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Abstract

Organisms face a constantly shifting landscape of environmental conditions and internal physiological states. How gene regulation

andcellular functionsaremaintainedacrossgeneticandenvironmental variation is thereforea fundamentalquestion inbiology.Here,

we analyze the Saccharomyces cerevisiae genetic interaction network to understand how the yeast cell maintains regulatory capacity

across genetic backgrounds and environmental conditions. We used the recently characterized synthetic sick/lethal network in yeast,

which measures the fitness effects of knocking out pairs of genes, to analyze interactions among 4,364 genes. Genes with large

variance in epistatic effects on fitness are highly and ubiquitously expressed (with open chromatin conformations in their promoter

regions) and evolve more slowly than genes with weak effects on fitness. Thus, rather than being the elements responsible for the

regulation and responsiveness of the genetic network, genes with large epistatic effects tend to be more mundane “housekeeping”
genes whose consistent expression is critical to fitness under all environments and that are thereby deeply embedded within the

regulatory structure of the network. Our analysis shows that the yeast cell has evolved a system whereby a physical mechanism of

regulation (nucleosome occupancy) buffers key genes from the variability experienced by the cell as a whole.
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Introduction

Biological systems are continuously faced with variability gen-

erated by both internal and external sources. Internally, mu-

tations and shifting genetic backgrounds change the genetic

context in which genes are expressed. Externally, changing

environmental conditions alter the global context within

which molecular systems operate and to which they must

respond. Understanding how biological systems evolve

robust function across changing conditions has been a fre-

quent focus of research, yet the mechanisms underlying

robustness remain unknown (Masel and Siegal 2009). At a

structural level, all organisms achieve a balance between sys-

tems stability and responsiveness using complex networks of

interacting genetic elements drawn from a wide variety of

functional classes (e.g., proteins, noncoding RNA, epigenetic

modifications, and DNA response elements). In contrast to

other commonly studied networks, such as the Internet, gen-

etic networks are remarkable in the heterogeneity of function

of each individual component (Proulx et al. 2005). In light of

this heterogeneity, are there general principles about the

structure of genetic networks can be understood by studying

network properties as a whole, or do the unique properties of

each component in the system make general conclusions im-

possible? This is one of the fundamental questions in systems

biology.

In principle, the network-wide influences of individual

genes should reveal themselves via epistatic interactions

among network components, broadly construed (Dixon

et al. 2009). By necessity, the effects of individual genes will

be contingent upon the broader genetic network in which

they are found, since no gene can function in isolation.

Taken two at a time, whether the combined effects of

genes are positive or negative will depend on the relative pos-

ition and connection of those particular genes within the net-

work (Dixon et al. 2009; Michaut et al. 2011). There is no

reason that a given gene should have all positive or negative

interactions with genes throughout the genome—in fact net-

work structure demands that this not be the case. Thus, while

examining the average interaction properties of genes can be

useful (e.g., He et al. 2010), it is in the variability of epistatic

interactions that the structure of the genetic network should

reveal itself (see also Phillips et al. 2000). Despite decades of

interest and speculation, we still know very little about the role
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that epistasis plays in the structure, function, and evolution of

genetic systems (Wolf et al. 2000; Phillips 2008). To some

extent this limitation has been generated by a tendency

(and perhaps necessity) to only consider a few interactions

at a time, rather than the entire spectrum of possible inter-

actions that a single gene may have with the many thousand

other genes in the genome.

Comprehensive systems approaches are beginning to pro-

duce the detailed, large-scale descriptions of gene effects and

interactions that are needed to address the question of an

individual gene’s role within a broader network (Boone et al.

2007; Vizeacoumar et al. 2009). For example, Costanzo et al.

(2010) mated strains of the Baker’s yeast Saccharomyces cer-

evisiae containing single gene deletions or mutant alleles and

measured the resulting double mutant effects on growth for

�6 million gene combinations. Growth is the most critical

component of fitness in yeast, and highly correlated with

other fitness components such as competitive ability (Bell

2010). Costanzo et al. (2010) estimated the magnitude and

direction of the interaction between each pair of genes by

comparing the double mutant fitness to fitness expectations

derived from single mutants (fig. 1). Overall, this dataset com-

prises approximately 20% of the total potential yeast

interactome.

The yeast genetic interaction network is remarkable be-

cause it measures functional biological relationships through

quantitative effects on the fundamental unit of evolution: fit-

ness. An emerging view is that single-cell organisms achieve

robust cellular function in part through responsiveness in gene

expression and regulation (Gasch et al. 2000). For example,

S. cerevisiae tolerates fluctuations in the type and quantity of

nutrients, temperature, pH, and chemical stressors. Yeast re-

spond to these environmental stresses with global changes in

gene expression involving 20–50% of the genome (Gasch

et al. 2000; Causton et al. 2001). At the same time, yeast

tolerate high levels of genetic perturbations and �80% of

yeast genes are dispensable or not essential for growth

under standard laboratory conditions (Giaever et al. 2002).

Perturbations affect genomic regulation and gene expression

is correlated across environmental and genetic variation

(Proulx et al. 2007; Choi and Kim 2009; Lehner 2010b).

These patterns suggest that each gene may play a defined

role in the cell’s response to variability.

In this study, we address how epistasis relates to gene func-

tion and evolutionary change by calculating the whole-

genome spectrum of epistatic fitness effects for each gene.

Previous analyses of the yeast genetic interaction network

have focused around the number and pattern of interactions

each gene participates in (Costanzo et al. 2010; Bellay et al.

2011; Michaut et al. 2011; Szappanos et al. 2011). Measures

of network structure, or topology, are common across diverse

disciplines (for review, see Boccaletti et al. 2006), but numer-

ous studies indicate that understanding biological networks

requires a deeper understanding of biological processes and

mechanisms (e.g., Hahn et al. 2004; Wang and Zhang 2007;

Hakes et al. 2008; Jovelin and Phillips 2009; Agarwal et al.

2010; Podder and Ghosh 2010). Here, we take a different

approach to analyzing a biological network by focusing on

the effects that genetic interactions have on the organism

and how network structure relates to these effects. We use

the context of variation in fitness effects to then analyze re-

sults from a diverse set of published studies reporting genomic

expression and regulation, evolutionary rates and functional

molecular mechanisms, thereby revealing an integrated pic-

ture of organismal function and evolution.

Results

We calculated the interaction mean and variance for each

gene as a measure of epistatic fitness effects (fig. 2A and B).

Epistasis refers to interactions between genes (Phillips 2008),

and here is defined as a deviation from a multiplicative (inde-

pendent) expectation of mutant fitness effects (fig. 1).

Although previous studies have focused on the direction of

epistatic interactions (for recent e.g., see He et al. 2010; Chou

et al. 2011; Khan et al. 2011), each gene in the yeast inter-

action network participates in numerous epistatic interactions,

both positive and negative (ranging from 6 to 3,738 total

interactions per gene). We find that the variance in epistatic

effects is a particularly useful secondary measure of each

gene’s whole-genome impact on fitness relative to other
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FIG. 1.—The genetic interaction is a quantitative measure of deviation

from a multiplicative fitness expectation. For example, wild-type yeast in

this dataset has fitness of “1.” Deleting gene A affects fitness negatively

and results in a fitness of 0.7 for mutant A while deleting gene B results in a

more severe fitness reduction and a fitness of 0.5 for mutant B. Crossing

the two strains produces offspring carrying deletions for both genes A and

B. If genes A and B have independent effects on fitness, we would expect

that the double deletion strain, mutant AB, would have fitness 0.35 (the

multiplicative expectation, 0.7�0.5¼0.35). If the two genes interact

negatively mutant AB will show a more severe reduction in fitness and

will be negative. If the genes interact positively the fitness reduction will be

less severe, and will be positive. Synthetic lethality occurs when mutant

fitness is essentially zero. After Dixon et al. (2009).
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genes and quantifies its importance in the cellular system. If a

gene has large variance in epistatic fitness effects, then it par-

ticipates in a larger and more diverse set of interactions across

the genome. Some of these interactions will be positive and

result in less severe reductions in fitness, whereas others will

be negative and thereby enhance or exacerbate the single

mutant effects (fig. 1). On average, a perturbation in that

gene will have a larger effect on fitness than one in a gene

with small epistatic fitness effects. Interaction mean was

highly correlated with variance (supplementary table S1,

Supplementary Material online) but was not a statistically sig-

nificant factor in our analyses (supplementary table S2,

Supplementary Material online).

To analyze gene characteristics, we measured network top-

ology and individual gene effects. Different measures of net-

work topology were highly correlated with one another

(supplementary table S1, Supplementary Material online),

and we selected connectivity—the number of genes that a

given gene interacts with—as the most descriptive topology

measurement for further analyses. Individual gene effects

were measured through essentiality (if the gene is essential

for growth and development) and single mutant fitness

(fitness after perturbing a single gene). Each of these meas-

urements was correlated with one another, and with epistatic

fitness effects, indicating that genes with higher interaction

variance have higher numbers of connections, and larger in-

dividual effects on fitness.

Patterns of epistasis should in principle be reflective of the

functional networks that underlie the mapping from genotype

to phenotype. These networks are composed of genetic elem-

ents that vary across individuals and populations and are struc-

tured to respond to the environment by amplifying or

suppressing variation. To examine the relationship between

an individual gene’s epistatic fitness effects and its tendency

toward variation, we analyzed data from several genome-

wide studies that reported gene expression across a broad

range of genetic and environmental conditions. These include

transcriptional and translational variation among genes

(Landry et al. 2007; Nagalakshmi et al. 2008) and cells

(Gasch et al. 2000; Newman et al. 2006), and genetic vari-

ation among siblings (Brem and Kruglyak 2005), populations

(Choi and Kim 2008), and closely related species (Tirosh et al.

FIG. 2.—Each gene has a distribution of epistatic interactions that can be described by the mean and variance, and that correlate with the gene’s

propensity to sensitivity or robustness to environmental and genetic perturbations. (A) An example of the frequency of genetic interactions, by interaction

size, for a single randomly selected ORF (here, GCN5). This ORF participates in 400 interactions ranging in size from�0.44 to 0.39. Interactions that could not

be statistically distinguished from zero were removed, resulting in a bimodal distribution. (B) The interaction mean for each ORF, plotted by its interaction

variance. Across all genes the average interaction variance was 0.0063 and the average interaction mean was �0.01. (C) Chromatin regulation effect,

measured as the variance in gene expression in response to deletion of individual chromatin regulation factors, correlates negatively with interaction variance.

(D) Interaction variance correlated negatively with variance in gene expression across genetic and environmental conditions, and with sequence-level

divergence (dN/dS). Transcription factor (TF) regulation was not correlated with interaction variance and expression level was positively correlated.
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2006). Previous work has demonstrated that individual genes

have correlated patterns of expression across these different

scales (Choi and Kim 2009; Tirosh, Barkai, et al. 2009). Some

genes are sensitive to perturbation and have expression levels

that vary with environment or genetic background, whereas

others have stable expression levels that are robust to both

genetic and environmental change.

We mapped expression variation onto the yeast interaction

network and found that the majority of these datasets

showed a distinct pattern in which genes with small epistatic

fitness effects show high variance in expression sensitivity (an

example is shown in fig. 2C, and the full dataset is shown in

supplementary fig. S1, Supplementary Material online). Some

genes with small epistatic fitness effects are therefore ex-

tremely sensitive to perturbations while others have stable,

robust expression. In contrast, we find that genes with

larger variance in epistatic fitness effects consistently have

stable levels of gene expression. The datasets we examined

were negatively correlated with epistatic fitness effects with

the exception of response to transcription factor regulation

(Choi and Kim 2008) and expression level (Nagalakshmi

et al. 2008), which was positively correlated with epistatic

fitness effects.

We performed a partial correlation analysis to test for the

possibility that relationships among the measures were affect-

ing the correlations (supplementary table S2, Supplementary

Material online). Epistatic fitness effects remained significantly

correlated with the same datasets with the exception of

expression level, for which the relationship was no longer sig-

nificant. Single mutant fitness was significantly correlated with

all of the expression datasets but transcription factor regula-

tion. Connectivity was negatively correlated with chromatin

regulation (Choi and Kim 2008, 2009), positively correlated

with transcription factor regulation and expression level, and

not correlated with the other datasets. We therefore conclude

that single gene and epistatic fitness effects show the best

relationship with expression variation.

Variation in gene expression can be generated both by

trans-acting elements such as transcription factors and by

cis-acting factors such as DNA response elements and local

chromatin configuration. Recent work within yeast suggests

that variation in gene expression maps to promoter architec-

ture and nucleosome occupancy (Tirosh and Barkai 2008b;

Choi and Kim 2009; Tirosh, Barkai, et al. 2009; Tirosh et al.

2010). A critical region of the promoter (�200 bp to �1 bp

upstream of the transcription start site) shows a prominent

nucleosome-depleted region (NDR) across the majority of

genes (Lee et al. 2007). The DNA in NDRs is less likely to be

bound to nucleosomes and is therefore thought to be more

directly available to the transcriptional apparatus. The NDR is

also found across Hemiascomycota species (Tsankov et al.

2010) and correlates with expression variance and gene func-

tion. Genes with open promoters tend to be “growth” genes

involved in basic cellular maintenance processes and expressed

constitutively during the cell’s growth phase. Genes with pro-

moters that are on average occupied by nucleosomes are

overrepresented in stress and periodic physiological responses

(Lee et al. 2007). These genes tend toward higher expression

variance, and it is thought that the stochasticity and time lag

associated with chromatin remodeling and the removal of the

nucleosome results in transcriptional variation.

We used a dataset that mapped nucleosome occupancy at

a 4 bp resolution across the entire S. cerevisiae genome (Lee

et al. 2007) to examine the promoter architecture of each of

the genes in the yeast interaction network and found that the

probability of nucleosome occupancy in the NDR correlated

negatively with epistatic fitness effects (r¼�0.104,

P¼2.2�10�18; fig. 3A and B). Single mutant fitness

(r¼ 0.051, P¼ 0.75) and connectivity (r¼�0.032,

P¼0.22) were not correlated with nucleosome occupancy.

The genome-wide average for nucleosome occupancy sits dir-

ectly between genes with small epistatic effects and genes

with increasingly strong epistatic effects (fig. 3C). Genes

with the largest epistatic fitness effects have, on average,

the most open chromatin directly upstream of the transcrip-

tion start site. Nucleosome occupancy in other regions of the

promoter and within the transcribed region do not differ be-

tween genes with different epistatic fitness effects. The area

of the promoter upstream of the NDR shows high occupancy

and weak, ‘fuzzy’ positioning (Lee et al. 2007), whereas the

transcription start site marks the beginning of strong, consist-

ent periodicity with well-positioned nucleosomes.

Although measures of gene expression variation have pre-

viously been found to be correlated with one another (Choi

and Kim 2009), they have tended not to be correlated with

divergence in coding sequence (Tirosh and Barkai 2008a). In

contrast, we found that sequence-level divergence (dN/dS

ratio) among closely related species (Wall et al. 2005) corre-

lated negatively with variance in epistatic fitness effects

(fig. 2D). Single mutant fitness and connectivity were also

correlated with dN/dS, indicating that genes with small effects

on fitness and fewer numbers of connections tend to evolve

more quickly than other genes in the yeast interaction

network (supplementary table S2, Supplementary Material

online).

We analyzed the most significantly enriched gene ontology

(GO) biological processes to gain a functional perspective on

epistatic fitness effects (reported in supplementary table S3,

Supplementary Material online). Genes with very small

epistatic fitness effects (interaction variance <0.005) are

enriched for metabolism and biological processes that connect

the cell with its external environment, such as drug transport.

Genes with slightly larger epistatic fitness effects (0.005<

interaction variance< 0.1) are enriched for processes asso-

ciated with translation, gene expression, and metabolism.

Genes with larger epistatic fitness effects (0.01< interaction

variance< 0.015) are enriched for processes associated with

cellular, organelle, and chromosome organization and
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biogenesis. Genes with the largest epistatic fitness effects

(interaction variance> 0.015) are also enriched for processes

associated with different types of organization and biogenesis,

and cellular localization.

Discussion

Understanding biological and evolutionary significance at a

systems level is a primary challenge for current biology, and

our work demonstrates that studying genome-wide fitness

effects creates a powerful framework for analyzing systems

level patterns. Overall, the set of negative correlations revealed

here implies a quantitative relationship between the multidi-

mensional fitness effects of individual genes, nucleosome oc-

cupancy patterns, the production of variation through gene

expression, and sequence-level divergence (fig. 3). Genes with

large epistatic fitness effects are constitutively expressed

throughout growth and have open chromatin directly up-

stream of the transcription start site. These genes are heavily

regulated, core cellular components, and somewhat surpris-

ingly, constant use has resulted in relative insensitivity to

cellular conditions. Lack of dependence on chromatin re-

modeling produces robust expression levels, and these low

variation genes show greater DNA sequence conservation

among species. In contrast, genes with small epistatic effects

have high variation across these scales. Some are constitutively

expressed while others are periodically expressed, some have

high nucleosome occupancy while others do not, and some

have diverged through nucleotide substitutions while others

have not.

Our analysis integrates several sets of well-documented

phenomena, while providing insight into the evolutionary

connections linking these phenomena. For example, previous

studies have connected GO categories (Lee et al. 2007) and

gene expression variability (Choi and Kim 2009) with patterns

of nucleosome occupancy, and correlated highly connected

“hub” genes with a number of features including essentiality,

pleiotropy, chromatin structure, transcription, phenotypic cap-

acitance, evolutionary rate, secretion, and vesicle transport

(Costanzo et al. 2010). Previous studies have also suggested

that promoter nucleosome occupancy may result in two

classes of genes, one characterized by low levels of transcrip-

tional plasticity and a second class with higher levels of tran-

scriptional plasticity and evolutionary potential (Tirosh, Barkai,

et al. 2009; Lehner 2010a). Although there has been ample

evidence linking promoter nucleosome occupancy to tran-

scriptional plasticity, until this point there has been no link

between evolutionary change and patterns of nucleosome

occupancy. The results presented here therefore connect

FIG. 3.—A critical region of the promoter upstream of the transcription start site (TSS) is typically occupied by nucleosomes for genes with small epistatic

fitness effects and unoccupied for genes with large epistatic fitness effects. (A) Interaction variance and nucleosome occupancy are negatively correlated in a

region �200 to �1 bp upstream of the TSS, but uncorrelated further upstream in the promoter region �400 to �200bp before the TSS. Further

downstream in the transcribed region of the gene nucleosome occupancy shows a strong periodicity, but no relationship with epistatic fitness effects.

(B) Continuous data highlight the strong periodicity in nucleosome occupancy patterns. These data were ordered first by variance in epistatic interactions and

second by probability of nucleosome occupancy to obtain a continuous visualization of promoter regions. (C) Differential nucleosome occupancy shows an

increased probability for genes with small epistatic fitness effects, and a decreased probability of occupancy as epistatic fitness effects increase. Differential

occupancy was calculated by subtracting the genome-wide average from each of the epistatic fitness classes plotted in (A).
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transcriptional plasticity with sequence-level divergence via

whole-genome fitness effects and show that genes with

higher nucleosome occupancy evolved more quickly than

low-occupancy genes.

From a functional perspective, the set of genes demonstrat-

ing large variance in epistatic fitness effects is somewhat sur-

prising. Instead of the transcription factors and regulatory

proteins that may a priori be expected to have both positive

and negative interactions within the yeast cell, the genes with

largest epistatic fitness variances are those involved in growth

and maintenance of the cell, chromosomes, and organelles.

These genes have stable expression levels and few evolution-

ary changes, indicating that the cell may not tolerate variation

at these loci. The most likely explanation for these patterns is

that this consistent expression is a dynamic equilibrium that is

an evolved property of the yeast genetic network, which in

turn is revealed by the fitness effects of the epistatic gene

interactions. The variance in interaction effects generated

when these genes are knocked out likely results from the

differential influence of interactions with both positive and

negative regulators. The yeast cell has thus evolved a sys-

tem whereby expression and use of the core cellular compo-

nents are buffered from the genetic and environmental

variation the cell itself experiences. The most striking result

from this study is that physical control at an epigenetic level

is strongly reflected in fitness and the rate of evolutionary

change.

In an evolutionary sense, the causal structure of this rela-

tionship is unclear, and there are two possibilities. First,

because sequence-level divergence (dN/dS) measures the rea-

lized response to selection, genes with large epistatic effects

may display constrained divergence because they do not pro-

duce sufficient expression variation for selection to act on. This

is unlikely because yeast respond quickly to artificial selection

for phenotypes as extreme as primitive multicellularity (Ratcliff

et al. 2012). Expression variation therefore does not appear to

be a barrier to divergence, but we can not exclude this possi-

bility. The second, more likely, explanation is that these genes

display constrained divergence because they are under very

strong stabilizing selection. Strong stabilizing selection has

been documented for phenotypic traits (Stinchcombe et al.

2008), and mutation accumulation and hybridization experi-

ments suggest a large capacity for expression divergence

under relaxed selection (Denver et al. 2005; Rifkin et al.

2005; Tirosh et al. 2006; Tirosh, Reikhav, et al. 2009).

Genes with large epistatic effects interact strongly across

the genome and tend to be involved in basic cellular

function and maintenance (supplementary table S3,

Supplementary Material online). This combination of multidi-

mensional fitness effects and functional roles suggests that

the cell may not readily tolerate sequence-level changes at

these genes.

Additional studies including information on interactions

across environments and genotypes, and across multiple

phylogenetic scales will be needed to test the hypothesis

that regulatory robustness is an evolved property of these net-

works. Nevertheless, in yeast, it appears that one critical level

of epigenetic regulation drives the complex system of genetic

interactions. Epigenetics and chromatin dynamics are increas-

ingly implicated in errors across functional networks and

cancer (e.g., Gui et al. 2011). As interaction networks are

documented at a higher resolution in a variety of organisms,

additional research addressing the link between regulation,

variation, and fitness may refine this picture and demonstrate

a quantitative relationship between multidimensional fitness

effects and the propensity for error.

Materials and Methods

Genetic interactions were obtained from measures of single

and double mutant fitnesses reported by Costanzo et al.

(2010) for 4,364 open reading frames (ORFs). Interactions

with P< 0.05 were used to create the genetic interaction net-

work we analyzed here. We calculated the connectivity

(number of ORFs with a nonzero interaction), interaction

mean, and variance for each ORF in the genetic interaction

network. To analyze the relationship among network meas-

ures, we calculated Pearson correlation coefficients between

the estimates for essentiality and single mutant fitness

(reported in Costanzo et al. 2010), and our estimates of con-

nectivity, interaction mean, and interaction variance with R

(reported in supplementary table S1, Supplementary

Material online). We used the Python 2.7 Networkx package

(version 1.5) to calculate the betweenness, closeness, and

degree centrality for each ORF in the yeast interaction net-

work. Betweenness was calculated as cBð�Þ ¼
P

s, t2V
�ðs, tj�Þ
�ðs, tÞ

for each node, where V is the set of nodes, �(s, t) is the

number of shortest paths and �(s, tj�) gives the number of

paths passing through node � excluding s, t. Closeness was

calculated as the inverse of the average distance to all other

nodes. Degree centrality was calculated as the fraction of

other nodes each ORF was connected to. We calculated the

Pearson correlation coefficients between the network top-

ology measures and interaction variance with R (supplemen-

tary table S3, Supplementary Material online).

The yeast genetic interaction data did not overlap com-

pletely with the datasets measuring gene expression, and

for each dataset we extracted measurements for the yeast

interaction network ORFs. We obtained measures of expres-

sion level for 2,812 of the ORF in the yeast interaction network

from a study reporting the median transcription level of the

last 30 bp for each ORF through RNA-Seq (Nagalakshmi et al.

2008). We obtained measures of transcription factor regula-

tion and chromatin regulation from a study measuring gene

expression across a compendium describing the deletion

effect of chromatin regulators or transcription factors (Choi

and Kim 2008, 2009). 4,268 ORFs from the yeast interaction

network were measured in the chromatin regulation study
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and 4,163 ORFs were measured in the transcriptional regula-

tion study. Divergence was reported in a microarray study

measuring gene expression across five sets of environmental

perturbation (heat shock, oxidative stress, nitrogen starvation,

DNA damage, and carbon source switching) between S. cer-

evisiae, S. paradoxus, S. mikatae, and S. kudriazevii. The set

covered 2,838 ORFs of the yeast interaction network. Plasticity

was measured as the sum of squares of the log2 ratios over a

literature-curated dataset of yeast expression across 1,500

conditions for the same 2,838 ORFs in the yeast interaction

set (Tirosh et al. 2006). Mutational variance (Vm) was esti-

mated through microarray gene expression measures across

four mutation accumulation lines for 3,873 ORFs in the yeast

interaction set (Landry et al. 2007). Noise was measured

through single-cell proteomic analysis that described variation

relative to the median (Newman et al. 2006) for 1,502 ORFs

contained in the yeast interaction network. Measures of stress

response were obtained from a study reporting variance in

microarray gene expression for 4,308 ORFs in the yeast inter-

action network (Gasch et al. 2000). Segregating genetic vari-

ance was reported in a study measuring gene expression

across 112 segregants from a cross between a standard la-

boratory strain and a wild yeast isolate (Brem and Kruglyak

2005), and included 3,978 ORFs contained in the yeast inter-

action set. We calculated the Spearman correlation coefficient

between each of the datasets and interaction variance in R.

We also calculated partial Spearman correlation coefficients

with the R Partial Correlation package to analyze the signifi-

cance of interaction variance when controlling for the other

network measures (supplementary table S2, Supplementary

Material online).

Nucleotide divergence was obtained from a study reporting

dN/dS ratios between S. bayanus, S. mikatae, S. paradoxus,

and S. cerevisiae (Wall et al. 2005) for 2,167 ORFs in the yeast

interaction network. Results did not differ when the ratio be-

tween nonsynonymous substitutions (dN) and synonymous

substitutions per synonymous site (dS) was corrected for se-

lection on synonymous sites (dN/dS0). Nucleosome patterns

were extracted from a tiling array study mapping nucleosome

occupancy at a 4 bp resolution across the yeast genome (Lee

et al. 2007). Genomic chromatin was extracted from haploid

yeast grown in YPD medium and 3,505 ORF’s overlapped with

the yeast interaction network. The yeast interaction dataset

is available from http://drygin.ccbr.utoronto.ca/costanzo2009

(last accessed June 2012). Divergence and plasticity data are

given at: http://barkai-serv.weizmann.ac.il/TATA (last accessed

June 2012). Stress response data are available from: http://

genome-www.stanford.edu/yeast (last accessed June 2012).

The atlas of yeast nucleosomes is available from: http://che-

mogenomics.stanford.edu/supplements/03nuc (last accessed

June 2012). Enrichment and significance for GO biological

processes were calculated with GOStat: http://gostat.wehi.

edu.au/ (last accessed August 2012).

Supplementary Material

Supplementary figure S1 and tables S1–S3 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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