based on various
nanoparticle proportions for various blend fractions, engine
loads, and injection pressures. Subsequent segments comprise a
comprehensive explanation of the steps followed in information
prediction.39

2.2. Material Preparation and Raw E. crassipes Oil
Conversion into Biodiesel Analysis. One of the primary
disadvantages of biofuels is that the availability of rawmaterial to
procure oils for production of biodiesel is nullified using waste
products, which are easily and freely available in nature. This

segment explains the production and mixing process of
biodiesel−diesel blends with nanoparticles to form a hybrid
and superior fuel. The EC plant was made available from local
ponds near the New Delhi area, as depicted in Figure 3.
Furthermore, chemicals such as methanol (99%), KOH (96%),
and phenolphthalein indicator were readily available from the
chemical laboratory of Al-Falah University. An ultrasonic system
was also used to mix all chemicals thoroughly as the yield
conversion was substantially low using conventional methods.
Nanoadditives used in the study were received in the powdered
form from Khari-bali, New Delhi.

The process begins with cutting down and collecting EC
plants from the nearest pond. The EC leaves and stem are
separated from each other. The stems are further shredded to
required limits, while leaves are discarded. The shredded stems
are then heated in a furnace at temperatures above 80 °C. The
stems are treated with available chemicals such as potassium
hydroxide and sulfuric acid for biofuel production. Although
plants have lower free fatty acids (FFAs), a titration method is
employed to validate the results. Roughly 50 g of EC oil was
poured into a glass along with chemical additions such as
propanol and a color indicator. The glass was further placed
under a KOH solution where the solution was added until the
final purple color persists even on shaking. The ultimate FFA
was generated. The ultimate reaction mixture comprised
biodiesel and glycerin, which separated into two distinct
deposits. The proportions of acid and oil were kept at a
persistent ratio of acid/oil = 20/200(w/w), whereas methanol
was maintained at a ratio of 200 g/400 mL.

As discussed above, the shortcomings of biodiesel application
in diesel engines can be addressed by mixing nanoadditives with
biodiesel−diesel blends, which provide superior performance
parameters. It has already been established through a literature
survey that mixing nanoparticles enable a larger surface area with
a potential drop in viscosity and density levels. Normally,
nanoadditives and biodiesel cannot be mixed directly with each
other. It requires a chemical catalyst and an energy-imparting
process for effective mixing. This is furnished by mixing
Surfactant 30 as the catalyst, while an ultrasonic horn provides
the necessary energy addition to the reaction for boosting the
intermixing capability. Metal-based particles are primarily
transformed into nanofluids, which are easily miscible with
biodiesels. Initially, the nanoadditives are weighed and
combined with normal water to form nanofluids. The mixture
is then positioned under an ultrasonic reactor at 90−100 kHz for
20 min. The size of nanoparticles applied in this investigation is
around 30 nm. The colorless nanofluid is also further combined
with biodiesel. The EC blend for the ultimate proportion of
aluminum nanoadditive biodiesel (ABD) and zinc nanoadditive
biodiesel (ZBD) contained 93% biodiesel, 4% nanofluid, and 3%
surfactant volume basis.40

2.3. Setup of Test Engines. The engine setup employed for
experimentation determined the performance and emission
parameters for biodiesel-based fuels, as displayed in Figure 4.
Primary investigations were performed on a common rail direct
injection (CRDI) diesel stationary engine. The engine load can
be altered by varying the speed of the engine to predict the
performance and emission parameters. The engine loading is
measured and varied by an eddy-current dynamometer. The
resistive-type load panel consists of a voltmeter and a current
meter. An eddy-current dynamometer in combination with the
diesel engine was employed to regulate the engine torque in the
range from 0 to 18 kgf. The temperature of the exhaust gas was

Table 2. Comparison of Physiochemical Properties between
Applied Test Fuels

properties ABD ZBD
E. crassipes
biodiesel diesel

ASTM
limit

density at 15 °C
(kg/m3)

884 890 905 841 860−900

kinematic
viscosity (cSt)

3.50 3.55 2.8 4.56 2.52−7.5

calorific value
(MJ/kg)

49.8 47.3 41.93 44.85 min. 33

flash point (°C) 71.36 69.31 105 51 min. 130
FFA (%) 1.2 0.0014 max. 2
cetane number
(°C)

59 57 55 51.3 min. 45

Table 3. CCRD Design for Engine Input Control Parameters

coded level blending (%) IP NPC load

−2 0 180 0 20
−1 5 190 5 40
0 10 200 10 60
1 15 210 15 80
2 20 220 20 100
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measured by a K-type thermocouple. A separate panel box is
included within the system specifying the measurements such as
fuel tank, air box, transmitters for air, and fuel flow. The engine
exhausts primarily include UBHC, CO, and NOx emissions,
which were displayed on the screen of gas analyzers. Table 1
specifies the various technical details of the engine setup. In
earlier experimentation cases on large diesel engines, like marine
engines, to build a feasible interrelationship between input and
output variables, a large data set was required, with ∼10 000 to
12 000 values. This consumed time, cost, fuel, and labor. By
application of smart models, the data can be predicted by
training and testing the engine with a smaller data set. This
would decrease the large experimentation process and furnish
values with an uncertainty acceptable to the investigator.

2.4. Physiochemical Characterization of Diesel Blends.
Petro-diesel and nanoparticles were added in different
concentrations to basically estimate the feasibility of the
obtained fuel in a CI engine. The E. crassipes oil biodiesel
physiochemical properties were quite identical to those of
petroleum-derived diesel oil as demonstrated in Table 2, thereby
prompting a study on its suitability for an engine. Additional
benefits such as a higher calorific value further added to the fuel
advantage in the heating process. The viscosity of the fuel blends
was obtained by a capillary viscometer. A hydrometer was
employed to determine the density of the fuel, while a bomb
calorimeter apparatus specified the calorific value.41 The final
test blends of aluminum oxide (ABD) and zinc oxide (ZBD)
were found to be in accordance with global ASTM and EN
standards, apparent from their physiochemical properties
presented in Table 2.

2.5. Experimentation Analysis Using the Response
Surface Methodology Technique. Experimentation and
investigation of diesel engine parameters have always remained

an expensive proposition, especially in larger engines such as
marine engines. Several input parameters need to be varied to
obtain the required data set and also establish a feasible
interconnection between the input constraints and output
values. To furnish a smaller data set with a feasible relationship
establishment between input and output variables, response
surface methodology (RSM) is used. Application of the RSM
method establishes a feasible approach to solving and
interconnecting the input variables with required outcomes.
This stage is decisive for developing a practical data set of input
variables for attaining the optimal responses with limited access
to experimental data sets. Prior problems solved by RSM in
experiment-based investigations have well-found noteworthy
enhancements in generating output responses with insignificant
statistical uncertainties. This design planning is well considered
to be the primary foundation among its other counterparts due
to its proficiency in summing up experimental levels along all
major coordinate axis in the opposite direction of origin and at a
distance equal to the semidiagonal hypercube of the factorial
architecture. Ranges developed for input parameters strongly
influenced the output responses, beyond which the effects
became marginal. The load variation ranged between 20 and
100%, with the biodiesel concentration at a maximum of 20%,
injection pressure variation between 180 and 220 bar, and
varying the nanoparticle concentration between 0 and 20%. The
experiment was conducted between two different nanoparticles
(Al2O3 and ZnO) so as to obtain the finest fuel that can be
successfully applied in diesel engines based on output responses.
A given set of input variables is available from the investigation,
in which three readings were taken simultaneously to develop
fool-proof values with minimum uncertainty. Lastly, their
average value was applied as the experimental value for further
analysis. The center input values as specified in Table 3 were

Figure 5. General approach applied in the ANFIS model.
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suggested in the engine specifications when operated with neat
diesel as fuel.42

The data set comprises a number of control factors; numerical
and coded values are employed in the CCRD array, comprising a
total of 60 runs.

2.6. Advantages of the Present Work. The present study
is a novel work where diesel engine performance and emission
parameters are predicted based on a relationship developed by
hybrid models. To furnish accurate prediction, multiple models
are applied and compared on different parameters. These
models are further ranked for best performance and worst
performance so as to provide a future framework for upcoming
researchers. The following are a few benefits of this research.

• Utilization of waste resources for production of biofuel,
thereby not harming the environment and providing a
sustainable fuel for diesel engines.

• Furnishing a viable interrelationship with a smaller diesel
engine data set with acceptable uncertainty levels.

• Prediction of missing data, simply by incorporating
training and testing models separately.

• Experimentation at a comparatively lower cost and lower
fuel consumption.

• Faster result generation usingmodels that would consume
substantial time by a conventional experimentation
process.

3. MODELING AND OPTIMIZATION
The reading generated from the experimental setup is modeled
with the help of the first-order Takagi−Sugeno artificial neuro-

fuzzy interface system (ANFIS). The modeling was structured
on the system consisting of four inputs as depicted in Figure 5 so
as to evaluate the performance and exhaust parameters
considered as the foremost objective functions. Previously,
ANFIS-based models have been applied at various levels in the
field of thermal engineering for developing an input−output
framework and simultaneously understanding the relationship
between unclear and difficult problems having a limited,
nonlinear, and uncertain database. The popularity of ANFIS
models has reached several folds mainly due to their capability to
construct effective fuzzy rules, facilitating efficient surface plots
for outcome responses. Practically, there is an urgent need to

implement such artificial neural techniques in engine perform-
ance evaluations since this methodology may prove to be a
faultless alternative to the conventional experimental techni-
ques, thereby furnishing outcomes with enhanced accuracy and
reliability. The general prototype of ANFIS comprises six
different layers with an initial layer of input parameters, followed
by a fuzzification layer, a rule consequent layer, a rule strength
normalization layer, a rule consequent layer, and finally a rule
inference layer. Constructing a feasible ANFIS structure
indicates the presence of the fuzzy theory and membership
frameworks. Data generation was furnished by developing five
different FIS models for objective functions, i.e., BTE, BSEC,
CO, NOx, and UBHC.43 Approximately 60 values of input
parameters were selected, and on that basis, data patterns were
generated from the experiments categorizing them randomly
into two subsets, i.e., 45 (≈75%) and 15 (≈25%), data for the
training and testing ANFISmodels, respectively. The framework
of the single ANFIS model is explained in Table 4.

The following equations of ANFIS were applied to generate
different responses by modeling.

Layer 1 − fuzzification layer:

= =Q x i( ), for 1, 2i A1, i (1)

or

= =Q y j( ), for 1, 2j B1, j (2)
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Layer 2 − product layer:
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= =
+

=Q w
w

w w
i, for 1, 2i i

i
3,

1 2 (5)

Layer 4 − defuzzied layer:
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= + + + + +f w p x q y r w p x q y r( ) ( )1 1 1 1 2 2 2 2 (9)

= + + + + +f w p x w q y w r w p x w q y w r( ) ( )1 1 1 1 1 1 2 2 2 2 2 2

(10)

Initially, modeling begins with prescribing the fitness function
associated with engine outputs, which conforms with the
complexity of the problem statement. Orthodox approaches
employed to generate the fitness function for outcomes
consume a considerable amount of time and labor. Nevertheless,
the ANFIS approach establishes an acceptable objective
function due to its ability to generate the data without requiring
any preceding model history. Estimations and predictions
determined from the ANFIS technique can be further perfected

Table 4. Developed ANFIS Framework for Training Set of
Data

parameters of the model values

total number of nodes 193
number of linear parameters 81
number of nonlinear parameters 36
number of training data pairs 45
number of rules that are fuzzy 81
membership function triangular

Table 5. GA Algorithm Framework

type of selection method Roulette wheel

population scale 81
iterations 3200
crossover (%) 0.83
mutation rate (%) 0.83
level of mutation 0.8
selection pressure 10
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with improved precision and efficiency using the genetic
algorithm in the final outcome values. The overfitting or
convergence of the curve is avoided since the plot of training loss
continues to increase with experienced data sets. Also, the plot of
testing data increases continuously, thereby having no over-
fitting among data.
The uncertainty levels found in the ANFIS model can be

removed to some extent by employing optimization techniques.
In the literature, application of the ANFIS approach has
displayed a small extent of inaccuracy, mainly as the outcomes
are caught within the local optima for multiobjective
optimization problems. Also, the conflicting outputs complicate
the model development. To overcome this complexity, hybrid
techniques such as genetic algorithms are employed to optimize
the problem rapidly and effectively. Application of a randomly
searched GA algorithm facilitates cost-effective and efficient
responses. Genetic algorithm is an adaptive combinatorial
search algorithm working on the basic principle of biological
evolution where the permutations are created based on parent−
child combination. Themodel employs a data set to generate the

finest combination of inputs facilitating the best outcomes,
whose framework is specified in Table 5. Previous research have
validated the application of GA compared with other multi-
variate techniques that need longer periods to furnish outcomes
even while employing a comprehensive nonparametric strategy,
to recognize the ideal result for a comprehensive evaluation.
Therefore, coupling prediction techniques with the GA-
weighted sorting technique lowers the error levels in member-
ship functions, enabling smooth improvisation within the basic
Sugeno fuzzy model.44 The simulation was executed by simple
programming steps applied in MATLAB software (version
R2018a). The flowchart of the ANFIS-GA algorithm is provided
in Figure 6a.

The present research also incorporates an established
optimization approach called the harmony search algorithm
(HSA), which has gained considerable popularity, probably due
to its improved convergence ability. Different nanoparticles
(ABD and ZBD) are amalgamated to optimize the engine
characteristics with the available small data set. Furthermore,
results of HSA optimization were compared with previous
evolutionary algorithm integrated prediction-optimization
models (ANFIS and ANFIS-GA) based on the error associated
with each solution. Also, the output solutions from these models
should fulfill the criteria set by ASTM standards for diesel
engines. The HSA approach has previously been successfully
employed in several fields for multifunction optimization
processes, which leads to faster convergence and appropriate
sorting based on priority. The input data set is fed into neuro-
fuzzy designer stipulating membership functions for input−
output combinations. Further, the model is fine-tuned by

Figure 6. (a) Algorithm of ANFIS-GA and (b) HSA algorithm.

Table 6. Pearson’s Correlation Coefficient of Five Engine
Parameters

parameters BTE BSEC CO NOx UBHC

BTE 1 −0.911 −0.852 −0.775 −0.727
BSEC −0.911 1 −0.953 −0.884 −0.828
CO −0.852 −0.953 1 −0.949 −0.917
NOx −0.775 −0.884 −0.949 1 −0.965
UBHC −0.727 −0.828 −0.917 −0.965 1
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incorporating the HSA algorithm into the predicted values,
which successfully executes multiobjective optimization for all
outcomes.
The primary aim of incorporating the optimizationmodel into

the neuro-fuzzy diesel system is to maximize the BTE, minimize
the BSEC, and minimize the exhaust effluents (NOx, UBHC,
and CO) concurrently. A comprehensive flowchart is presented
in Figure 6b highlighting the steps involved in theHSA approach
in generating a multiobjective output for performance and
exhaust emission of E. crassipes oil biodiesel. The local

optimization can significantly reduce the required number of
iterations to achieve the optimal solution.

It is a common practice that engine outcomes might be
interrelated to each other based on the fact that input conditions
remain the same for all outcomes. Therefore, any adherent
correlation between the five objective functions was evaluated
with the aid of Pearson’s correlation coefficient as shown in
Table 6.

As apparent from the above table, the coefficient, when
applied to the diesel engine model, ranges between 0 and ±1.
The lowest value is allocated when no linear correlation is

Figure 7. FIS framework with 81 rules for a particular set of inputs.

Figure 8. Some fuzzy rules developed in the ANFIS model.
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established between any output variables, and the zenith value is
assigned when the best linear correlation between any two
variables is obtained. Similarly, the sign of the correlation
establishes the direction of the relationship between the output
parameters. However, insignificant relationship values were
derived for all outcomes among each other as depicted in Table
10. Also, the mutual correlations developed between various
outcomes were indirect and contradictory, thereby being
incompatible with the original model. Henceforth, all five
objective functions (outputs) were drafted in the optimization
process so as to generate the best (optimum) input variables by
trading off between the engine performance and emission
characteristics. The output responses achieved for the ANFIS
models, i.e., BTE (FIS1 (X)), BSEC (FIS2 (X)), CO (FIS3
(X)), NOx (FIS4 (X)), and UBHC (FIS5 (X)), were interfaced
into the optimization technique.
HSA was applied to generate top-notch responses by

optimizing the best interdependency matrix. The following
steps were involved while employing the HSA algorithm.
Step 1: Parameter initialization, which includes harmony

memory size (HMS), harmony memory considering rate
(HMCR), bandwidth (BW), pitch adjusting rate (PAR), and
the stopping criteria.

Step 2: Development of the harmony memory (HM) matrix
using randomly generated solution vectors within the upper and
lower bounds of design variables based on the associated cost
function values.

Step 3: Modification or improvement of the decision variable
(harmony) with every successive iteration that is created by
jointly considering the harmony memory, pitch adjustment
decision, and random selection procedure.

Step 4: Updating or interchanging the worst harmony of HM
with the new vector if it furnishes a better solution (smaller cost
function).

Keep repeating Steps 3 and 4 until the termination criterion
(or maximum iteration number) is fulfilled.

Data generated through these models are compared with
experimental values to provide a comparative analysis to sort out
the best working model based on accuracy. The discrepancy in
the developed model could be explained with statistical tools
such as coefficient of determination (R2) and mean-squared
error (RMSE) provided in eqs 11 and 12, respectively.

=
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P ERMSE
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( )
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i i
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2

(11)

Figure 9. Surface plots for BTE vs input conditions (a−f).
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i1 , RMSE is the root-mean-squared error, R2 is
the fraction of variance, Pi is the predicted value obtained from
modeling, Ei is the experimental value generated, Em is the mean
of the predicted values generated frommodels,N is the available
data, and i is the trial run value that needs to be calculated.

4. RESULTS AND DISCUSSIONS
4.1. Prediction of Engine Performance and Emission

Parameters by ANFIS. The present research began with
preparing blends of the EC plant biodiesel and metallic
nanoparticles in varying combinations. Subsequently, due to
the large levels provided in the blending proportion, the required
data sets become extremely large. A substantial number of
input−output data sets gets are generated with various
permutations and combinations to accurately detect engine
characteristics, thus consuming time, labor, energy, and fuel.
Prediction models are applied to estimate the model
interrelationship between constraints and outcomes, and
subsequently, values are predicted on that relationship. The
models were built on different concepts of AI and metaheuristic
techniques, in which data was fed into the ANFIS prediction
model. The ANFIS model is capable of estimating and

establishing a viable interrelationship between variables of the
study and its subsequent outcomes. The engine outcome
parameters comprised performance attributes such as BTE and
BSEC and exhaust attributes such as UBHC, NOx, and CO. The
algorithm developed in this study offers an alternative to
conventional technology for a fusion strategy (ANFIS), which
facilitates effectual and operative output prediction even for a
reduced data set with lower uncertainties in the system. The
variables of the study were derived through RSM for different
combinations and then fed to the ANFIS model in MATLAB.
The data sets were divided into training and testing data sets and
fed to the ANFIS structure. Array-based hybridization is
executed to boost the mega-functionality of the framework
designed for the experimental engine characteristics. Previous
research have explored and simultaneously established the
ANFIS framework to be a potential tool capable of predicting
the interrelationship among four input variables and five layers
to be successfully implemented in well-characterized complex
engineering problems. The fuzzy interface system (FIS)
structure is modeled for each output variable, which is distinctly
designed for four input constraints in the ANFIS operation as
shown in Figure 7. About 81 rules were automatically developed
within the system, which is considered a viable analysis situs for
associating the operational variables and desired parameters.
Figure 7 displays the basic rules applied in the ANFIS model for
the output parameters (e.g., NOx). In fuzzy interface system
(FIS) development, the assertions formulated concerning the

Figure 10. Surface plots for BSEC vs input conditions (a−f).
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fuzzy rules in ANFIS are interrelated to the Sugeno model,
which estimates the output values through predefined values
obtained from the input responses as shown in Figure 8. For
relations among outputs, 3D surface plots were developed
indicating the relationship between any two inputs (out of four)
and an output response. This makes things easier forthe curve
tracing between input variables and outcome responses for
superior nanoparticle additions (aluminum oxide) as provided
below in Figures 9−13. Each rule and law developed in the
Sugeno model after training and testing the data in the ANFIS
model were validated by evaluating the mean square deviation
and the fraction of variance approximation. Employing the
ANFIS approach has successfully predicted reliable values
similar to experimental engine outcomes. The accuracy or
closeness of the predicted values is plotted against the original
experimental engine values in Figures 14−18 to validate model
consistency and accuracy.

4.2. Prediction of Engine Performance and Emission
Parameters by ANFIS-GA. The results drawn from the
previous ANFIS model can be further optimized based on a set
of parameters of the study. Using optimization techniques in
combination with intelligent approaches in prediction models
improves the accuracy of the model by minimizing uncertainty.
Values estimated above are additionally fine-tuned with better
accuracy and efficiency. The implementation of ANFIS-GA
eradicates any uncertainty present within the model, which may

be due to the steep descent methodology of outcomes often
caught within the local optima. Application of a randomly
searched GA algorithm facilitates cost-effective and efficient
responses. Genetic algorithm is an adaptive combinatorial
search algorithm formulated on the basic principle of biological
evolution, where the input combinations are reconstructed
based on parent−child grouping. The model optimizes the
ANFIS-generated outcomes, thereby obtaining the finest
combination of inputs yielding the best outcomes. Studies
(thermal engineering) have validated the application of GA
compared with other multivariate techniques that consume a lot
of time to estimate outcomes even when employing a
comprehensive nonparametric strategy, to distinguish the ideal
result for a comprehensive evaluation. Henceforth, employing a
GA-weighted categorization approach in ANFIS-generated
predictions lowers the uncertainty in membership functions,
facilitating improvisation in Sugeno fuzzy-based rule structures.

Development of the fitness equation was managed by
contemplating the average statistical error values for all trial
runs between the experimental and predicted responses. When
feeding values in the GA toolbox, the fitness function was
evoked. The fitness equations obtained by all five models are
given below

Figure 11. Surface plots for UBHC vs input conditions (a−f).
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= +
+ ×
× + × +
× + × +
× ×
× + ×
×

BTE 45.6 0.0660 LOAD 0.830 BLEND% 0.394 IGN PRE
0.630 NPC 0.000050 LOAD LOAD 0.00224 BLEND%
BLEND% 0.001121 IGN PRE IGN PRE 0.002671 NPC
NPC 0.000337 LOAD BLEND% 0.000593 LOAD
IGN PRE 0.000814 LOAD NPC 0.003279 BLEND%
IGN PRE 0.00420 BLEND% NPC 0.002259 IGN PRE
NPC (13)

= +
+ + ×

× ×
× ×

+ × + ×
× × +

×

BSFC 2.775 0.006405 LOAD 0.03416 BLEND%
0.004270 IP 0.04270 NPC 0.000000 LOAD LOAD
0.000000 BLEND% BLEND% 0.000000 IP IP
0.000000 NPC NPC 0.000000 LOAD BLEND%
0.000000 LOAD IP 0.000000 LOAD NPC 0.000000

BLEND% IP 0.000000 BLEND% NPC 0.000000 IP
NPC (14)

= + + +
+ × +

× + ×
× × ×
+ × +
× + × ×

NOx 108.22 0.34025 LOAD 1.7973 BLEND% 0.2119 IP
2.2502 NPC 0.000008 LOAD LOAD 0.000241

BLEND% BLEND% 0.000037 IP IP 0.000248 NPC
NPC 0.000097 LOAD BLEND% 0.000001 LOAD IP
0.000029 LOAD NPC 0.000092 BLEND%
IP 0.000054 BLEND% NPC 0.000078 IP NPC

(15)

=
× +

× + × ×
× + ×

+ × + × +
× + ×

UBHC 37.1 0.0074 LOAD 0.291 BLEND% 0.271 IP
0.145 NPC 0.00068 LOAD LOAD 0.00305 BLEND%
BLEND% 0.000659 IP IP 0.00095 NPC NPC
0.000562 LOAD BLEND% 0.000028 LOAD IP
0.0099 LOAD NPC 0.0096 BLEND% IP 0.0020

BLEND% NPC 0.036 IP NPC (16)

= +
+ ×

× + ×
+ × + ×
+ × ×

× + ×
×

CO 0.0412 0.000055 LOAD 0.000713 BLEND%
0.000358 IP 0.000580 NPC 0.000000 LOAD LOAD
0.000002 BLEND% BLEND% 0.000001 IP IP
0.000002 NPC NPC 0.000000 LOAD BLEND%
0.000000 LOAD IP 0.000001 LOAD NPC 0.000003

BLEND% IP 0.000004 BLEND% NPC 0.000002 IP
NPC (17)

The ANFIS-GA hybrid model approximated the predicted
parameters, further ascertaining the fuzzy rules and association
between input and output variables. The soft computing
approach (ANFIS) coupled with an optimization model (GA)
uses the best of both systems, therefore enabling a quicker and
efficient architecture process. The intelligent model is applied to
predict the performance parameters (BTE and BSEC) and
emission parameters (UBHC, NOx, and CO) based on the
association developed earlier with the available experimental
data set, as displayed in Figures 14−18. Comparative analysis
between the ANFIS-GA and ANFIS methods shows that the

Figure 12. Surface plots for CO vs input conditions (a−f).
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former method outperformed the latter model based on the
accuracy of prediction. Moreover, the major benefit of
employing soft computing and optimization integrated methods
lies in eradicating the overestimated or underestimated
numbers. Thus, the ANFIS-GA algorithm has proved to be an
influential instrument for modeling the engine performance and
emission characteristics.

4.3. Prediction of Engine Performance and Emission
Parameters by ANFIS-HSA. As explained in the previous
section, values are generated from the ANFISmodel to fine-tune
the extreme conditions with the help of the HSA approach. The
HSA estimates perfect operational input variables in accordance
with ASTM standards for diesel engines. This particular
optimization approach has previously been successfully
employed in many fields of engineering for multifunction
optimization, therefore yielding faster convergence and
appropriate sorting based on the cost function.28,29 The initial
parameters such as harmony memory size (HMS), harmony
memory considering rate (HMCR), bandwidth (BW), pitch
adjusting rate (PAR), and stopping criteria are established in the
model. Harmony matrix (HM) is established using randomly
generated solution vectors within the upper and lower bounds of
design variables based on the cost function. The solution having
the best cost function replaces the worst one with every
subsequent iteration. Generally, multiobjective optimization
applied in diesel engines involves complex nonlinear equations
with contrasting objectives. Therefore, to address this complex-

ity in engine output responses, heuristic techniques such as HSA
have been used to facilitate fast and efficient values. The
simulation was performed by writing a code in MATLAB
software (version R2018a), which worked on the ANFIS-HSA
optimization method. The Pareto-optimal front set developed
for engine parameters was attained at the best operating
conditions. Table 9 depicts the results obtained by the above
algorithm, also showing the best conditions to attain the
required engine outputs. A comparative plot is displayed in
Figures 14−1818, which displays the estimated and exper-
imental outcomes for a fuzzy system for all models. The
outcomes attained in this section were in close agreement with
the generated experimental values, thereby displaying their
dominance on similar models (ANFIS and ANFIS-GA) for data
prediction. Therefore, the ANFIS-HSA integration proved to be
a fruitful transition in predicting accurate results with a higher
generalization capability for performance and emission charac-
teristics for diesel engines.

The Pareto-optimal front established in the ANFIS-HSA
approach is displayed (in bold line) in Table 7. Optimal
conditions attained are an optimal trade-off between the five
established outcomes defined in themodel earlier. In all 60 trials,
the best input conditions representing the ultimate trade-off
between outcomes are presented in Table 9. The optimized
responses generated from the above technique are displayed in
the bolded line in the table, where the optimum load is 100%, the
optimum blend percentage is 20%, the optimum nanoparticle

Figure 13. Surface plots for NOx vs input conditions (a−f).
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concentration (NPC) is 20 ppm, and the optimum injection
pressure (IP) is 200 bar. These conditions yield BTE to be 20.80
kW, BSEC to be 2.48047, NOx to be 150.501 ppm, UBHC to be
4.05025 ppm, and CO to be 0.018326%, which is a trade-off
between output values. A preference ranking was developed for
the established outcomes, in which BTEwas given themaximum
preference, while BSEC, NOx, UBHC, and COwere considered
equally. In addition, the rest of the factors (outputs) were
satisfactory and in accordance with the ASTM standards and EN
standards for diesel engines for these optimized conditions.
Furthermore, substantial variation between optimum operating
conditions and conventional operating conditions was regis-
tered. Henceforth, the above statement justifies and validates the
suitability of engine characteristic analysis by employing the
ANFIS-HSAmodel so as to analyze and optimize complex diesel
engine parameters.

4.4. Comparative Study of the Predicted Values of the
Developed Models. The results predicted by fuzzy optimized
models (ANFIS, ANFIS-GA, and ANFIS-HSA) were compared
with the original experimental values on the basis of regression
methods such as root-mean-square error (RMSE) and fraction
of variance R2. The accuracy of the predictive model was
validated by considering the regression formulas like RMSE and

R2. Figures 19−23 present a comparative analysis of the
regression errors approximated from the predicted outcomes
such as BTE, BSEC, UBHC, CO, and NOX, respectively. The
error values generated by the ANFIS-HSA model were quite
parallel to the experimental responses in comparison to those
obtained by ANFIS and ANFIS-GA modeling. Therefore, the
predicted outcomes generated in the ANFIS-HSA framework
are more reliable and exact in formulating the fuzzy relationship
in comparison to its counterparts. The graphs plotted validate
the usefulness of soft computing techniques as the estimated
values are quite close to the experimental value, enabling an
accurate fit. Also, better results were evaluated in the case of
ANFIS-HSA integration in comparison to the single ANFIS
model and the ANFIS-GA model.45

4.5. Ranking Analysis. The multiple attribute performance
models furnished by the TOPSIS method were adopted in this
research to enhance the performance of the diesel engine
prediction models, which includes the following steps.

Step 1: Gather data from stakeholders regarding the essential
evaluations of the outcome responses in linguistic terms such as
extremely low, low, average, high, and extremely high from the
experts.

Figure 14. Comparative study of observational and expected outcomes for (a) BTE training and (b) BTE testing.
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Step 2: Transform various linguistic values into numeral
valuations.

XabN = (labN,···,), where a = 1, 2, 3,···,m; b = 1, 2, 3,··· n, where

= { } = =
=

a l b
N

P c umin ,
1

, max( )abN
N

N

abN abN
1 (18)

Step 3: evaluate the outcome responses for the combined
weights.

= [ ] ×B Pij m n (19)

Here, i = 1, 2, 3,···, m; j = 1, 2, 3,···, n
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Step 4: standardize the overall output matrices.

= [ ] = ··· = ···×V v i m j n, where 1, 2, 3, , ; 1, 2, 3, ,ij m n

(22)

Here

= ×v p w( )ij ij j (23)

Step 5: compute the standardized weighted matrices.

= { ··· }+ + +A v v, , n1 (24)
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= { }

= ···

+v v j J v j J j

n

max( ) IF ; min IF ,

1, 2, 3, ,

j ij ij

(25)

= { ··· } = {

} = ···

A v v v v j

J v j J j n

, , , where max( ) IF

; min IF , 1, 2, 3, ,

n j ij

ij

1

(26)

Step 6: establish the optimal solutions that are both positive and
negative.
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Figure 15. Comparative study of observational and expected outcomes for (a) BSEC training and (b) BSEC testing.
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Step 7: compute the differences between the actual data
collected from the ideal both positive and negative.

=
+

= ···+CC
d

d d
i n; 1, 2, ,i

i

i i (29)

Step 8: estimate the closeness coefficient (CC) data and evaluate
the pre-experimental studies based on them, starting with
research having the maximumCC value marked with the highest
rank. The rank degrades with decreasing CC value.
Table 8 illustrates the linguistic equivalents assigned to the

outcome reactions of the significance levels.
The essential weightage assigned to each attribute in linguistic

equivalents was independently evaluated by a decision-making
committee of key experts of the industry.
The performance score of each model was calculated after

calculating the ideal best and ideal worst and the Euclidean
distance in respective steps as shown in Table 9. Table 10
establishes the rank for each model used.
This study finally establishes the dominance of one model

over another and optimizes the criteria for the prediction model
based on performance attributes among the models and finds
that the best model is ANFIS-HSA, followed by ANFIS-GA, and
finally, the least favorite is ANFIS.46

4.6. Discussion. The results predicted by fuzzy optimized
models (ANFIS, ANFIS-GA, and ANFIS-HSA) were compared
with the original experimental values on the basis of regression
methods such as root-mean-square error (RMSE) and fraction
of variance R2. The accuracy of the predictive model was
validated by considering the regression formulas like RMSE and
R2.

The error values generated by the ANFIS-HSA model were
quite parallel to the experimental responses in comparison to
those obtained by ANFIS and ANFIS-GA modeling. Therefore,
the predicted outcomes generated in the ANFIS-HSA frame-
work are more reliable and exact in formulating the fuzzy
relationship in comparison to its counterparts. The graphs
plotted validate the usefulness of soft computing techniques as
the estimated values are quite close to the experimental value,
enabling an accurate fit. Also, better results were evaluated in the
case of the ANFIS-HSA integration in comparison to the single
ANFIS model and the ANFIS-GA model. This study finally
establishes the dominance of one model over another and
optimizes the criteria for the prediction model based on
performance attributes among themodels and finds that the best
model is ANFIS-HSA, followed by ANFIS-GA, and finally the
least favorite is ANFIS.

Figure 16. Comparative study of observational and expected outcomes for (a) CO training and (b) CO testing.
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5. VALIDATION OF THE PROPOSED MODEL WITH
PREVIOUS STUDIES

The intelligent-optimized models prepared in this study were
compared to other model integrations in thermal engineering
applications on the basis of statistical errors (RSME and R2).
The values generated by ANFIS-HSA were deemed quite close
and parallel to experimental values when compared to other
previous models that applied ANFIS or a similar framework to
predict output values.47 Therefore, the model furnished a
comprehensiveR2 value approaching 1, showing its accuracy. To
validate and defend the selection of the ANFIS-HSA model,
previous thermal engineering-related models were recollected
and compared, as presented in Table 11. In accordance with
earlier models, the present model has shown the same pattern of
higher accuracy (lowered RSMEwith a higherR2) in the ANFIS-
HSAmodel, thereby validating the proposed fuzzy-optimization
integrated framework.

6. ACADEMIC CONTRIBUTION OF THE RESEARCH
The ongoing COVID-19 pandemic is unquestionably one of the
most devastating events in the last few decades or so. One of its
major spread contributors is exhaust gas effluents, whose
molecules bind with the virus, making it spread at a higher
rate than normal. The second and third lockdowns are the
primary examples of the spread. Henceforth, using a sustainable
fuel and researching the experimental data through hybrid
models will counter the spread of this virus by lowering exhaust
gases as the pandemic has influenced people in all parts of the
world.48 At an individual level, everyone can contribute by using
such sustainable fuels with a smaller data set. Also, future
researchers will have a feasible model that can yield efficient
valuable experimental values for potential upcoming feedstocks
being sustainable in nature.49−51

7. CONCLUSIONS, LIMITATIONS, AND SCOPE FOR
FUTURE WORK

7.1. Conclusions. This study explored the potential of waste
EC plants, which are widely found in tropical countries, to be

Figure 17. Comparative study of observational and expected outcomes for (a) UBHC training and (b) UBHC testing.
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used in diesel engines by employing smaller and faster data sets
generated through soft computing and metaheuristic techni-
ques. The attained values through the prediction system were
compared with experimental values. Input constraints consid-
ered were blend proportion, load application, ignition pressure
(IP), and nanoadditive concentration (NPC). Furthermore, the
biodiesel is intermixed with a couple of metallic nanoadditives so
as to achieve the best engine characteristics among the different
blends. The outcome parameters comprised both engine
performance and exhaust parameters, which were compared
with values attained by employing hybrid models discussed

earlier. The primary reason for predicting model-based engine
outcomes is the complexity of attaining values of different and
large data sets in the case of diesel engines, which also seems to
be a tedious job. Thus, the present research validates the
practicability of such models in diesel engines as the outcomes
predicted achieved utmost accuracy with a cost-effective
framework. The mixed model employed the AI system to
generate real models so as to predict engine responses
efficaciously. The models were later ranked on the basis of
attributes and criteria to provide future researchers with some
groundwork. Furthermore, optimization techniques yielded a

Figure 18. Comparative study of observational and expected outcomes for (a) NOx training and (b) NOx testing.

Table 7. Pareto-Optimal Front Seta

trial run load blend, % IP NPC BTE BSEC UBHC CO NOx

50 100 20 220 20 24.87 2.9036 4.9556 0.022 181.6
9 80 0 210 15 15.94 2.1499 6.5614 0.014 125.42
20 100 20 200 20 20.802 2.4805 4.0503 0.018 150.5
26 20 0 180 0 10.198 2.9886 7.7765 0.009 131.21
36 20 0 180 20 14.38 2.2627 6.4804 0.013 92.616

aBolded line shows the best operational condition for corresponding engine outputs.
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perfect engine input combination, which furnished the best
possible input conditions for the biodiesel and its blends
employed in diesel engines. The scientific study might be

implemented in the real world by setting proper equipment for
collection of EC plants and converting them into sustainable
biodiesels. Furthermore, various feedstock performance can be

Figure 19. Comparative error study of various BTE models.

Figure 20. Comparative error study of various BSEC models.

Figure 21. Comparative error study of various UBHC models.
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easily computed by smart models (ANFIS-HSA) by adopting
strategies that yield faster results at a lower cost and high
accuracy. This research will aid the community by providing a
cleaner fuel and thereby safeguarding the environment from
exhaust gases. The main results of the research are enumerated
as follows.

• The general framework of the research was based on
hybridization of models with AI and metaheuristic
techniques to probe diesel engine characteristics with
multiple combinations of biodiesel blends and NPC,
which successfully replicated the original experimental
data sets, proving the model’s replicability in diesel
engines.

Figure 22. Comparative error study of various CO models.

Figure 23. Comparative error study of various NOx models.

Table 8. Linguistic Equivalents Assigned to the Outcome
Reactions of the Significance Levels

models/attributes cost accuracy
skill

requirement time

importance nonbeneficial beneficial nonbeneficial nonbeneficial

ANFIS-HSA 3 5 4 2
ANFIS 4 4 1 3
ANFIS-GA 4 4 4 4

Table 9. Positive and Negative Ideal Solution Matrix along with Performance Score

models/attributes cost accuracy skill requirement time Pi

ANFIS-HSA 0.02275702 0.260308 0.163439159 0.04117143 0.70155
ANFIS 0.03034269 0.208247 0.04085979 0.06175714 0.48323
ANFIS-GA 0.03034269 0.208247 0.163439159 0.08234286 0.55798

Table 10. Ranking of Models’ Selection Process in Solar
Radiation

models Pi (score) rank

ANFIS-HSA 0.70155 1
ANFIS-GA 0.55798 2
ANFIS 0.48323 3
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• Uncertainty developed among themodels was assessed by
statistical tools such as RSME and R2, where the ANFIS-
HSA hybrid model-achieved values were better predicted
as compared to other models.

• Appreciable and superior models have been prepared that
select the best combinational input characteristics, which
lower the engine emissions with a small experimentation
data set quickly and efficiently.

• This study also takes into consideration various nano-
particles such as aluminum oxide and zinc oxide in
different concentrations, thereby evaluating the best
among them in the required combination to reduce
emission rates. Aluminum oxide was estimated to be the
best nanoparticle with an optimum concentration of 20%.

• This study finally establishes the dominance of one model
over the other and optimizes the criteria for the prediction
model based on performance attributes among the
models and finds that the best model is ANFIS-HSA,
followed by ANFIS-GA, and finally the least favorite is
ANFIS.

• The established hybrid algorithms are capable of
predicting quicker results with utmost efficiency for
more future biofuel combinations, thereby enabling
researchers to minimize errors and develop a perfect
fuel that can provide a cleaner emission process.

7.2. Limitations. Research studies always lag in some
respect. Numerous limitations are associated with each research
due to which the research might remain incomplete and might
be potentially explored by other examiners. Corresponding to
other studies, the following are some primary limitations of this
study.

• Nonmetallic nanoadditives are seldom explored to
prepare biodiesel−diesel and nanoadditive blends.

• Other possible waste sources of biodiesel might be
interlinked with the current research.

• Limited parameters were considered in the present study.
• Only one type of engine was used without considering

bigger engines.
• Combustion parameters were not considered in the

research.
7.3. Scope for Future work. The restrictions or constraints

of the research give proper ideas to future researchers for
conducting forthcoming research. Previous studies have also
suggested possible works for the soft computing field with
successful results.43 Subsequent suggestions may be considered
as scope for future research.

• Combustion parameters can be incorporated in the next
possible research.

• A new model, the neuro-optimization technique, might
also be explored in the diesel engine field since in other
engineering applications the results were noteworthy.43

• More input constraints might be considered to build a
possible framework.

• Different types of engines might be considered for future
research.
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■ NOMENCLATURE
ASTM American Standard Test Method
B0 0% blending (E. crassipes biodiesel) with diesel
B5 5% blending (E. crassipes biodiesel) with diesel
B10 10% blending (E. crassipes biodiesel) with diesel
B15 15% blending (E. crassipes biodiesel) with diesel
B20 20% blending (E. crassipes biodiesel) with diesel

Table 11. Comparison of the PredictionCapability of Various
Models and Developed ANFIS-HSA

references model RMSE R2

Mostafaei40 ANFIS 0.28 0.94
Callejon-Ferre et al.42 ANFIS-GA 3.470 0.38
Naderloo et al.18 ANFIS 0.32 0.87
Gupta et al.44 ANFIS-GA 0.34 0.96
Aghbashlo et al.47 ANFIS-ALFIMO 0.423 0.92
BTE (current study) (ABD) ANFIS-HSA 0.210 0.9981
BSEC (current study) (ABD) ANFIS-HSA 0.272 0.9463
NOx (current study) (ABD) ANFIS-HSA 0.698 0.9002
CO (current study) (ABD) ANFIS-HSA 0.470 0.9214
UBHC (current study) (ABD) ANFIS-HSA 0.415 0.9842
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EB E. crassipes biodiesel
EC E. crassipes plant
RSM response surface methodology
BTE brake thermal efficiency
BSEC brake specific energy consumption
UBHC unburnt hydrocarbons
NOx oxides of nitrogen
CO carbon monoxide
FIS fuzzy interface system
ANFIS adaptive neuro-fuzzy inference system
A/F air−fuel ratio
GA genetic algorithm
RMSE root-mean-square error
ABD aluminum oxide biodiesel
ZBD zinc oxide biodiesel
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