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Abstract

We use data from the National Longitudinal Study of Adolescent to Adult Health and from

the Health and Retirement Study to explore how the effect of individuals’ genetic predisposi-

tion to higher BMI —measured by BMI polygenic scores— changes over the life-cycle for

several cohorts. We find that the effect of BMI polygenic scores on BMI increases signifi-

cantly as teenagers transition into adulthood (using the Add Health cohort, born 1974-83).

However, this is not the case for individuals aged 55+ who were born in earlier HRS cohorts

(1931-53), whose life-cycle pattern of genetic influence on BMI is remarkably stable as they

move into old-age.

Introduction

According to the World Health Organization, worldwide obesity has almost tripled since

1975, and about 39% and 13% of the world’s adult population in 2016 were overweight and

obese, respectively. The prevalence of overweight and obesity among children and adolescents

has risen even more dramatically from 4% in 1975 to just over 18% in 2016. The equivalent fig-

ures only for obesity among children and adolescents are just under 1% in 1975 and about 7%

in 2016 (for further details see https://www.who.int/news-room/fact-sheets/detail/obesity-

and-overweight).

These trends pose serious challenges to both individual and public health because raised

BMI is a risk factor for noncommunicable conditions such as high cholesterol, high blood

pressure, and coronary heart disease among others (see for instance [1] and the references

therein), as well as some cancers [2] and mental illnesses [3, 4]. Additionally, obesity has also

been shown to affect health care spending and individuals’ socioeconomic outcomes (see for

instance [5–9]).

Obesity is a many-sided problem with multiple determinants. Hence, its analysis has not

been based on a unique perspective, and scholars from several disciplines have contributed to

advance knowledge in this area. Social scientists have often focused on the role played by die-

tary and physical activity patterns that are in turn likely affected by factors like food prices,
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agricultural policies, income, maternal employment and technology [8, 10, 11]. Importantly,

BMI is also affected by genetic factors, and obesity is known to be both highly heritable and

polygenic (see for instance [12–21]).

In this paper we study how the association between obesity-related genetic variants and

BMI varies along the life-cycle or over time across several cohorts in the U.S., where obesity —

which affects about 39% of adults— has increased dramatically in the past decades [22], and

obesity-related conditions are some of the leading causes of preventable death [1]. We rely on

data from two longitudinal representative surveys that contain genome-wide data from

respondents: the National Longitudinal Study of Adolescent Health (Add Health hereafter)

and the Health and Retirement Study (HRS hereafter). Individuals’ genetic propensity to high

BMI is measured using BMI polygenic scores —available in both Add Health and the HRS—

constructed based on a recent large-scale genome wide association study for BMI [20]. We

study whether the association between BMI and BMI polygenic scores is amplified or miti-

gated as teenagers transition and settle into adulthood (using Add Health), and as middle-age

individuals transition to old-age (using the HRS). We also test whether significantly different

patterns arise by childhood socioeconomic status and gender.

Our paper is related to a growing body of research that investigates how individuals’ genetic

predisposition to different phenotypes interacts with the environment [23, 24]. In regard to

obesity, previous work has shown that childhood socioeconomic status [25], social under-

standings of body size [26], and individuals’ education [27] moderate the influence of obesity-

related genetic variants on obesity-related phenotypes.

Another related strand of the literature has instead used birth cohort as an indicator for

exposure to obesogenic environment. Studies for the U.S. have shown that the association

between obesity-related genetic variants and BMI is larger among individuals born in later

cohorts [25, 28–30]. Additionally, [31] and [32] have uncovered an increase in the contribu-

tion of genetic factors to variation in BMI for successive birth cohorts in Sweden and Den-

mark, respectively. This body of results has been interpreted as evidence that individuals’

genetic risk for elevated BMI is amplified when their lives unfold in more obesogenic socio-

historical contexts.

This paper focuses on a related question that has received less attention in the literature: is

the association between obesity-related genetic variants and obesity-related phenotypes atten-

uated or strengthened as individuals from the same cohort grow older? [33] have recently

shown that the gap in the prevalence of severe obesity between individuals in the top and bot-

tom polygenic score deciles widens during the transition from young adulthood to middle age

in the U.S. (using data from the Framingham Offspring and Coronary Artery Risk Develop-

ment in Young Adults studies), and they have also uncovered a similar pattern in children’s

weight from birth to 18 years of age in the UK (using data from the Avon Longitudinal Study

of Parents and Children). [34] use the Dunedin Multidisciplinary Health and Development

Study, which followed individuals born in 1972-73 in Dunedin (New Zealand) from birth

through 38 years, and they find that higher BMI genetic risk scores predict higher BMI growth

during childhood (from ages 3 through 13 years), as well as during adulthood (from ages 13

through 38 years).

We add to the limited literature on gene–age interaction effects on BMI [33–36] by analys-

ing the effect of BMI polygenic scores as individuals transition from adolescence to young

adulthood, and from middle-age to old-age. Moreover, we also analyse whether life-cycle pro-

files of genetic influence significantly differ by individual characteristics such as gender and

socioeconomic status.

We find that the effect of BMI polygenic scores on BMI significantly increases as teenagers

transition into adulthood. Specifically, our results for the younger cohort (Add Health, born
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1974-84) indicate that a standard deviation increase in BMI polygenic scores is associated with

a 4.2% increase in BMI at ages 15-16, while the percentage increase in BMI amounts to 5.7%

when individuals are about 28. For the earlier HRS Original cohort (born 1931-41), the effect

of BMI polygenic scores amounts to 4.2% when respondents are about 55 years old, and it

remains stable while they transition into old-age and eventually reach age 72. We uncover sim-

ilarly stable life-cycle patterns when focusing on subsequent HRS cohorts (born 1942-53) of 55

+ individuals. Our main result is unchanged when analyzing individuals’ life-cycle profiles sep-

arately by gender and socioeconomic status: the effect of BMI polygenic scores on BMI peaks

in early adulthood.

Interestingly, we also find that, in our later Add Health cohort, the effect of BMI polygenic

scores is significantly stronger for individuals with lower childhood socioeconomic status than

for their higher socioeconomic status counterparts. In contrast, genetic influence on BMI does

not significantly vary by socioeconomic status in any of the earlier HRS cohorts we analyze.

We also find that the patterns of genetic influence on BMI do not significantly vary by gender,

neither in Add Health nor in the HRS.

The remainder of the paper is organized as follows. The next section describes the data and

methods used. The following two sections present respectively the results and discuss some

robustness checks. The final section concludes.

Materials and methods

We use data from Add Health and from the HRS. We now describe both datasets, as well as

how our working samples have been constructed. We then explain the indicator we use to

measure individuals’ genetic predisposition to high BMI (which is available in both datasets),

and outline our empirical model.

The HRS dataset

The HRS is a nationally representative longitudinal study of the U.S. public over age 50 con-

ducted every two years since 1992. The HRS collects information on health, socioeconomic

background, employment, income, wealth, and other factors relevant to aging and retirement.

Genotyping was performed using DNA samples collected during enhanced face-to-face inter-

views conducted on half of the HRS sample each wave starting in 2006 (and in later waves for

new participants). Hence, respondents must have survived at least until genotyping started

(2006-08) to be part of our analysis. Detailed information on the HRS genotype data and qual-

ity control process can be found at http://hrsonline.isr.umich.edu/modules/meta/xyear/pgs/

desc/PGENSCORES3DD.pdf and http://hrsonline.isr.umich.edu/sitedocs/genetics/HRS2_qc_

report_SEPT2013.pdf.

The HRS includes several birth cohorts with different entry years. In order to maximize

sample size, our benchmark analysis is based on the so-called Original HRS cohort (born

between 1931 and 1941) surveyed every two years from 1992 to 2012. However, we stop fol-

lowing this cohort in 2008 to avoid exacerbating potential biases related to mortality selection,

which we discuss and address in Section Attrition. Our benchmark analysis relies on a bal-

anced panel sample of 3,181 Original HRS cohort members of European descent who

remained in the survey since 1992 until at least 2008, and for whom valid genetic data as well

as information regarding their age, sex, height and weight are available. We focus on people of

European descent because the BMI polygenic scores we use (described in detail in Section

BMI Polygenic Scores) were constructed using the results of a genome-wide association study

that mostly relied on a sample of European-descent individuals [20]. Based on self-reported

height and weight information we have computed the Body Mass Index for respondents at
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each wave using the standard formula: weight in kilograms divided by height in meters

squared (kg/m2). Individuals are classified as obese if their BMI is 30 or higher following the

World Health Organization’s recommendation regarding BMI thresholds for defining obesity

in adults [37]. We use self-reports instead of measured values of weight and height because the

latter are only available from 2006 onwards (see Section Objective Measurements versus Self-

Reports of Weight and Height).

Table 1 provides basic descriptives on age, sex, BMI, and obesity prevalence for our analytic

sample. Both mean BMI and obesity prevalence increase with age until individuals are almost

68, and they remain fairly stable thereafter at around 27.8 and 29%, respectively.

Additionally, we have replicated our analysis using two subsequent HRS cohorts: the War

Babies cohort (born 1942-47 and followed from 1998 until 2014), and the Early Baby Boomers

cohort (born 1948-55 and followed from 2004 until 2016). The sample selection criteria

applied to these cohorts are analogous to those described above for the Original HRS cohort.

Table 1. Summary statistics. HRS Original Cohort Sample.

Variable Mean Standard Deviation

BMI PGS (Normalized) 0 1.000

BMI 1992 26.951 4.562

BMI 1994 27.055 4.555

BMI 1996 27.267 4.739

BMI 1998 27.536 4.838

BMI 2000 27.689 4.935

BMI 2002 27.779 4.936

BMI 2004 27.871 5.126

BMI 2006 27.909 5.191

BMI 2008 27.825 5.247

Obese 1992 0.217 0.412

Obese 1994 0.235 0.424

Obese 1996 0.242 0.429

Obese 1998 0.263 0.440

Obese 2000 0.277 0.448

Obese 2002 0.289 0.453

Obese 2004 0.296 0.456

Obese 2006 0.292 0.455

Obese 2008 0.290 0.454

Age 1992 55.914 3.147

Age 1994 57.776 3.140

Age 1996 59.781 3.137

Age 1998 61.649 3.135

Age 2000 63.589 3.137

Age 2002 65.733 3.137

Age 2004 67.703 3.143

Age 2006 69.677 3.130

Age 2008 71.679 3.139

Female 0.553 0.497

Statistics based on a balanced panel sample of 3,181 HRS Original cohort members of European descent who

remained in the survey from 1992 until at least 2008, and for whom valid genetic data as well as information

regarding their age, sex, height and weight are available.

https://doi.org/10.1371/journal.pone.0239067.t001
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The Add Health dataset

Add Health is a school-based longitudinal study of a nationally representative cohort of ado-

lescents in grades 7-12 in the United States during the 1994-95 school year (n = 20,745, age

range 12-20 at Wave 1). Add Health is based on a stratified sample of 80 high schools and 52

middle schools with probability of selection proportional to school size. Schools were strati-

fied by region, urbanicity, school type, ethnic mix, and size. Add Health Wave I included an

in-school questionnaire (administered to all the students attending the participating schools

on the interview day), a more detailed in-home interview (conducted on a random sample

of approximately 17 males and 17 females that were randomly selected within school and

grade), and a parent questionnaire that was in general answered by the resident mothers of

teenagers selected for the in-home sample. In-sample individuals have so far been followed

in Waves II (1996, age range 12-21, n = 14,738), III (2000-01, age range 18-27, n = 15,197),

IV (2008-09, age range 24-33, n = 15,701), and most recently in Wave V (2016-18, age range

33-43, n = 12,300).

We use data from all the waves of Add Health currently available (Waves I-V). Baseline

demographic information on students and their families is obtained from Wave I, while self-

reports on weight and height are used to construct BMI at each wave. We do not use objective

measurements in our main analysis because they are not available in all waves of Add Health

and the HRS. In Section Objective Measurements versus Self-Reports of Weight and Height,

we replicate the main results using the objective BMI measures available in both datasets.

Saliva samples for DNA extraction were collected at Wave IV on the full sample. DNA mea-

sures were collected at Wave III for the sibling sample of Add Health (see https://www.cpc.

unc.edu/projects/addhealth/documentation/guides/PGS_AH1_UserGuide.pdf for a detailed

description of genome-wide data collection and quality control protocols).

The formula used to compute BMI is the same for children and adults (kg/m2), but weight,

height, and their relation to body fatness change along the life-cycle. All Wave I and most of

Wave II respondents were still teenagers, so in those cases we followed the guidelines of the

U.S. Centre for Disease Control and Prevention [38] and classified them as obese if their

BMI was equal to or greater than the 95th percentile. BMI percentiles by sex and age in the

US are taken from the 2000 CDC growth charts, publicly available at https://www.cdc.gov/

growthcharts/percentile_data_files.htm. For respondents older than 20 we used instead the

obesity definition applied to adults (BMI at or above 30).

Our Add Health analyses rely on a balanced panel sample of 2,730 individuals of European

ancestry who remained in the survey from Wave I through Wave V with valid genetic data as

well as information on age and sex, and for whom height and weight self-reports are available

at all waves.

Table 2 provides basic descriptive statistics for this sample. There is a remarkable increase

in both mean BMI (from 22.4 to 29.6) and obesity prevalence (which almost quadruples from

10% to 40%) as individuals transition from adolescence (average age 15.4) to young adulthood

(average age 37.3).

BMI polygenic scores

Both Add Health and the HRS currently include BMI polygenic scores, indices that summarize

individuals’ genetic risk for elevated BMI (BMIPGS hereafter). These BMI PGS were computed

based on the genome wide association (GWAS) study for BMI conducted by [20] on a sample

of 339,224 individuals. GWAS scan the entire genome in order to identify single nucleotide

polymorphisms (SNPs) that are associated with a particular outcome while using strict signifi-

cance thresholds to deal with multiple hypothesis testing. SNPs are locations in the genome
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where there are differences across individuals that can be associated with a particular trait. [39]

provide further details regarding the construction of genetic risk scores from GWAS results.

[20] used conservative thresholds for statistical significance (P−value< 5×10−8) and identified

97 SNPs significantly associated with BMI. BMIPGS are constructed for Add Health and HRS

respondents by computing a weighted sum of these SNPs:

BMIPGSi ¼
Xk

j¼1

b̂ jSNPij ð1Þ

where SNPij 2 {0, 1, 2} is a count of the number of reference alleles for individual i at SNP j,
and b̂ j is the underlying GWAS coefficient estimated by [20] for each SNP associated with

BMI. In our Add Health working sample, BMI polygenic scores account for 4.9% (Wave I in

1994-95, mean age 15.4), 5.5% (Wave II in 1996, mean age 16.3), 5.0% (Wave III in 2001-02,

mean age 21.7), 6.2% (Wave IV in 2008-09, mean age 28.3) and 5.5% (Wave V in 2016-18,

mean age 37.3) of the total variation in BMI. The corresponding figures for our HRS Original

cohort analytic sample are: 6.2% (Wave I in 1992, mean age 55.9), 5.9% (Wave II in 1994,

mean age 57.8), 6.3% (Wave III in 1996, mean age 59.8), 5.8% (Wave IV in 1998, mean age

61.6), 5.9% (Wave V in 2000, mean age 63.6), 5.8% (Wave VI in 2002, mean age 65.7), 5.9%

(Wave VII in 2004, mean age 67.8), 5.5% (Wave VIII in 2004, mean age 69.7) and 5.2% (Wave

IX in 2008, mean age 71.7).

Fig 1 plot the (kernel-smoothed) densities of respondents’ BMIPGS in our HRS and Add

Health balanced panel samples, respectively. The distributions are approximately normal.

Table 2. Summary statistics. Add Health Sample.

Variable Mean Standard Deviation

BMI PGS (Normalized) -0.000 1.000

BMI 1994/95 22.379 4.442

BMI 1996 23.018 4.772

BMI 2001/02 25.668 5.920

BMI 2008/09 28.104 6.818

BMI 2016/18 29.572 7.329

Obese 1994/95 0.101 0.301

Obese 1996 0.111 0.314

Obese 2001/02 0.189 0.392

Obese 2008/09 0.316 0.465

Obese 2016/18 0.399 0.490

Age 1994/95 15.412 1.702

Age 1996 16.283 1.744

Age 2001/02 21.738 1.747

Age 2008/09 28.253 1.732

Age 2016/18 37.305 1.839

Female 0.473 0.499

Statistics based on a balanced panel sample of 2,730 individuals of European ancestry who remained in the Add

Health survey from Wave I through Wave V, and for whom valid genetic data as well as information regarding their

age, sex, height and weight are available. Longitudinal weights are used.

https://doi.org/10.1371/journal.pone.0239067.t002
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Empirical model

Our baseline empirical specification is:

Yic;t ¼ b0 þ b1BMIPGSic þ X0ic;taþ �ic;t; ð2Þ

where Yic,t is the log of BMI of individual i observed at time t who belongs to cohort c (Add

Health or the Original HRS cohort in our main analyses). BMIPGSic denotes individuals’

genetic predisposition to high BMI, which is fixed at conception. BMIPGSic is standardized to

have mean 0 and standard deviation 1. The vector Xic,t includes age, age squared, and a female

dummy, as well as the 10 principal components of the full matrix of genetic data in order to

account for population stratification [40, 41]. Our benchmark estimations of are based on self-

reported BMI in order to avoid having different (objective vs. self-reported) BMI measure-

ments for different ages. Add Health objective measures are available in Waves II-V (not in

Wave I though, when individuals were 16.3 years old on average), while HRS objective mea-

sures are only available after 2006. In Section Objective Measurements versus Self-Reports of

Weight and Height, we show estimation results based on objective BMI measures (whenever

available), and compare them with our benchmark results based on subjective BMI measures.

We estimate Eq (2) for the Add Health cohort (born 1974-83) and the Original HRS cohort

(born 1931-41) at different points in time: 1994-95, 1996, 2001-02, 2008-09, and 2016-18 for

Add Health, and every two years since 1992 until 2008 for the Original HRS cohort. We then

analyze whether genetic influence on BMI is amplified or mitigated along the life-cycle for

both Add Health respondents (as they transition from adolescence to young adulthood) and

Original HRS cohort members (as they transition from middle-age to old-age). Our choice of

a log-level model rather than a level-level model in Eq (2) is supported by AIC test results. In

line with this, unconditional regression estimates [42] indicate (see S1 Appendix of Fig 1 and

2) that the effect of a standard deviation increase in BMIPGS on BMI is non-linear and it is

larger (in absolute terms) the higher the level of BMI.

Fig 1. BMI polygenic scores (Normalized) in the HRS original cohort and in add health. Kernel Density

Estimates. This figure displays the kernel-smoothed densities of HRS and Add Health respondents’ BMI polygenic

scores in the balanced samples described in Tables 1 and 2, respectively. Number of observations: 3,181 (HRS Original

cohort) and 2,730 (Add Health).

https://doi.org/10.1371/journal.pone.0239067.g001
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Main results

Genetic influence on BMI along the life-cycle: General patterns

The results of estimating Eq (2) on the sample of HRS Original cohort members are summa-

rized in Fig 2, which depicts OLS coefficient estimates of β1 (as well as their associated 95%

confidence intervals) that measure the estimated percentage increases in BMI associated with

a standard deviation increase in BMIPGS as middle-aged adults move into old-age. OLS coeffi-

cient estimates and their corresponding standard errors (clustered at the household level) are

displayed in S1 Appendix of Table 1. The estimated life-cycle profile indicates that BMI

increases associated with a standard deviation increase in BMIPGS remain stable around just

above 4% along the life-cycle. Interestingly, a similarly flat life-cycle profile is observed in two

subsequent HRS cohorts—the HRS War Babies cohort (born 1942-47) and the Early Baby

Boomers cohort (born 1948-1953)—for whom a standard deviation increase in BMIPGS is

associated with BMI increases of 5%-6% as they grow older (see Fig 3 in S1 Appendix).

Results for Add Health respondents (Fig 3, S1 Appendix of Table 2) instead suggest that the

association between BMIPGS and BMI increases as teenagers become adults. In particular, a

standard deviation increase in BMIPGS increases individuals’ BMI by 5.8% by the time they

are about 37 in 2016-18, a significantly larger association than the one estimated (4.2%) when

they were 15-16 years old (in 1994-95, one sided p-value = 0.002). Interestingly, the association

between BMIPGS and log(BMI) appears to stabilize at just above 5.5% at Wave IV (2008-09,

average age 28).

Eq (2) is a reduced-form model, and disentangling the mechanisms through which individ-

uals’ BMIPGS may differently affect their BMI at different stages of their lives is beyond the

scope of this paper. However, it is worth outlining several potential (and not mutually exclu-

sive) determinants of the pattern of genetic influence we uncover in Add Health. First, homo-

phily may be playing a role both at the genotypic [43] and the phenotypic level [44–46]. In the

presence of peer effects, homophily may, in turn, lead to social multiplier effects, which would

be consistent with the increasing relevance of genetic influence we observe until Add Health

individuals approach age 30. These effects may, however, dissipate over time. For instance,

Fig 2. Association between BMI polygenic scores and Log(BMI) along the life-cycle. HRS Original Cohort. This

Figure summarizes the results of estimating Eq 2 on the balanced sample of 3,181 HRS Original cohort members

described in Table 1. The dependent variable is Log(BMI). OLS coefficient estimates of β1 as well as their associated

95% confidence intervals are depicted. All regressions include a female dummy, age, age squared, and the first 10

principal components of the full matrix of genetic data. Standard errors are clustered at the household level.

https://doi.org/10.1371/journal.pone.0239067.g002
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[47] find that social-genetic effects on obesity induced by interactions with high school grade-

mates are relevant for girls in adolescence, but they dissipate as they grow into adulthood.

Second, the effect of genes on BMI is likely to be altered by environmental factors that

change during the life course [25–27, 48]. For example, [48] suggests that individuals with

high genetic predisposition for obesity are more responsive to food intake than those with low

genetic predisposition for obesity. To the extent that the impact of food consumption on BMI

accumulates over time, the BMI gap between individuals with low and high BMIPGS can also

grow throughout life.

Third, individuals with high BMIPGS may sort into more obesogenic environments. In line

with this hypothesis, [48] shows that individuals with a higher genetic predisposition for obe-

sity tend to display a higher demand for food, the effect of which can also be cumulative. In

contrast, [49] find that higher BMIPGS are associated with weight loss behaviors, which could

reduce genetic influence throughout life.

Fourth, genetically influenced characteristics in children may evoke environmental

responses that may in turn alter those characteristics, as genetic and environmental variation

are not mutually exclusive [50].

Fig 3. Association between BMI polygenic scores and Log(BMI) along the life-cycle. Add Health Cohort. This Figure summarizes the results of

estimating Eq 2 on the balanced sample of 2,730 Add Health cohort members described in Table 2. The dependent variable is Log(BMI). OLS

coefficient estimates of β1 as well as their associated 95% confidence intervals are depicted. All regressions include a female dummy, age, age squared,

and the first 10 principal components of the full matrix of genetic data. Standard errors are clustered at the school level. Longitudinal weights are used.

https://doi.org/10.1371/journal.pone.0239067.g003
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Finally, there may be age-related differences in genetic expression which may result in later

manifestations of some genes [51, 52].

Genetic influence on BMI along the life-cycle: Patterns by gender and

socioeconomic background

We now explore whether the life-cycle patterns we have uncovered so far significantly vary by

gender and by childhood socioeconomic status (SES). We use parental background informa-

tion from both Add Health and the HRS in order to construct summary indices of childhood

SES. The construction of these summary indices is detailed in S1 Appendix. Individuals are

classified as High SES and Low SES if the value of their childhood SES index is above and

below the median, respectively.

Fig 4 shows how genetic influence on BMI varies by gender and by socio-economic status

in the sample of HRS Original cohort members as they age. The life-cycle profile of genetic

influence is stable for all subgroups. Additionally, the association between BMIPGS and log

(BMI) does not significantly differ neither by gender nor by SES at any point in time.

The results for the Add Health cohort are depicted in Fig 5. There is a remarkable SES gra-

dient in the influence of BMIPGS: the effect of BMI polygenic scores is significantly stronger

for individuals with lower family socioeconomic status than for those with higher socioeco-

nomic status. In contrast, there are no significant differences by gender.

Regarding life-cycle patterns of genetic influence in Add Health, the conclusions are the

same for all subgroups: the association between BMIPGS and log(BMI) significantly increases

as adolescents transition into adulthood.

Additional results

Pubertal stage and the association of BMI PGS with BMI

Puberty and BMI are likely related ([53, 54], among others), and pubertal timing differs across

individuals. Therefore, part of BMI variation during adolescence may be due to pubertal stage

Fig 4. Association between BMI polygenic scores and Log(BMI) along the life-cycle: Patterns by gender and

socioeconomic background. HRS Original Cohort. This Figure summarizes the results of estimating Eq 2 on the

balanced sample of 3,181 HRS Original cohort members described in Table 1 by parental socioeconomic status (SES,

in Panel A) and by gender (Panel B). The dependent variable is Log(BMI). OLS coefficient estimates of β1 as well as

their associated 95% confidence intervals are depicted. All regressions include age, age squared, and the first 10

principal components of the full matrix of genetic data. Regressions by SES (in Panel A) also include a female dummy

as a covariate. Low and High SES individuals are those whose parental socioeconomic status is below and above the

median, respectively. Standard errors are clustered at the household level.

https://doi.org/10.1371/journal.pone.0239067.g004
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differences across teenage respondents. Hence, the variance of the error in Eq (2) is likely

larger for adolescents than for older individuals. Moreover, there is evidence that pubertal tim-

ing and BMI have a common genetic component and therefore part of the effect of genes on

BMI might be explained by the effect of genes on pubertal timing [55, 56]. To study whether

our previous results are affected by these factors, we replicate our baseline analyses including

gender-specific information on the stage of development of adolescents that Add Health col-

lected in Waves I and II, as by Wave III individuals were already between 18 and 26 years old

(21.7 years old on average in our analytic sample).

In particular, we use the following questions that were asked to boys in Waves I and II: i)

“How much hair is under your arms now? 1 I have no hair at all, 2 I have a little hair, 3 I have

some hair, but not a lot; it has spread out since it first started, 4 I have a lot of hair that is thick,

5 I have a whole lot of hair that is very thick, as much hair as a grown man”; ii) “How thick is

the hair on your face? 1 I have a few scattered hairs, but the growth is not thick, 2 The hair is

somewhat thick, but you can still see a lot of skin under it, 3 The hair is thick; you can’t see

much skin under it, 4 The hair is very thick, like a grown man’s facial hair”; iii) “Is your voice

lower now than it was when you were in grade school? 1 No, it is about the same as when you

were in grade school, 2 Yes, it is a little lower than when you were in grade school, 3 Yes, it is

somewhat lower than when you were in grade school, 4 Yes, it is a lot lower than when you

were in grade school, 5 Yes, it is a whole lot lower than when you were in grade school; it is as

low as an adult man’s voice”; and iv) “How advanced is your physical development compared

to other boys your age? 1 I look younger than most, 2 I look younger than some, 3 I look about

average, 4 I look older than some, 5 I look older than most”.

As for girls, we use the following questions that were asked in Waves I and II: i) “As a girl

grows up her breasts develop and get bigger. Which sentence best describes you? 1 My breasts

are about the same size as when I was in grade school, 2 My breasts are a little bigger than

when I was in grade school, 3 My breasts are somewhat bigger than when I was in grade

school, 4 My breasts are a lot bigger than when I was in grade school, 5 My breasts are a whole

Fig 5. Association between BMI polygenic scores and Log(BMI) along the life-cycle: Patterns by gender and

socioeconomic background. Add Health Cohort. This Figure summarizes the results of estimating Eq 2 on the

balanced sample of 2,730 Add Health cohort members described in Table 2 by parental socioeconomic status (SES, in

Panel A) and by gender (Panel B). The dependent variable is Log(BMI). OLS coefficient estimates of β1 as well as their

associated 95% confidence intervals are depicted. All regressions include age, age squared, and the first 10 principal

components of the full matrix of genetic data. Regressions by SES (in Panel A) also include a female dummy as a

covariate. Low and High SES individuals are those whose parental socioeconomic status is below and above the

median, respectively. Standard errors are clustered at the school level. Longitudinal weights are used.

https://doi.org/10.1371/journal.pone.0239067.g005
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lot bigger than when I was in grade school, they are as developed as a grown woman’s breasts”;

ii) “As a girl grows up her body becomes more curved. Which sentence best describes you? 1

My body is about as curvy as when I was in grade school, 2 My body is a little more curvy than

when I was in grade school, 3 My body is somewhat more curvy than when I was in grade

school, 4 My body is a lot more curvy than when I was in grade school, 5 My body is a whole

lot more curvy than when I was in grade school”; iii) “Have you ever had a menstrual period

(menstruated)? 0 No, 1 Yes”; and iv) “How advanced is your physical development compared

to other girls your age? 1 I look younger than most, 2 I look younger than some, 3 I look about

average, 4 I look older than some, 5 I look older than most”. We construct binary indicators

for all the possible answers to these questions and we add them as controls to our estimations

of Eq (2) for Waves I and II. The results of this analysis, reported in S1 Appendix of Table 3,

indicate that the effect of BMIPGS on log(BMI) is lower after the inclusion of puberty stage

controls. This is consistent with the fact that pubertal timing and BMI have a common genetic

component. As a consequence, the estimated association between BMIPGS and log(BMI)

increases more markedly as individuals transition from adolescence into adulthood when we

control for pubertal stage indicators than when we do not (see Fig 3 and/or S1 Appendix of

Table 2). While it is reassuring that our conclusion is robust to the addition of pubertal stage

indicators, our preferred specification excludes this set of controls in order to avoid reverse

causality bias, as there is evidence that childhood obesity increases the risk of premature

puberty for girls and boys [54]. Moreover, we re-estimate our benchmark model including

pubertal timing as an additional regressor in S1 Appendix of Table 4. Females’ puberty onset is

classified as early vs. delayed if age of menarche was lower 13 (which is the median in our sam-

ple) vs. 13+. Establishing males’ puberty onset is more complex. We do so following the rec-

ommendations from [57]. In particular, we regress a pubertal status index on age, and we then

save the residuals. The pubertal status index has been constructed using principal component

analysis on the variables related to pubertal stage for boys previously described and measured

in Wave I, as they display more variation in Wave I than in Wave II. Males’ puberty onset is

subsequently classified as early vs. delayed if the regression’s residuals are below vs. above the

median. As the comparison between Columns 1 and 2 of S1 Appendix Table 4 reveals, the

inclusion of pubertal timing as a control barely alters the estimated coefficients of BMIPGS. In

summary, this evidence indicates that the increasing pattern of association between BMIPGS
and log(BMI) we find for Add Health adolescents as they transition into adulthood is robust to

the inclusion of controls for pubertal stage and the timing of puberty onset.

Morbidity and the association of BMI PGS with BMI

Chronic diseases are more prevalent among the elderly, and they may in turn lead to wasting

(BMI loss). We investigate whether our previous results for HRS Original cohort members are

affected by the prevalence of the following conditions: heart disease, cancer, diabetes, lung dis-

ease, and arthritis. First, we study how the prevalence of these conditions correlates with both

BMI and with BMIPGS in our analytic sample. The prevalence of heart disease, diabetes, and

arthritis is positive and significantly correlated with BMI, while the prevalence of cancer, lung

disease, and BMI are not significantly correlated. This pattern is the same for all sample years,

that is, since individuals are on average 55.9 years old (in 1992) until they reach 71.7 years of

age on average (in 2008). Hence, we find no evidence of BMI reductions being linked to higher

prevalence of chronic diseases in our sample. The correlation between BMIPGS and chronic

diseases is positive and significant for heart disease, diabetes, and arthritis, while it is generally

insignificant for cancer and lung disease.
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Next, we replicate our baseline analyses including the prevalence of these five chronic con-

ditions as additional controls in all our sample years. The results of this analysis, reported in S1

Appendix Table 5 reveal that the inclusion of this set of controls slightly attenuates the esti-

mated association between BMIPGS and log(BMI). This is consistent with our previous find-

ing that BMIPGS are positively and significantly correlated with several chronic diseases.

Importantly, the life-cycle association between BMIPGS and log(BMI) remains stable as indi-

viduals transition from middle-age to old-age once these additional controls are included in

our benchmark model (2). However, we do not include them in our preferred specification

because their relationship with BMI is likely bidirectional.

Robustness checks

Attrition

The longitudinal nature of our analyses implies that there is attrition in both our Add Health

and HRS samples. This could be problematic if attrition is systematically related to BMIPGS.

We cannot directly test whether this is the case because individuals were not genotyped in the

first wave we observe them neither in Add Health (genotyping took place in Wave IV) nor in

the HRS (genotyping took place in 2006-08).

We can, however, investigate whether attrition is related to obesity and BMI measured the

first time individuals were interviewed. We do so by regressing a binary variable identifying

missing individuals due to attrition between the first and the last waves analyzed on initial

BMI and obesity. We find that attrition is not significantly related to initial BMI or obesity sta-

tus neither in Add Health nor in the HRS.

Concerns about attrition due to selective mortality may remain in the HRS because mem-

bers of the HRS Original cohort (55.9 years old on average the first time we observe them in

1992) may have died by the time genetic data were collected [58, 59], and elevated BMI is

known to have adverse health consequences. Actually, if we regress a dummy identifying

attrited individuals due to death between the first (1992) and the last wave (2012) analyzed

(instead of a dummy identifying overall attrition) on BMI and obesity measured in 1992, the

estimated coefficients are positive and significant. Hence, we adjust our benchmark results for

the HRS Original cohort by using inverse probability weighting methods as in [59]. Fitted val-

ues from a logit survival regression are used to obtain probability weights which are used as

inverse probability weights to adjust estimates for selective mortality. In particular, our inverse

probability weights are based on fitted values obtained from estimating a logit model of the

probability of survival (until genotyping took place) as a function of respondents’ educational

attainment, year of birth, and several health indicators (the means of individuals’ BMI, CES

depression scale, and self-reported health over all available years, indicators of whether respon-

dents ever reported smoking, having diabetes, and having heart disease, and respondents’

maximum height over all available waves).

The results of this adjustment, presented in Table 6 in S1 Appendix, suggest that our results

are robust to selective mortality because they are extremely similar to those obtained in our

benchmark analysis.

Objective measurements versus self-reports of weight and height

Objective measurements of height and weight are only available in some waves of Add Health

(Waves II, III, IV, and V) and the HRS (2006 and 2008). We use this information to investigate

whether it is likely that using self-reports may affect our results, and our findings are reassur-

ing. We show estimation results based on objective BMI measures (whenever available), and

compare them with our benchmark results based on subjective BMI measures in Table 7 in
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S1 Appendix. Panel A of Table 7 in S1 Appendix displays the estimated associations between

BMIPGS and objective (Column 1) and self-reported (Column 2) log(BMI) for the HRS Origi-

nal cohort for years 2006 and 2008 (our sample years with available objective BMI measures).

The comparison of Columns 1 and 2 reveals that the estimated associations between BMIPGS
and objective and self-reported log(BMI) barely differ. Therefore, our conclusion that the link

between BMIPGS and log(BMI) is stable over as middle-age individuals transition to old-age

remains when using objective BMI measures. Panel B of Table 7 in S1 Appendix does the same

comparative analysis for the Add Health cohort. The estimated coefficients of BMIPGS do not

significantly differ (at the 5% level) across columns for all waves. Importantly, our finding that

the association between BMIPGS and log(BMI) increases as adolescents transition into adult-

hood prevails when using objective BMI measures.

Socioeconomic status and the association of BMI PGS with BMI

We now replicate our benchmark analyses including childhood SES among the set of control

variables. This allows us to explore further whether the observed life-cycle associations

between BMIPGS and log(BMI) reflect similar patterns as association between SES and log

(BMI) as individuals grow older. The results of these analyses are shown in Tables 8 and 9 in

S1 Appendix.

The association between SES and log(BMI) for Add Health cohort members is negative, sig-

nificant, and it increases (in absolute terms) as they transition from adolescence into adult-

hood (Table 8 in S1 Appendix, Column 2). However, the inclusion of SES among the control

set barely changes the estimated coefficients BMIPGS (Table 8 in S1 Appendix, comparison of

Columns 1 and 3). This indicates that SES effects across the life course cannot explain the

observed increasing association between BMIPGS and log(BMI) between adolescence and

early adulthood, which remains basically unaltered when SES is held constant.

The association between SES and log(BMI) for HRS Original cohort members is negative

and significant, and it does not significantly change as individuals get older (Table 9 in S1

Appendix, Column 2). The inclusion of the childhood SES index among the set of control vari-

ables hardly modifies the estimated coefficients of BMIPGS (Table 9 in S1 Appendix, compari-

son of Columns 1 and 3).

In summary, this evidence indicates that SES cannot account for the life-cycle patterns of

association between BMIPGS and log(BMI) we have uncovered so far, neither for Add Health

nor for HRS Original cohort members.

Discussion

In this paper we find that the effect of BMI polygenic scores on log(BMI) increases signifi-

cantly as teenagers transition into adulthood (using the Add Health cohort, born 1974-83).

However, this is not the case for individuals aged 55+ who were born in earlier cohorts (HRS

Original cohort born 1931-41, War Babies cohort born 1942-47, and Early Baby Boomers

cohort born 1948-53), whose life-cycle pattern of genetic influence on BMI is remarkably sta-

ble. We uncover similar life-cycle patterns for all the cohorts we study when we separately ana-

lyse males and females, and low and high socioeconomic status groups.

One possible explanation for our results is that the effect of BMI polygenic scores on BMI

increases until people reach a certain age, and remains stable thereafter. This hypothesis is

consistent with [36], who find that the association between genes and BMI peaks in early

adulthood.

Interestingly, we also find that the association between BMI polygenic scores and BMI sig-

nificantly differs by childhood socioeconomic status in the Add Health cohort, while this is
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not the case in earlier HRS cohorts. In particular, childhood socioeconomic status significantly

moderates the effect of BMI polygenic scores for Add Health cohort members. In contrast,

the effect of BMI polygenic scores does not significantly differ by gender in any of the cohorts

analysed.

Last but not least, our findings also indicate that the effect of BMI polygenic scores on BMI

is likely to be non-linear. In fact, the AIC test rejects the linear model in favor of a log-linear

model. This simple transformation might be considered when conducting future GWAS in

order to improve the predictive power of polygenic scores.

Strengths and limitations

In this paper, we use two longitudinal surveys to provide new evidence on gene-age interaction

effects on BMI for several cohorts. In particular, we study teenagers from the Add Health

cohort (born 1974-1983) as they transition into adulthood as well as individuals aged 55+ who

were born in earlier HRS cohorts (1931-53) as they move into old-age. The use of panel data is

crucial in this context because it allows one to disentangle age/time associations from cohort

effects. In contrast, as argued by [35], cross-sectional studies may fail to detect age-varying

associations as they cannot disentangle age/time from cohort effects. Our analyses are based

on different cohorts observed at different stages of the life cycle. Hence, our contrasting find-

ings for Add Health and the HRS may reflect differing patterns of genetic influence along the

life cycle, but they could also stem from systematic differences across cohorts in their life-cycle

patterns of genetic influence.

Note also that in this paper we estimate a reduced-form model without digging into the

mechanisms behind gene-age interactions because of data limitations. Our results therefore

could be explained by changes in the biology of BMI across the life course as well as by envi-

ronmental changes that may reinforce or mitigate the effect of genes on BMI [25, 27, 60].

Understanding the mechanisms behind the patterns we uncover is worth further investigation.

Another limitation of our analyses is that the genome-wide association study employed

to compute the BMIPGS used mostly relies on European-descent individuals [20]. Therefore,

our results cannot be generalized to individuals from different ancestries. The availability of

GWAS for other ancestries would allow to overcome this limitation.

Finally, another potential limitation stems from the fact that the strength of genotype-phe-

notype associations may vary by age. Hence, GWAS results may not replicate in samples

where the age distribution differs from that of the GWAS sample [35]. The BMIPGS we use

rely on the GWAS conducted by [20], which is in turn mostly based on a sample of midlife

individuals. Hence, their predictive power may be lower for younger individuals. A similar

argument may apply to other demographic characteristics like childhood socioeconomic status

(as our Add Health results by socioeconomic status suggest). While the strongest BMIPGS-

BMI association we uncover is for young adults (Waves 4 and 5 of Add Health), this warrants

further investigation.
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