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Abstract

Brain imaging has been used to predict language skills during development and neu-

ropathology but its accuracy in predicting language performance in healthy adults

has been poorly investigated. To address this shortcoming, we studied the ability to

predict reading accuracy and single-word comprehension scores from rest- and task-

based functional magnetic resonance imaging (fMRI) datasets of 424 healthy adults.

Using connectome-based predictive modeling, we identified functional brain net-

works with >400 edges that predicted language scores and were reproducible in

independent data sets. To simplify these complex models we identified the over-

lapping edges derived from the three task-fMRI sessions (language, working memory,

and motor tasks), and found 12 edges for reading recognition and 11 edges for

vocabulary comprehension that accounted for 20% of the variance of these scores,

both in the training sample and in the independent sample. The overlapping edges

predominantly emanated from language areas within the frontoparietal and default-

mode networks, with a strong precuneus prominence. These findings identify a small

subset of edges that accounted for a significant fraction of the variance in language

performance that might serve as neuromarkers for neuromodulation interventions to

improve language performance or for presurgical planning to minimize language

impairments.

K E YWORD S

brain–behavior prediction, cognition, connectome-based predictive modeling, default mode

network, feature selection, language, motion, precuneus

1 | INTRODUCTION

Language, a unique human ability, is supported by a distributed net-

work of frontoparietal (FPN) cortices, including classical language

areas in the inferior frontal cortex (Broca's area) and the posterior

superior temporal cortex (Wernicke's area), as well as temporal

regions of the default-mode network (DMN), visual areas, and the

basal ganglia (Tomasi & Volkow, 2012). Converging evidence from

lesion and neuroimaging data suggests that intrinsic functional

connectivity (iFC) among these regions influences language produc-

tion or comprehension (Chai et al., 2016; Doucet et al., 2015; Vigneau

et al., 2006). iFC neuromarkers of language processing could be useful

for guiding neuromodulation interventions that use repetitive trans-

cranial magnetic stimulation (rTMS) or transcranial direct current stim-

ulation (tDCS) to treat patients with language disorders (Fridriksson

et al., 2018; Naeser et al., 2005) or to improve language performance

with aging (Rezaee & Dutta, 2020). They could also help with pres-

urgical brain mapping to minimize adverse effects on language (Sair,
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Agarwal, & Pillai, 2017). Though there is evidence that models com-

bining behavioral and neuroimaging data could serve as neuromarkers

to help predict children at risk for poor reading skills (Hoeft

et al., 2007), little is known about whether imaging data can be used

to predict language skills in healthy adults.

Machine learning methods, such as connectome-based predictive

modeling (CPM) (Rosenberg et al., 2016; Shen et al., 2017), are being

used to predict a wide range of human behaviors (Beaty et al., 2018;

Bellucci, Hahn, Deshpande, & Krueger, 2019; Emerson et al., 2017;

Fountain-Zaragoza, Samimy, Rosenberg, & Prakash, 2019; Greene,

Gao, Scheinost, & Constable, 2018; Lin et al., 2018; Liu, Liao, Xia, &

He, 2018; Rosenberg et al., 2016; Scheinost et al., 2019) and symp-

toms (Lake et al., 2019; Lin et al., 2018; Yip, Scheinost, Potenza, &

Carroll, 2019). The popularity of CPM relies on its simple methodol-

ogy and its leave-one-out cross-validation (LOOCV) approach, which

provides some protection against overfitting. Briefly, at each of

n iterations, CPM predicts behavioral data from one of the n subjects

based on imaging and behavioral data from the remaining n − 1 sub-

jects. The n − 1 subjects are used to: (a) select features (functional

connections, or “edges”, that are sensitive to a particular behavior)

from large connectivity matrices M with �104 edges using correlation

analysis; (b) compute two summary measures (e.g., positive and nega-

tive network strengths) that correlate with the behavior across n − 1

subjects; and (c) optimize the parameters of a linear regression model

associating behavior with the summary measures. Then, the optimal

linear model and features are used to predict the behavior of the sub-

ject left aside.

Prior studies showed that brain–behavior correlations are prone to

a high rate of false positives (Vul, Harris, Winkielman, & Pashler, 2009),

which could impact the CPM's feature selection (FS) step. Thus, the sig-

nificance of the findings emerging from CPM studies based only on

leave-one-out (LOO) internal validation (within the same sample) may

not always be warranted. While, the inclusion of FS within the LOOCV

loop (in contrast to exclusion of FS from the LOOCV loop) provides

some protection against false positives (Shen et al., 2017), little is

known about the differences in performance between FS inclusion ver-

sus FS exclusion as it relates to false positives in FS, prediction accu-

racy and reproducibility of brain–behavior associations using traditional

twofold cross-validation (in an independent sample).

The importance of cross-validation for brain–behavior correlation

analyses is recognized by many as fundamental (Greene et al., 2018;

Scheinost et al., 2019; Shen et al., 2017) and while several studies

have validated their results in independent samples (Beaty

et al., 2018; Greene et al., 2018; Kumar et al., 2019; Nostro

et al., 2018; Rosenberg et al., 2016; Yoo et al., 2018) others relied

only on LOOCV (Bellucci et al., 2019; Finn et al., 2015; Hsu, Rosen-

berg, Scheinost, Constable, & Chun, 2018; Lin et al., 2018; Yip

et al., 2019). It is claimed that LOOCV is at the core for improved gen-

eralizability of CPM results compared to simple brain–behavior corre-

lation analyses (Shen et al., 2017). However, prediction errors are

more variable for LOOCV than for other cross-validation strategies

(Hastie, Tibshirani, & Friedman, 2017; Kohavi, 1995) such as twofold

cross-validation, in which a set of n/2 subjects is set aside as a “test

sample” to assess the performance of the prediction model developed

with the remaining n/2 subjects used as a “training sample.” One of

the goals for this study was to compare LOOCV and twofold cross-

validation in the prediction of language scores from functional mag-

netic resonance imaging (fMRI) data as a function of sample sizes and

of task or rest conditions. We hypothesized that regardless of sample

size, FS inclusion within the LOOCV loop would decrease false posi-

tives compared with FS exclusion from the LOOCV loop, and that for

large samples brain behavior predictions would not differ between

LOOCV and twofold cross-validation but that for small samples

(n < 100) cross-validation would minimize false positives. Based on

prior findings (Greene et al., 2018; Jiang et al., 2020), we also hypoth-

esized that connectivity maps derived from task-fMRI sessions would

improve the prediction of language scores, compared to those from

rest-fMRI sessions.

An additional goal for our study was to quantify the effect of

motion in the prediction of language from fMRI data since spurious

connectivity patterns can arise from head movements (Birn, Diamond,

Smith, & Bandettini, 2006; Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012; Satterthwaite et al., 2012; van Dijk, Sabuncu, &

Buckner, 2012) falsely inflating predictions when head motion corre-

lates with behavior (Shen et al., 2017). For this reason, removal of data

with large motion is recommended in CPM studies (Shen et al., 2017).

Here using CPM, we investigated in 424 healthy adults whether

iFC data from task- and rest-fMRI sessions predict the language scores

of the NIH Toolbox Cognition Battery (Gershon et al., 2014) included

in the Human Connectome Project (HCP). These language measures

comprise a test for vocabulary comprehension, which involved single-

word comprehension, and a test for reading recognition, which reflects

reading fluency (accuracy). These language skills continue to develop as

individuals learn new words throughout the lifespan (Salthouse, 1988)

and can be used to estimate overall intellectual ability in healthy indi-

viduals (Beckmann, DeLuca, Devlin, & Smith, 2005). To compare the

specificity of CPM to predicting language performance, we also evalu-

ated the prediction of two nonlanguage measures: sustained attention

and processing speed, which were used as control out-of-scan mea-

sures. For the neuroimaging datasets, we selected a language-fMRI ses-

sion and two control task-fMRI sessions: one while performing a

working memory task and the other a motor task.

We hypothesized that: (H1) the iFC models that would predict lan-

guage performance (vocabulary comprehension and reading recogni-

tion) would have stronger predictions than those for the control

measures (sustained attention and processing speed); (H2) the brain

regions predicting language scores would include hubs located in lan-

guage networks; and (H3) that the model derived from the task-fMRI

sessions would predict better language scores than the rest-fMRI ses-

sion (Greene et al., 2018; Jiang et al., 2020). As for the factors contrib-

uting to the model's prediction accuracy, we hypothesized that

(H4) excluding FS from LOOCV would falsely inflate the predictions

due to a high rate of false positives (Vul et al., 2009); (H5) larger sample

sizes and stricter FS thresholds would increase prediction accuracy;

and (H6) for larger samples (n > 100) prediction accuracy would not dif-

fer between LOOCV and twofold cross-validation approaches.
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2 | MATERIALS AND METHODS

2.1 | Subjects

We used behavioral and imaging data from the HCP (http://www.

humanconnectome.org/). The 523 individuals included in the HCP

500 Subjects data release provided written informed consent as

approved by the IRB at Washington University. No experimental

activity with human subjects' involvement took place at the author's

institutions.

The analyses were restricted to individuals for whom both phase-

encoding scans (left–right [LR]; right–left [RL]) for the rest-fMRI ses-

sion (REST), and all three task-fMRI sessions (motor, working memory,

and language) were complete and available. Ninety-nine individuals

were excluded due to incomplete image datasets, image artifacts

(identified with the aid of principal component analysis), or excessive

head motion (mean framewise displacement >0.4 mm). The remaining

424 participants (age: 29 ± 4 years; 243 females) were included and

classified into the training sample (n = 212; age: 29 ± 3 years;

females = 119), for the optimization of behavioral prediction models,

or the test sample (n = 212; age: 29 ± 4 years; females = 124), for

testing prediction accuracy in an independent set of subjects.

2.2 | Language and other cognitive measures

To study the association between whole-brain iFC and language skills

we used the two language metrics obtained in the HCP sample, which

corresponded to measures of vocabulary comprehension (picture

vocabulary [PicVocab]), and reading recognition (oral reading recogni-

tion [ReadEng]) from the NIH toolbox (Weintraub et al., 2013). For

the vocabulary comprehension test, participants were orally given a

word and they had to select the picture that best matched the mean-

ing of the word, and for the reading recognition test, participants were

asked to read words as accurately as possible (Gershon et al., 2014).

We compared the accuracy of CPM for predicting language skills

to that for predicting nonlanguage control measures: a sustained

attention test (short Penn continuous performance [SCPT]) in which

participants respond when lines form a number in the screen, and a

processing speed test (pattern completion processing speed

[ProcSpeed], NIH toolbox) in which participants have to discern

whether two side-by-side pictures are the same or not.

2.3 | fMRI tasks

To assess task-related differences in brain–behavior associations we

selected four fMRI sessions. One fMRI session was collected during

the resting state (REST) and three during task performance; one while

performing a language task (language task-fMRI session) and the other

two while performing working memory and motor tasks (control task-

fMRI sessions), for which procedures have been described elsewhere

(Barch et al., 2013).

Language, LAN (Binder et al., 2011): There were four blocks of a

math task interleaved with four blocks of a story task in each of two

runs. The task was designed so that the length of the blocks of the

math task matched those of the story task (�30 s). During story

blocks, participants listened to brief stories (five to nine sentences)

followed by a two-option forced-choice question about the story. The

participants were instructed to push a button to select either the first

or the second option. The math task adaptively maintained a similar

level of difficulty across participants.

N-back working memory, WM (Barch et al., 2013): Four different pic-

ture categories were presented in eight separate blocks within each of

two runs: faces, places, tools, and body parts. The task had a blocked

design with one 0-back (a target 2.5 s cue is presented at the start of

each block; participants were instructed to press a button with the right

index finger to any presentation of the target stimulus) and one 2-back

(participants were instructed to press the button whenever the current

stimulus is the same as the one presented two steps back) blocks per run

per category. Each block lasted 27.5 s and included ten 2.5 s trials, two

of which were targets and two to three nontarget lures (repeated items

in the wrong n-back position; i.e., 1-back or 3-back). On each trial, the

stimulus was presented for 2 s, followed by a 500 ms intertrial interval.

Motor, MOT (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011;

Yeo et al., 2011): Visual cues requesting to tap left or right fingers,

squeeze left or right toes, or move the tongue were presented to par-

ticipants in a blocked paradigm. Each block lasted 12 s and was pre-

ceded by a 3 s cue. In each of two runs, there were two blocks per

movement type (i.e., tongue, right hand, left hand, right foot, left foot)

and three fixation blocks (15 s).

2.4 | MRI datasets

Functional images with high spatiotemporal resolution were acquired

in a 3.0 T Siemens Skyra scanner (Siemens Healthcare, Erlangen, Ger-

many) with a 32-channel coil using a gradient EPI sequence with

multiband factor 8, TR = 720 ms, TE = 33.1 ms, flip angle 52�,

104 × 90 matrix size, 72 slices, and 2 mm isotropic voxels (Smith

et al., 2013; U�gurbil et al., 2013). Scans were repeated twice using LR

and RL phase encoding directions. We used the “minimal

preprocessing” datasets released by the HCP, which include gradient

distortion correction, rigid-body realignment, field-map processing, and

spatial normalization to the stereotactic space of the Montreal Neuro-

logical Institute (Glasser et al., 2013). To assess the effect of motion

and other noise sources on iFC, we additionally studied resting-state

datasets with and without ICA-based X-noiseifier, an ICA-based auto-

matic noise detection algorithm that can minimize various types of

noise sources, including head motion (Salimi-Khorshidi et al., 2014).

2.5 | Image analysis

Subsequent steps were carried out using IDL (ITT Visual Information

Solutions, Boulder, CO). Framewise displacements (FDs) were
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computed for every time point from head translations and rotations,

using a 50 mm radius to convert angle rotations to displacements.

Scrubbing was used to remove time points excessively contaminated

with motion. Specifically, time points were excluded if the root-mean-

square (RMS) change in blood-oxygenation-level-dependent signals

was >0.5% and FD > 0.5 mm (Power et al., 2012). Global signal

regression (GSR) was used to remove nonneuronal sources that con-

tribute to the global signal (Birn et al., 2006). Note that GSR also

reduces the correlation magnitude between head motion and iFC

(Satterthwaite et al., 2013), and strengthens the association between

resting-state iFC and behavior (Li et al., 2019). Linear regression, using

the time-varying realignment parameters, was used to minimize

motion-related fluctuations in MRI signals (Tomasi & Volkow, 2010),

and to assess iFC with and without motion-related fluctuations. Low-

pass filtering (0.10 Hz frequency cutoff) was used to attenuate high-

frequency components of the physiologic noise (Cordes et al., 2001).

Connectivity matrices, M, were constructed to define the iFC

between regions of interest (ROIs) for each fMRI dataset and subject

using the corresponding preprocessed image time series. Three differ-

ent brain atlases were used as ROIs: AAL (Tzourio-Mazoyer

et al., 2002), Shen (Shen, Tokoglu, Papademetris, & Constable, 2013),

and Gordon (Gordon et al., 2016), to assess the effect of brain

parcellation on the accuracy of the predictions. Pearson correlation

coefficients between pairs of ROIs time courses were calculated inde-

pendently for LR and RL scans and normalized to z-scores using the

Fisher transformation. This resulted in 116 × 116 (AAL), 268 × 268

(Shen), and 333 × 333 (Gordon) symmetric connectivity matrices for

each fMRI session and participant. The LR and RL correlation matrices

corresponding to the same fMRI session were averaged to increase

the signal-to-noise ratio in the connectivity matrices.

2.6 | Brain–behavior prediction

We used a twofold cross-validation approach in which half of the data

(training sample) was used to build the prediction models and the

other half to test the optimal models in an independent sample (test

sample). The optimization of the prediction models was carried out in

the training sample (n = 212) using CPM, a data-driven protocol for

developing predictive models of brain–behavior associations based on

LOOCV (Finn et al., 2015; Shen et al., 2017). To assess the effect of

FS cross-validation on the correlation between observed and

predicted cognitive scores (ReadEng, PicVocab, SCPT, and ProcSpeed)

across subjects (“R,” a benchmark metric for brain–behavior predic-

tions), we implemented two pipelines, one in which FS was included

in the LOO algorithm (LOO-include-FS) and the other in which it was

not (LOO-exclude-FS; Figure 1). At each of n iterations in the LOO-

include-FS pipeline, one of the n individuals was excluded and FS, fea-

ture summarization, and model building were carried across the

remaining n − 1 individuals in the training sample as follows. FS: Pear-

son correlation was used to assess associations between a continuous

cognitive score and the edges of the connectivity. Only edges that

F IGURE 1 Connectome-based predictive modeling (CPM) flowcharts. Two leave-one-out (LOO) cross-validation procedures, which included
(LOO-include-feature selection [FS]; left) or excluded (LOO-exclude-FS; right) FS from the LOO loop (dashed rounded rectangles). Green
rectangles represent imaging and behavioral data from the training sample (n = 212), which were used to develop connectome-based predictive
models for predicting behavior from functional connectivity data. The red rectangle in the twofold cross-validation step represents imaging and
behavioral data from the independent test sample (n = 212), which was used to validate the prediction models
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had significant positive or negative correlations with the cognitive

score were identified and included in the model. Four thresholds were

tested (p < .001, .005, .01, .05) for FS to certify that results did not

depend on arbitrary threshold selection. Feature summarization:

Edges with positive (negative) correlation with the cognitive score

were added to compute the positive (negative) network strength, X

(Y). Model building: a bilinear model,

Ψ=a+bX+cY, ð1Þ

was fitted to the data across subjects in the training sample. Here, a,

b, and c are model parameters, Ψ is the observed cognitive score, and

X and Y are the positive and negative network strengths derived from

the connectivity matrices. We also assessed linear models purely

driven by positive or negative features by setting c = 0 or b = 0. Note

that FS was excluded from LOOCV in the LOO-exclude-FS pipeline,

as shown in Figure 1. Assessment of prediction significance: The

model was then used to predict the cognitive score of the remaining

individual from his/her X and Y values.

We then tested the generalizability of results to a novel group of

individuals using a twofold cross-validation approach in which the fea-

tures that overlapped across the n LOO-include-FS steps, and the

optimal linear and bilinear models derived from the training sample

were then used to predict cognitive scores from connectivity matrices

in the test sample (n = 212). Finally, the cross-validation approach was

completed by exchanging the roles of the training and test samples

(e.g., the original test sample was used to train the model and the orig-

inal training sample was used to validate the model).

2.7 | Statistical analyses

Since training and test were independent samples, we used parametric

statistics to assess the statistical significance of group differences in

correlation (z-values) between observed and predicted cognitive

scores. To test for differences between two dependent correlations

sharing one variable we used Williams's test (Williams, 1959) and for

correlations with different variables we used Steiger's test

(Steiger, 1980). Statistically significant correlations for a sample size

n = 212 were set at p < .003 (R = .2), using Bonferroni corrections for

16 comparisons (four fMRI sessions × four scores).

2.8 | Behavior-head motion correlations

Pearson correlation was used to assess the associations between head

motion and the language and the control measures, independently for

each session, fMRI session, model, parcellation atlas, and threshold.

2.9 | Sensitivity of R-values to sample size

To assess the effect of sample size on R-values we created eight sets

of training and test subsamples with an increasing number of

individuals (n = 25, 50, 75, 100, 125, 150, 175, and 200) and com-

puted R-values for each subsample for the LOO-exclude-FS and the

LOO-include-FS pipelines.

2.10 | False-positive rate

To evaluate the false-positive error rate, we used a “null test” in which

the predicted scores did not belong to the individuals in the training

sample (Ge, Tsutsumi, Aburatani, & Iwata, 2003). Thus, we assessed

the rate of false positives in FS, assuming that iFC data from one indi-

vidual cannot predict another individual's behavior. We assigned the

cognitive scores of one of the samples (i.e., test sample) to the iFC

data of the other sample (i.e., training sample). The false-positive rate

(FPR) was estimated as the ratio between the number of false-positive

edges and the total number of negatives (false positives + true nega-

tives) for the working memory fMRI session, independently for the

positive and negative network.

3 | RESULTS

Initially, we investigated whether iFC predicts behavior in the training

sample, independently for three parcellation atlases (AAL, Gordon,

and Shen) and three linear models at p < .01 or p < .05, the standard

thresholds used in CPM studies (Rosenberg et al., 2016; Shen

et al., 2017), independently for each cognitive score, fMRI session,

and sample (Figure 2a–c). Finally, we validated the optimal brain–

behavior models in the independent test sample (Figure 2).

3.1 | Prediction of language and control measures

R-values, computed in the training sample using the LOO-exclude-FS

pipeline, were high for language (vocabulary comprehension:

R = .79 ± .01; reading recognition: R = .82 ± .01), and control mea-

sures and for rest- and three task-fMRI sessions (p < 3E-14; analysis

of variance [ANOVA]; Figure 2b). R-values increased with the number

of ROIs (p < 2E-16) and did not differ between task- and rest-fMRI

sessions (Figure 2c) or between linear and bilinear models. For the lan-

guage and control measures, and the four fMRI sessions, R-values

were significantly lower for the LOO-include-FS than for the LOO-

exclude-FS pipeline (p < 2E-16; ANOVA; Figure 2b–d). Differently, for

the LOO-include-FS pipeline the R-values were only significant for

the language measures (vocabulary comprehension R = .39 ± .01;

reading recognition: R = .41 ± .04) but not for the control measures

(sustained attention: R = .13; and processing speed R = .18). The

R-values for the language measures did not differ across task-fMRI

sessions.

In the test sample, for the LOO-exclude-FS, the R-values were

significantly lower than in the training sample (p < 2E-16; ANOVA;

Figure 2b–d), but for the LOO-include-FS, the R-values did not differ

between the training and test samples. R-values varied across
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cognitive measures and fMRI sessions (Figure 2b–d), being higher

for language (R = .33 ± .13) than control (R = .07 ± .11) measures,

and for task-fMRI (R = .34 ± .25) than rest-fMRI (R = .27 ± .27)

(p < 2E-4). There were no significant differences in R-values across

task-fMRI sessions. Bilinear models predicted cognitive scores with

slightly higher accuracy than linear models (p < .01). While R-values

were lower for AAL, there were no significant differences between

the Shen and Gordon parcellations. R-values did not differ as a func-

tion of the statistical thresholds used for FS (p < .05 vs. p < .01),

consistent with previous studies (Finn et al., 2015). Thus, the most

accurate predictions in the test sample were those based on the

bilinear model, task-fMRI sessions, and Shen and Gordon

parcellations.

In the test sample, R-values were only significant for the language

measures, both for LOO-include-FS and LOO-exclude-FS estimates

(R > .2; p < .05, Bonferroni corrected for 16 comparisons). For control

measures, the R-values were not significant (sustained attention:

R = .01; processing speed: R = .16; p > .02, uncorrected). In the test

F IGURE 2 Prediction of language and other cognitive measures. (a) Linear associations between observed scores of vocabulary
comprehension (PicVocab) and corresponding correlation factors (R) derived from language-fMRI (LAN) data in the training sample (n = 212),
excluding (red; leave-one-out [LOO]-exclude-feature selection [FS]) and including (blue; LOO-include-FS) FS in the LOO cross-validation
algorithm, and in the test sample (n = 212) using the optimal models (dark green and orange). (b) Pearson correlation factors between observed
and predicted language and control-task scores for the training and test samples. (c) Heat maps showing R-values as a function of cognitive tests
(rows) and task-fMRI sessions (columns) for training and test (LOO-include-FS) samples. (d) Prediction of language and control task scores
exchanging the roles of the original Training and test samples to complete the validation. Shen parcellation, language-fMRI session, FS threshold
p < .01, bilinear model. Abbreviations for fMRI sessions: WM, working memory; LAN, language; MOT, motor. Abbreviations for language
measures: PicVocab (picture vocabulary) and ReadEng (oral reading recognition) and for control measures: ProcSpeed (processing speed) and
SCPT (short Penn continuous performance). Statistical significance threshold: p < .05, Bonferroni corrected for 16 comparisons (dashed yellow
line). *p < 2E-16, analysis of variance (ANOVA)
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sample, R-values did not differ between LOO-include-FS and LOO-

exclude-FS estimates (Figure 2c).

To ensure the robustness of our findings we exchanged the roles

of the original training and test samples to complete the cross-

validation (Figure 2d). Using the LOO-include-FS pipeline in the origi-

nal test sample, we found that the R-values for the language measures

remained significant.

3.2 | Head motion

The average RMS values of realignment estimates of head motion (d;

e.g., “absolute motion”) were larger for rest-fMRI (d = 0.46 ± 0.25 mm)

than task-fMRI (d = 0.42 ± 0.22 mm; p < .0002) and did not differ

between training and test samples. The average RMS values of the

derivatives of head motion estimates (Δd; e.g., “relative motion”) were

larger for task-fMRI (Δd = 0.08 ± 0.03 mm) than rest-fMRI

(Δd = 0.07 ± 0.03 mm) (p < 2E-09, paired t test). The effects of gender

and age on absolute or relative head motion were not significant.

3.3 | Behavior versus head motion

Despite the relatively small motion excursions (d) and frame-to-frame

movement (Δd), there were significant correlations between language

scores and Δd (r = .22 ± .04; p < .001, uncorrected) but not with

d (r = .09 ± .07; p > .2, uncorrected). After exclusion of 36 individuals

with mean Δd > 0.14 mm for any fMRI session, as recommended for

CPM (Finn et al., 2015), the correlations of relative head motion with

vocabulary comprehension remained significant (r = .16; p = .02,

uncorrected) but those with reading recognition did not (r = .06). For

the control measures, the correlations with absolute or relative head

motion were not significant.

3.4 | Effect of head motion on language prediction
accuracy

We studied the contributions of head motion to brain-language pre-

dictions in the full sample using motion covariates. These contribu-

tions were small, though larger for relative (0.99 ± 1.01%) than for

absolute head motion (0.32 ± 0.25%) (p < .02; Figure 3a). For the

LOO-exclude-FS pipeline, the contribution of Δd to the prediction of

language measures explained >2.5% of R-values, which was significant

(p < .05, corrected), whereas for the LOO-include pipeline it explained

<1% and was not significant. Nuisance regression of time-varying

rigid-body translations and rotations of the head did not change sig-

nificantly the R-values in the training or test samples for the language

or the control measures. ICA-based denoising attenuated R-values

across all measures, compared to estimations without denoising, in

the training but not the test sample (p < 5E-05).

To assess FPR, we paired the cognitive scores of the test sample to

the iFC data of the training sample, such that scores and connectivity

data did not correspond to one another for any subject. Despite the

pairing incongruence, the LOO-exclude-FS pipeline, yielded high

R-values across models, atlases, and thresholds (.52 < R < .91),

reflecting its high FPR, whereas for LOO-include-FS R-values were

not significant (.01 < R < .07). FPR was significantly lower for LOO-

include-FS than LOO-exclude-FS (p < 6E-16). The high FPR in the

LOO-exclude-FS pipeline was evident in the large fraction of edges

derived from brain images in the training sample, which had signifi-

cant spurious correlations with the cognitive scores from individuals

in the test sample. These models, which spuriously predicted lan-

guage and control measures in the test sample, failed to predict them

in the training sample. We also show that for both LOO-exclude-FS

and LOO-include-FS, FPR decreased with more stringent thresholds

(Figure 3b). These findings highlight the importance of cross-

validation to reduce FPR and document the sensitivity of FPR to the

threshold used for FS.

3.5 | Effect of sample size

We assessed the effect of sample size on R-values in three training

subsamples (n = 25, 50, 75, 100, 125, 150, 175, and 200) and their

reproducibility in eight test matched subsamples for both pipelines.

With the LOO-exclude-FS pipeline, increased sample size decreased

linearly the R-values in the training subsample whereas in the test

subsample it did not change them significantly (Figure 3d), reflecting

the high FPR of the LOO-exclude-FS pipeline, which is magnified by

small samples. With the LOO-include-FS pipeline, increased sample

size did not change significantly the R-values in the training or test

subsamples (Figure 3d). For the test samples and except for small

sample sizes (n < 50), R-values were equivalent for LOO-exclude-FS

and LOO-include-FS. For the LOO-include-FS pipeline and for most

of the sample sizes, the R-values were higher with LOOCV (training

sample) than for twofold cross-validation (test sample) for reading

recognition (p < .05) but did not differ for vocabulary

comprehension.

3.6 | Language neuromarkers

To identify the nodes that were consistently represented across all

task-fMRI session we restricted the analysis to the training (n = 194)

and test (n = 194) subsamples with low head motion (Δd < 0.14 mm)

and to overlapping edges emerging from the language, motor, and

working-memory task-fMRI sessions. The networks that predicted the

language scores (Figure 4a) overlapped significantly across the training

and test subsamples and task-fMRI sessions. As expected, due to the

correlation between vocabulary comprehension and reading recogni-

tion (r = .67), these networks had similar distribution of hubs and

edges (Figure 4b,c). These simpler models that comprised 12 edges

(emanating from 14 hubs) for reading recognition and 11 edges

(emanating from 16 hubs) for vocabulary comprehension (Table 1),

accounted for 20% of the variance of the scores for the two measures
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(R = .41 ± .03, for reading recognition, and .42 ± .02 for vocabulary

comprehension). The overlap of reading recognition networks com-

prised 12 edges whose strengths correlated positively (eight edges) or

negatively (four edges) with reading recognition scores. With the aid

of the BioImage Suite (https://bioimagesuiteweb.git), we observed

that these hubs and edges were disproportionately located in the FPN

and DMNs (Figure 4b and Table 1). Specifically, the hubs of this net-

work were located in DMN regions (precuneus, angular, and superior

frontal and medial orbitofrontal gyri, and anterior cingulum), and lan-

guage areas (pars triangularis and pars orbitalis, middle and inferior

temporal gyri). Similarly, the overlap of vocabulary comprehension

networks comprised 11 edges whose strengths correlated positively

(four edges) or negative (seven edges) with vocabulary comprehension

scores that were predominantly located in FPN and DMN (Figure 4b

and Table 1). The hubs and edges of this network were located in

DMN regions (precuneus, angular, superior and superior medial frontal

gyri, anterior cingulum and rectus), and language areas (pars

triangularis and orbitalis, and middle temporal gyrus).

4 | DISCUSSION

Using imaging data from four different fMRI sessions, we document

moderate but significant predictability for vocabulary comprehension

and reading recognition from fMRI data in healthy controls that was

reproducible in an independent sample, corroborating hypothesis H1.

Specifically, iFC data from language-, motor-, or working memory-

fMRI sessions explained >20% of the variance of the language mea-

sures, whereas the rest-fMRI session explained <14% of the variance.

In contrast iFC data from task- or rest-fMRI sessions explained <3%

of the variance of the control measures.

Jiang et al. recently reported, using partial least square regression

analyses on a similar sample of the HCP, a predictive model that inte-

grated the networks derived from six fMRI sessions that maximized

the prediction accuracy and that corresponded for reading recognition

to R = .498 and for vocabulary comprehension to R = .503 and

explained 25% of the variance. Instead, we report on a much simpler

model derived from the edges that overlapped across the three

F IGURE 3 (a) Relative contributions of absolute and relative head motion to the predictions of language and the control scores. Feature
selection (FS) threshold p < .01. (b) The false-positive rate (FPR) in FS monotonically increased at lower statistical thresholds and was lower for
the leave-one-out (LOO)-include-FS than for the LOO-exclude-FS pipeline. (c) FPR ratios highlighting the attenuation of false positive features
when the calculation included FS in the LOO-include-FS loop relative to when it excluded it (LOO-exclude-FS). (d) Prediction of reading
(ReadEng) scores from task-fMRI for the training and test samples as a function of sample size. Bilinear model; Shen atlas; Language fMRI session.
Abbreviations for fMRI sessions: WM, working memory; LAN, language; MOT, motor. Abbreviations for cognitive measures: ProcSpeed,
processing speed; PicVocab, picture vocabulary; ReadEng, oral reading recognition; SCPT, short Penn continuous performance
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task-fMRI conditions that explained 20% of the variance of the lan-

guage scores and that relied only on 12 and 11 edges for the reading

recognition and the vocabulary comprehension, respectively. Though

the integrated model accounted for a larger portion of the variance

than our overlapping model (25% vs. 20%) it relied on >400 edges in

contrast to reliance on 12 edges for reading recognition and 11 edges

for vocabulary comprehension.

The hubs that predicted language measures (14 for reading recog-

nition and 16 for vocabulary comprehension) were prominently

located in language areas encompassing FPN and DMN, consistent

with connectivity models predicting language performance (Jiang

et al., 2020) and with reports of FPN's engagement in language

processing (Geranmayeh, Wise, & Leech, 2014; Lohmann et al., 2010;

Tomasi & Volkow, 2012), and of DMN's engagement in language com-

prehension (Tesink et al., 2009).

Notably, the network hubs that predicted reading recognition

included the following language areas: Broca's area (posterior inferior

frontal gyrus; BA 45 and 44), which is associated with language produc-

tion (Sahin, Pinker, Cash, Schomer, & Halgren, 2009) and comprehension

(Skipper, Goldin-Meadow, Nusbaum, & Small, 2007); pars orbitalis

(BA 47), which is implicated in semantic and phonological processing of

language (Ardila, Bernal, & Rosselli, 2016); the angular gyrus, which is

involved in speaking and writing (Brownsett & Wise, 2010), including

findings of increased functional connectivity between the angular gyrus

and Broca's and Wernicke's areas during reading (Segal &

Petrides, 2013); and the anterior temporal cortex (BAs 20 and 21), which

is implicated in semantic processing (Humphries, Love, Swinney, &

Hickok, 2005; Visser, Jefferies, & Lambon Ralph, 2010). Similarly, the

network hubs that predicted vocabulary comprehension included the

same language areas, corroborating hypothesis H2.

The right precuneus was a prominent DMN hub in the networks

that predicted language scores. Early on, PET imaging studies had

identified the relevance of the precuneus for language comprehension

(Bottini et al., 1994; Musso et al., 1999) and subsequent resting-state

fMRI studies showed anticorrelated functional connectivity between

precuneus and Broca's and Wernicke's areas (Tomasi &

Volkow, 2012). In task-fMRI studies, activation of the precuneus was

interpreted to reflect the attentional component when performing

F IGURE 4 Language networks.
(a) Pearson correlation values between
observed and predicted cognitive scores
computed from training and test
subsamples with relative head motion
<0.14 mm. Task-fMRI sessions: language
(LAN), working memory (WM), and motor
(MOT). (b) Overlap across training and
test subsamples and task-fMRI session of

the positive (red lines) and negative (blue
lines) networks for reading recognition
(ReadEng) and vocabulary comprehension
(PicVocab) scores (left), and a glass brain
plot where each node is represented as a
sphere of size proportional to the number
of edges of the node (right). Brain
parcellation: Shen; bilinear model; training
sample; LOO-include-FS pipeline.
Figures were created with the aid of the
BioImage Suite (https://
bioimagesuiteweb.git)
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language tasks (Cohen et al., 2002; McDermott, Petersen, Watson, &

Ojemann, 2003).

Our findings have potential clinical relevance in that by identifying the

main hubs in networks that predict language performance, namely pars

triangularis, pars orbitalis, anterior temporal cortex, precuneus, and angular

gyrus, they provide with potential targets for neuromodulation using tech-

nologies such as rTMS (Naeser et al., 2013) or tDCS (Fridriksson

et al., 2018). Future studies are needed to assess if neuromodulation of

these hubs improves language performance in the elderly and to assess its

value in the rehabilitation of patients with language disorders. Mapping of

key hubs that influence language performance and their functional connec-

tions is also relevant for presurgical planning to minimize the likelihood of

surgery-associated language impairments.

Surprisingly, the overlapping edges in networks predicting lan-

guage scores, did not include the left fusiform gyrus, which is engaged

in word reading (McCandliss, Cohen, & Dehaene, 2003) and for which

its reactivity to letters has been shown to predict reading ability in

children and its hypoactivation associated with reading impairments

(Centanni et al., 2019). The reason(s) why the fusiform gyrus was not

represented among the overlapping edges from the language-

predicting networks is unclear, but it could reflect the different task-

fMRI sessions used to identify overlap. In this respect, only one of the

fMRI tasks was a language task that required participants to listen to a

story and it is possible that additional language task-fMRI sessions

might have given more prominence to this region. Also, even though

the simplified network based on the overlapping edges across the

TABLE 1 Degree and MNI
coordinates of hubs that predicted
reading recognition (ReadEng) and
vocabulary comprehension (PicVocab)
scores from language-, motor-, and
working memory-fMRI sessions in
Figure 4b. Node numbers correspond to
the Shen atlas

Node Region BA/nucleus Degree

MNI (mm)

Networkx y z

ReadEng

44 Precuneus 5 6 7 −57 62 DMN

20 Pars triangularis 45 3 37 21 6 FPN

91 Precuneus 23 2 8 −40 48 DMN

155 Pars orbitalis 47 2 −32 22 6 FPN

143 Pars orbitalis 47 2 −43 47 −7 FPN

11 Pars triangularis 45/46 1 37 35 31 FPN

56 Inferior temporal 20 1 55 −8 −32 DMN

190 Middle temporal 21 1 −58 −6 −23 DMN

226 Precuneus 5 1 −9 −43 50 DMN

182 Angular 39 1 −42 −66 42 DMN

178 Precuneus 7 1 −10 −66 55 DMN

148 Superior frontal 9 1 −11 34 52 DMN

140 Anterior cingulum 32 1 −6 48 12 DMN

138 Medial orbitofrontal 10 1 −7 48 −6 DMN

PicVocab

44 Precuneus 5 3 7 −57 62 DMN

20 Pars triangularis 45 3 37 21 6 FPN

148 Superior frontal 9 2 −11 34 52 DMN

145 Superior med frontal 10 2 −10 56 30 DMN

190 Middle temporal 21 1 −58 −6 −23 DMN

143 Pars orbitalis 47 1 −43 47 −7 FPN

146 Middle frontal 9 1 −27 34 36 FPN

144 Middle frontal 46 1 −29 50 22 FPN

178 Precuneus 7 1 −10 −66 55 DMN

91 Precuneus 23 1 8 −40 48 DMN

49 Angular 39 1 41 −75 28 DMN

177 Angular 7 1 −28 −62 40 DMN

15 Anterior cingulum 24 1 7 21 32 DMN

12 Superior frontal 9 1 14 37 49 DMN

10 Anterior cingulum 32 1 8 53 24 DMN

3 Rectus 11 1 5 35 −17 DMN

Abbreviations: DMN, default-mode network; FPN, frontoparietal network; MNI, Montreal Neurological Institute.
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networks predicted 20% of the variance in the language scores, 80%

of the variance was unexplained, which highlights the need of further

research to maximize the sensitivity of task-fMRI to construct predic-

tive models of language performance in healthy adults.

4.1 | Task versus rest

Task-free iFC can be used to assess language networks without requir-

ing participants to perform cognitive tasks (Battistella et al., 2020;

Tomasi & Volkow, 2012). However, previous CPM studies have docu-

mented higher R-values for task-fMRI than for rest-fMRI using LOOCV

(Greene et al., 2018; Jiang et al., 2020), which is consistent with our

data. Specifically, compared to rest-fMRI, task-fMRI improved predic-

tion accuracy for the language measures, corroborating H3.

4.2 | Cross-validation and sample size

The R-values for the language measures with the LOO-include-FS

pipeline were validated using LOOCV in the training sample and two-

fold cross-validation in the test sample. Overall, the reproducibility of

the R-values for the LOO-include-FS pipeline was good. In contrast,

R-values with the LOO-exclude-FS pipeline in the training sample

were high (R � .75), but their reproducibility in the test sample was

very poor. These findings corroborate working hypothesis H4 and

highlight the importance of including FS within the LOOCV loop.

Since the predictability of behavior from imaging data is low (less than

20% of variance in the case of language measures for this study), and

the sample sizes in many imaging studies are small (n < 100), repro-

ducibility of the findings in independent samples is needed to ensure

the validity of the results (Scheinost et al., 2019).

4.3 | False positives

Brain–behavior predictions with the LOO-include-FS pipeline had

low/moderate R-values, which is consistent with prior studies (Beaty

et al., 2018; Bellucci et al., 2019; Emerson et al., 2017; Fountain-

Zaragoza et al., 2019; Greene et al., 2018; Lin et al., 2018; Liu

et al., 2018; Rosenberg et al., 2016; Scheinost et al., 2019). The high

R-values obtained with the LOO-exclude-FS pipeline were due to the

marked inflation of spurious correlations due to overfitting. Indeed,

the LOO-exclude-FS pipeline increased 100% the FPR and inflated R-

values by a factor of 3. Cross-validation in an independent sample

protected against the high FPR with the LOO-exclude-FS pipeline.

We also show that larger samples and lower FS threshold decrease

FPR, corroborating hypothesis H5. Our findings highlight the inade-

quacy of the LOO-exclude-FS pipeline for CPM studies even for those

with large samples sizes, particularly if they do not corroborate with

cross-validation. For the LOO-include-FS pipeline with samples

n > 50, the R-values were similar for the LOO and twofold cross-

validation approaches, corroborating hypothesis H6.

4.4 | Head motion

The removal of individuals with large frame-to-frame head motion

could introduce sampling bias (Wylie, Genova, DeLuca, Chiaravalloti, &

Sumowski, 2014). In this study, however, R-values in the sample with

moderate motion (Δd < 0.4 mm) did not differ from those in the sub-

sample with low motion (Δd < 0.14 mm). Thus, removal of data with

excess motion that allowed us to eliminate significant correlations

between behavior and head motion did not cause significant sampling

bias in our study. It is also believed that significant correlations

between behavior and head motion can spuriously increase R-values

(Rosenberg et al., 2016; Shen et al., 2017). However, head motion

contributed minimally to predictions of vocabulary comprehension

and reading recognition scores (<1%).

4.5 | CPM: Language versus control measures

With cross-validation, vocabulary comprehension and reading recog-

nition had significantly higher R-values than sustained attention and

processing speed. Supporting our hypothesis (H1), this suggests that

functional connectivity measures, whether at rest or during task con-

ditions, are more sensitive to language processing skills than those

related to sustained attention and speed processing at least as it

relates to the tests included in the NIH toolbox.

In summary, we show that functional connectivity strength is a

reproducible predictor of language measures in healthy controls and

that relatively few edges can predict 20% of the variance for reading

recognition (12 edges) and for vocabulary comprehension (11 edges).

Furthermore, this study highlights the importance of twofold cross-

validation in brain–behavior prediction studies to ensure the robust-

ness of the associations and documents that inclusion of FS within

the LOOCV loop of CPM is crucial to mitigate the high rate of false

positives in brain–behavior correlations.
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