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Antagonistic network signature of motor function in
Parkinson’s disease revealed by connectome-based
predictive modeling
Xuyang Wang1,6, Kwangsun Yoo 2,6, Huafu Chen 1✉, Ting Zou1, Hongyu Wang1, Qing Gao3, Li Meng 4✉, Xiaofei Hu 5✉ and
Rong Li 1✉

Motor impairment is a core clinical feature of Parkinson’s disease (PD). Although the decoupled brain connectivity has been widely
reported in previous neuroimaging studies, how the functional connectome is involved in motor dysfunction has not been well
elucidated in PD patients. Here we developed a distributed brain signature by predicting clinical motor scores of PD patients across
multicenter datasets (total n= 236). We decomposed the Pearson’s correlation into accordance and discordance via a temporal
discrete procedure, which can capture coupling and anti-coupling respectively. Using different profiles of functional connectivity,
we trained candidate predictive models and tested them on independent and heterogeneous PD samples. We showed that the
antagonistic model measured by discordance had the best sensitivity and generalizability in all validations and it was dubbed as
Parkinson’s antagonistic motor signature (PAMS). The PAMS was dominated by the subcortical, somatomotor, visual, cerebellum,
default-mode, and frontoparietal networks, and the motor-visual stream accounted for the most part of predictive weights among
network pairs. Additional stage-specific analysis showed that the predicted scores generated from the antagonistic model tended
to be higher than the observed scores in the early course of PD, indicating that the functional signature may vary more sensitively
with the neurodegenerative process than clinical behaviors. Together, these findings suggest that motor dysfunction of PD is
represented as antagonistic interactions within multi-level brain systems. The signature shows great potential in the early motor
evaluation and developing new therapeutic approaches for PD in the clinical realm.
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INTRODUCTION
Parkinson’s disease (PD) is a common neurodegenerative disease
affecting millions of people worldwide, especially in terms of daily
motor behaviors1. Pathologically, the well-known hallmark of PD is
the degeneration of nigrostriatal dopaminergic neurons and the
presence of α-synuclein-containing Lewy bodies2,3. The initial
abnormality seems to trigger widespread aberrant neuronal
activities and signaling pathways that lead to the decline of
neurological functions, such as impaired motor function in PD3–5.
Although striatal dopamine loss induces motor dysfunction, this
single perspective gives a restricted clinical picture and limits
potential therapeutic approaches6. Thus, probing motor dysfunc-
tion in PD from a distributed network perspective has a potential
to provide an overarching framework and new insights into the
neural substrates of motor-enabled factors.
From a network perspective, appropriate behaviors rely on not

only the functionally specialized brain regions but also the
cooperative interactions among distributed entities7. Functional
connectivity (FC), one of the most well-known synchronized
phenomena, is usually measured noninvasively with resting-state
functional MRI (rs-fMRI). With the advantages of high spatial
resolution to cover the whole brain and easily performing,
rs-fMRI provides a vehicle to investigate FC patterns on different
populations8–10. In the context of PD, neuroimaging evidence has

converged to reveal the deterioration of functional interactions in
the cortico-striatum circuitry5,11,12 which is also associated with
motor impairment clinically assessed by the third part of Unified
Parkinson’s Disease Rating Scale (UPDRS III)13. For example,
Szewczyk-Krolikowski et al.14 reported the reduced connectivity
between the basal ganglia network and widespread frontal,
temporal, and parietal cortices in PD patients compared with
healthy controls. Another study by Campbell et al.15 found that
patients with PD had significantly reduced sensorimotor FC, which
correlated with the reduced cerebrospinal fluid (CSF) levels of α-
synuclein. A classical opinion related to this phenomenon is that
neurodegeneration can disrupt the highly synchronized sponta-
neous blood oxygen level-dependent (BOLD) fluctuations16,17.
Although previous studies have revealed that PD is associated
with network changes in distributed brain areas, the statistical
inferences from group-level analyses cannot evaluate individual
clinical behaviors18. There is still a gap in understanding how the
human connectome shape motor performance at the single-
subject level.
Predictive modeling has recently emerged as a powerful tool

to discover neural substrates of human cognition and evaluate
individual behaviors quantitively19. Prior studies have demon-
strated that functional connectomes can be stable across
multiple days, which are dominated by common organizational
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principles and individual features20,21. Based on the
connectome-based predictive modeling (CPM)22, numerous
studies have decoded human characteristics from functional
interactions23–25 and revealed neural architectures of specific
brain states26,27. To date, the most popular measure of FC is
Pearson’s correlation. Despite its usefulness in previous rs-fMRI
studies, this statistical dependency is coarse-grained which
ignores point to point effects between two time-varying series.
These challenges can be addressed with recently proposed
measures of FC—discordance and accordance28, which quantify
out-of-phase anti-correlation and in-phase synchronization
respectively. In the context of PD, previous studies have
consistently demonstrated that FC was reduced among brain
networks12,14,15,29,30, which seems to be a result of antagonistic
effects induced by dopamine depletion. Accordingly, the
predictive model based on discordance connectivity has the
potential to provide more insights into the mapping between
brain systems and clinical motor behaviors in PD.
Here, we aimed to represent the motor signature of PD using

the CPM across multicenter dataset (n= 236). First, we con-
structed candidate predictive models with discordance, accor-
dance, and Pearson’s correlation on the discovery cohort and
quantified the sensitivity of models by cross validation (Study 1,
n1= 71). Then, the models with fixed parameters, which derived
from the whole discovery cohort, were applied to three
independent samples (Study 2, n2= 45; Study 3, n3= 60; Study
4, n4= 60) to validate the generalizability. We hypothesized that
although the candidate models would share some common
brain representations of motor function, the predictive model
profiled with discordance might show better sensitivity and
generalizability. In addition, we expected the predictive model
might have different patterns along with the disease course
given the progressive nature of PD. Thus, we further investigated
the relationship between the predictive residuals and disease
stages in PD.

RESULTS
Subjects enrollment
We enrolled a total of 236 patients with PD enrolled from nine
sites to construct and validate connectome-based predictive
models for motor function in this work (from Study 1 to Study
4). The dataset from Southwest Hospital of the Third Military
Medical University sample (TMMU, n= 116) was divided into
two samples (Study 1 and Study 2). Study 1 (n= 71) served as a
discovery cohort to establish candidate predictive models
based on different profiles of FC and to quantify their
sensitivity. Study 2 consisted of subjects excluded from Study
1 due to large head movements (n= 45) to test the general-
izability of predictive models. Study 3 served as an external
cohort (n= 60) collected with a different scanner at Xiangya
Hospital of Central South University (CSU) to validate the
generalizability out of a single center. Study 4 consisted of
60 subjects (mainly covered the white race) collected from the
Parkinson’s Progression Markers Initiative (https://www.ppmi-
info.org, PPMI) to test the generalizability out of one ethnicity.
In brief, PPMI is a public, intranational, and multicenter dataset
which can be used to identify the biomarkers of PD progres-
sion31. Notably, subjects used in Study 4 were collected from
seven centers and were scanned with the same scanner
(Siemens) and parameters. Finally, the predictive model with
the best sensitivity and generalizability (termed as the final
predictive model) was used to defined a brain signature of
motor function in PD through all studies.

Functional connectome-based predictive models for motor
function in PD
In Study 1 (n= 71), we established candidate predictive models
with the three profiles of FC (Pearson’s correlation, accordance, and
discordance; shown in Fig. 1). According to the protocol of CPM22,
we first demonstrated that UPDRS III scores were not correlated
with head motions in all studies (Study 1: r(69) = −0.12, P= 0.3278;
Study 2: r(43)= −0.13, P= 0.3979; Study 3: r(58) =−0.03, P= 0.8279;
Study 4: r(58) = −0.03, P= 0.7989). During the feature selection
step in Fig. 1, the input connectome had 35,778 distinct edges per
subject. To reduce the dimensions of connectome for further brain-
behavior modeling, partial correlation (P < 0.001) was used to
minimize the confounding effect of age. Three candidate
predictive models were then defined according to the profiles of
FC and their relationship with UPDRS III scores, resulting in (1)
discordance positive network (discordance connectivity correlated
with UPDRS III scores positively, DPN), (2) accordance negative
network (accordance connectivity correlated with UPDRS III scores
negatively, ANN), and (3) Pearson’s negative network (Pearson’s
connectivity correlated with UPDRS III scores negatively, PNN)
models. We observed that the DPN had the best sensitivity in
Study 1 (prediction R2= 0.35, r= 0.61, Ppermutation= 0.0006, Fig. 2a).
While PNN could also predict observed scores to a certain degree
(prediction R2= 0.13, r= 0.40, Ppermutation= 0.0244, Fig. 2c), ANN
showed the worst performance (prediction R2=− 0.08, r= 0.20,
Ppermutation= 0.2212, Fig. 2b). Statistical significances in this internal
validation were approved by Steiger’s z test (DPN vs PNN: z value=
2.52, P= 0.0057; DPN vs ANN: z value =3.73, P= 0.0001). The other
three models (DNN, APN, and PPN) were abandoned in further
external validations due to the relatively poor predictive perfor-
mance in Study 1 (Supplementary Fig. 1). For network visualization
(shown as the third column of Fig. 2), we retained connections
that appeared at least 95% times in all iterations using the leave-
one-out cross-validation (LOOCV) method. Finally, there were 33
edges in DPN, 6 edges in ANN, and 22 edges in PNN. Information
about each edge was listed in Supplementary Table 1. Results of
other thresholds (90% and 100%) are also depicted in Supple-
mentary Fig. 2.
CPM analysis with different parameters (q ranged from 0.8 to 0.9

with a step of 0.01; P ranged from 0.001 to 0.01 with a step of
0.001) was repeated to test the stability of predictive performance
(threshold q for binarization and threshold p for feature selection).
All predicted r values between the observed scores and predicted
scores are displayed in Supplementary Fig. 3. This result indicated
that DPN, ANN, and PNN had a more robust and stronger
predictive performance than their corresponding opposite modes
(DNN, APN, and PAN; Supplementary Fig. 4a–c). Moreover, a
paired sample t test revealed that the predictive performance of
DPN was significantly better than ANN (t(109) = 2.80, P= 0.0061,
Supplementary Fig. 4d). We also examined the predictive
performance of DPN on Shen-368 atlas32, Power-264 atlas33, and
Fan-246 atlas34 to explore the influence of different brain
parcellations. By setting the P value at 0.001 and ranging q value
from 0.8 to 0.9, we repeated CPM on each brain atlas and
computed the correlation between predicted scores and observed
scores (Supplementary Fig. 5). This analysis revealed that DPN
could keep a relatively consistent predictive performance across
different brain parcellation schemes. All results in this part
illustrated the reliable predictive performance of DPN.

Network-level representations of predictive models
Disclosing the main drivers in predictive models is important to
understand how the neurobiological substrates underpinned the
motor function in PD. Hence, we assigned 268 nodes to 10
canonical functional networks according to previous litera-
ture20,23,35 to visualize predictive weights on the network level
(Fig. 3). We first quantified the predictive weights belonging to
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each intra- or inter-network pair by summing up the regression
coefficients of every connectivity (the heatmaps in Fig. 3).
Thereafter, we sketched the distributions of the top fifty percent
network pairs (top seven pairs for DPN, top one for ANN, and top
five for PNN) by averaging the connected strength between nodes
on the discovery cohort (the right column in Fig. 3). The most
reliable negative or antagonistic (that is, higher UPDRS III motor
scores with more anti-coupling) predictive weights across three
candidate models were found in the pathway between motor
network (MOT) and primary visual network (VI). In addition, the
DPN model revealed that MOT, subcortical (SUB), default mode

(DM), and frontoparietal (FP) had notable predictive weights,
which also covered the results of ANN and PNN (see the radar
plots in Fig. 3). These finding indicated that the motor function of
PD might be represented as distributed decoupling of multi-level
networks responsible for sensory perception, action selection,
sequencing and planning12,36, and executive control processes37.

External validations
For the blueprint of clinical translation, validating the general-
izability of predictive models is crucial. Here, three independent

Fig. 1 Schematic representation of connectome-based predictive modeling for motor dysfunction in PD. Step 1: We extracted the mean
signal from regions of interest (ROIs), then positive extreme values of the z-transformed time series were encoded as 1, whereas negative
extreme values were encoded as -1. The encoded series was subsequently sent into two layers. The first layer (dot product layer) produced
sub-states of connectivity for each pair of ROIs, and the last layer (accumulation layer) quantified the synchronized interactions (accordance)
and antagonistic interactions (discordance). Connectivity matrices based on three FC measures were constructed for each subject. Step 2: We
looped step 1 through subjects and created a group-level matrix (m×n, where m represents subjects, and n represents FC). The significantly
motor-correlated edges (P < 0.001) were selected and divided into positive features (R > 0) and negative features (R < 0). Step 3: We trained a
multivariate linear regression model using partial least squares based on selected features. Step 4: Apply models to novel subjects in
independent samples to assess the generalizability. Brain images in this figure were obtained from the Bioimage Suite (https://
bioimagesuiteweb.github.io/webapp/), which is an open source software package. UPDRS III Unified Parkinson’s Disease Rating Scale motor
examination; FC functional connectivity.
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and heterogeneous PD samples (Study 2 to Study 4) served as
external validations. The heterogeneity between these test
samples and the discovery cohort in Study 1 was demonstrated
in Table 1. Study 2 (n1= 45) included patients with PD belonging
to the same center (TMMU) as Study 1, which possessed more
severe head movements and never appeared in Study 1. As shown
in Fig. 4a, the DPN model outperformed the other two in
generalizability within this cohort (DPN: R2= 0.14, r= 0.41,
P= 0.0052; ANN: R2= 0.01, r= 0.28, P= 0.0656; PNN: R2=−
0.11, r= 0.33, P= 0.0281). Study 3 (n2= 60) was recruited from a
different center (CSU) with the same inclusion criteria in Study 1.
As shown in Fig. 4b, this result also demonstrated that the DPN
had robust predictive performance (DPN: R2= 0.14, r= 0.48, P <

0.0001), whereas the other two models could hardly predict the
observed UPDRS III scores (ANN: R2=− 0.33 r= 0.07, P= 0.5788;
PNN: R2=− 0.16, r= 0.22, P= 0.0912). Study 4 used the most
heterogeneous sample (n3= 60), which consisted of seven
different sites and other ethnicities (the white race accounted
for 93%). Although the R-squared was negative in all predictive
models, the r values were positive between the observations and
predictions as shown in Fig. 4c (DPN: R2=− 0.8, r= 0.31, P=
0.0158; ANN: R2=− 0.5, r= 0.29, P= 0.0208; PNN: R2=− 0.6, r=
0.28, P= 0.0297). After all validations, DPN showed better
sensitivity and generalizability than the other two models (ANN
and PNN), and it was defined as the final predictive model in
this article.

Fig. 2 Internal validation of predictive models and network visualization. Using the LOOCV method to obtain predicted scores, the
evaluation of predictive performance was based on (1) the Pearson’s correlation between observed UPDRS III scores and predicted UPDRS III
scores, and (2) the predicted R2 (the left column). Permutation test was performed by comparing true r values (colored vertical lines in the
middle column) with a null distribution of r values, yielding a significant effect for DPN and PNN models. Edges with significant (P < 0.001) and
robust (exceed 95% of iterations) dependency on UPDRS III scores were reserved in the predictive networks (the right column). The network
visualization was completed with Bioimage Suite (https://bioimagesuiteweb.github.io/webapp/). The color bars at the bottom of this figure
represent which brain parcellation the nodes are assigned to on the basis of a lobe scheme. L left hemisphere, R right hemisphere, LOOCV
leave-one-out cross-validation, DPN discordance positive network, PNN Pearson’s negative network.
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It is also important to test whether the DPN-based model has
the specificity to predict motor function in PD. Based on
correlation analysis, we found no significant r values between
the predicted UPDRS III scores and the variables of age (Study 1:
r= 0.001, P= 0.992; Study 2: r < 0.001, P= 0.9998; Study 3: r=
−0.082, P= 0.5344; Study 4: r=−0.017, P= 0.8974), mean
framewise displacement (FD) (Study 1: r=−0.077, P= 0.5185;

Study 2: r=−0.042, P= 0.7816; Study 3: r=−0.008, P= 0.9492;
Study 4: r=−0.013, P= 0.9236), education (Study 1: r= –0.224,
P= 0.0607; Study 2: r=−0.115, P= 0.4508; Study 3: r=−0.119,
P= 0.3706; Study 4: r=−0.099, P= 0.4506), or Montreal Cognitive
Assessment (MoCA) scores (Study 1: r=−0.207, P= 0.0838; Study
2: r= –0.052, P= 0.7338; Study 3: r=−0.215, P= 0.1224; Study 4:
r=−0.223, P= 0.0872). We also found that the predicted scores

Fig. 3 Network level representation of predictive weights and the distribution of top 50% network pairs on the discovery cohort
(n = 71). 268 ROIs were divided into 10 canonical functional networks, and we characterized the whole predictive networks (a–c) from the
edge-level (within- and between- networks, shown as heatmaps) and node-level (shown as radar charts) by aggregating all related weights.
The first half of the predictive network pairs were selected according to the sorted weights, and the mean strength of network interactions
were shown in the second column. The black solid lines in the violin plots represents for the median value, and the dash lines represents for
the upper and lower quartiles in each network pair. Networks acronyms: MF Medial Frontal, FP Frontal Parietal, DM Default Mode, MOT Motor,
VI Visual I, VII Visual II, VA Visual Association, SUB Subcortical, CER Cerebellum.
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had no significant differences between males and females by
two-sample t-test (Study 1: t=−0.909, P= 0.367; Study 2: t=
0.802, P= 0.4299; Study 3: t=−1.133, P= 0.2625; Study 4: t=
−0.580, P= 0.565). These results provided evidence for the
specificity of the final model to predict motor function in PD
(shown in Supplementary Fig. 6).

Stage-specific effects of the DPN predictive model
Although the DPN model showed the best sensitivity to clinical
motor function in PD and a good generalizability on different
samples, a fine-grained portrait of predictive performance was
further needed as the neuroimaging signature may have
different patterns with the progression of PD17. Here, focusing
on the samples with relatively accurate predicted outcomes
(R2 > 0, Study 1 to Study 3, n= 176), we evaluated the
consistency of the predictive performance on different stages
based on Hoehn and Yahr (H&Y). We first found a significant
correlation between the observed UPDRS III scores and H&Y
stages (rs= 0.63, P < 0.0001, Fig. 5a). Although predicted UPDRS
III scores were also correlated with H&Y stages (rs= 0.29, P <
0.0001, Fig. 5b), the slope of ascent was slower in the later
stages. Thus, we correlated the residuals between observations
and predictions with H&Y stages (rs= 0.49, P < 0.0001, Fig. 5c) to
investigate how the predictive performance covaried with
disease degeneration in this study. Furthermore, we divided all
patients into the three groups based on H&Y stages (Fig. 5d).
Using one sample t test on the residuals, the mild group showed
a significant tendency to predict higher scores (t=−4.76, P <
0.0001). Significant differences between each pair of subgroups
were also found by using two-sample t test (P < 0.0001
Bonferroni corrected, Fig. 5d).

Motor signature derived from the discordance predictive
model
We further provided detailed anatomical information and
interpretability about the final predictive model of motor
function in PD. We dubbed Parkinson’s antagonistic motor
signature (PAMS) for ease of further references and validations
and summarized the top 10 network interactions from Fig. 3a.
The size of nodes and lines in Fig. 6 was associated with the
predictive weights, and more detailed information about the
primary nodes (anatomical areas, predictive weights, etc.) and

edges (regression coefficients) is listed in Supplementary Tables
2 and 3. Overall, the PAMS was characterized by functional
decoupling among the MOT, SUB, FP, DM, and CER networks.
Notably, MOT and SUB networks showed the almost equal
dominance in PAMS, and the predictive weight on MOT-VI
antagonistic interaction ranked first in all network-pairs. More-
over, we excluded the influence on the functional network
strength of PAMS from the gray matter (GM) volumes (Study 1:
r= 0.066, P= 0.5832; Study 2: r= 0.058, P= 0.7065; Study 3: r=
−0.168, P= 0.1981; Study 4: r= 0.222, P= 0.0883; Supplemen-
tary Fig. 7a), and white matter (WM) volumes (Study 1: r=
−0.046, P= 0.7032; Study 2: r= 0.071, P= 0.6413; Study 3: r=
−0.091, P= 0.4916; Study 4: r= 0.060, P= 0.6482; Supplemen-
tary Fig. 7b).

DISCUSSION
In this study, we developed an antagonistic model characterized
by discordance to form the mapping between brain systems and
motor function in PD. Comparisons tests of candidate predictive
models approved that the antagonistic profile of FC had the best
sensitivity to reflect the motor dysfunction in PD (Study 1).
Moreover, the antagonistic model showed good generalizability
and robustness across heterogenous PD fMRI datasets (Study 2 to
Study 4). We dubbed the model as PAMS and revealed that
the PAMS was dominated by antagonistic interactions among the
SUB, MOT, VI, CER as well as DM and FP networks. Notably the
MOT-VI pathway accounted the most part of predictive weights
among network-pairs and was consistent in all candidate models
with different profiles of FC. Additional stage-specific analysis
showed that the predicted scores generated from the PAMS
achieved the best accuracy and tended to be higher than
observed scores in the early course of PD, which indicated that the
brain signature may be more prone to vary with the neurode-
generation process than clinical behaviors. Collectively, our results
suggest that the clinical motor dysfunction of PD can be reflected
by the multi-level antagonistic network interactions and provide a
potential neuroimaging biomarker to evaluate motor function of
PD patients in the early course.
Assuming the multiplex interactions within the human con-

nectome, we adopted other profiles of FC to decompose the
traditional Pearson’s connectivity into coupled interactions and
anti-coupled interactions. We demonstrated that the final model

Table 1. Demographic and clinical characteristics of all samples.

Variables Study 1 Study 2 Study 3 Study 4 P value

(n = 71) (n = 45) (n = 60) (n = 60) 1 vs 2 1 vs 3 1 vs 4

Age, years 60.04 ± 10.60 (28–83) 64.47 ± 9.41 (45–81) 53.58 ± 10.93 (24–69) 60.67 ± 7.88 (48–75) 0.021 <0.001* 0.699

Sex, male/female 29/42 30/15 33/27 41/19 0.012* 0.150 0.003*

Duration, years 5.92 ± 5.33 (0.17–32) 6.24 ± 4.61 (0.67–23) 7.13 ± 4.96 (0–20) 0.58 ± 0.68 (0.03–2.66) 0.733 0.180 <0.001*

Education, years 8.75 ± 3.83 (0–16) 8.03 ± 4.52 (0–18) 9.47 ± 3.61 (0–16) 15.17 ± 2.99 (8–22) 0.378 0.273 <0.001*

UPDRS III 26.30 ± 14.27 (2–67) 27.04 ± 12.81 (7–70) 33.45 ± 16.47 (8–73) 22.22 ± 10.63 (6–51) 0.770 0.009* 0.064

H&Y stage 2.15 ± 0.74 (1–5) 2.41 ± 0.71 (1–4) 2.51 ± 0.94 (1–5) 1.73 ± 0.49 (1–3) 0.066 0.020 <0.001*

MoCA# 21.82 ± 5.33 (5–30) 20.87 ± 5.03 (10–29) 22.26 ± 5.54 (6–30) 26.88 ± 2.81 (15–30) 0.335 0.652 <0.001*

Mean FD 0.11 ± 0.04 (0.03–0.19) 0.31 ± 0.14 (0.10–0.66) 0.08 ± 0.04 (0.02–0.18) 0.13 ± 0.05 (0.05–0.25) <0.001* <0.001* 0.007*

LEDD# 673.83 ± 236.76
(225–1350)

690.71 ± 148.52
(332–1089)

404.08 ± 214.37
(0–947.63)

355.49 ± 189.85
(50–800)

0.638 <0.001* <0.001*

Notes: Values of variables are presented as mean ± SD (range). Statistical differences are listed between Study 1 and Study 2 (1 vs 2), Study 1 and Study 3 (1 vs
3), and Study 1 and Study 4 (1 vs 4). Chi-square test was performed on the sex, and two-sample t-test was performed on other variables. * indicates for the
Bonferroni-corrected P < 0.05. # indicates for partially missed scores (MoCA: for Study 3 n = 7; LEED: for Study 4 n = 21). UPDRS III Unified Parkinson’s Disease
Rating Scale motor subsection, SD Standard deviation, FD Framewise displacement, H&Y Hoehn and Yahr, MoCA Montreal Cognitive Assessment, LEDD
levodopa equivalent daily dose.
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featured by discordance showed the best sensitivity and general-
izability to predict motor function in PD. It has been suggested that
models would be more predictive if the assumed features fit the
underlying nature of the brain representations involved38. There-
fore, antagonistic interactions seem to be closely related to the
neurobiological process of PD, which may be caused by dopamine
deficiency. Similar observations were also found in the context of
predicting long-term memory scores of mild cognitive impairment
patients (another neurodegenerative disease)39. These findings are
consistent with the “network degeneration hypothesis” supported
by Seeley et al.40 suggesting that neurodegenerative diseases

can selectively damage the highly coupled patterns of brain
functional networks.
The antagonistic model showed that highly distributed brain

networks participated in the motor dysfunction, which buttressed
the opinion of Filippi et al.17 that not only sensorimotor circuitry
but also non-motor networks evolved with the progression of PD.
We found that between-network interactions accounted for
85.3% of the whole predictive weights (Fig. 3), suggesting that
normal motor function primarily relied on the coordinated
activities among different brain networks. With a similar
perspective as Rosenberg et al.41, we considered motor ability

Fig. 4 External validations of three candidate models. We showed the sensitivity and generalizability on three independent datasets.
a External validation 1 (Study 2, n = 45) is based on a sample of the same center as Study 1, and participants have higher head movements
(mean FD > 0.2 mm, translation > 3mm, or rotation > 3°). b External validation 2 (Study 3, n = 60) is based on another center with a different
scanner, and participants were recruited under the same head motion inclusion criteria as Study 1. c External validation 3 (Study 4, n = 60) was
performed on the cohort from PPMI, which covered seven sites and the white race. The plots showed the relationships between the observed
scores versus predicted scores. Each dot represents an individual participant, and the line represents the regression line. Combining all
external validations, DPN showed better generalizability than the other two models. PPMI Parkinson’s Progression Markers Initiative.
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as an emergent property of distributed networks. We found that
the MOT and SUB networks appeared as the most important
predictors in the final model, which accounted for 92.7% of the
whole predictive weights. This observation keeps in line with
the well-known hallmark of PD regarding the reduced dopamine
input to cortices (particularly the sensorimotor network) and
subcortical regions12. Notably, the interaction between MOT and
VI was the most important predictor among network-pairs
(accounted for 18.9% of the weights, Fig. 3). The dorsal “action”
stream, which is known as the “where” pathway, also plays an
important and direct role in motor planning by integrating
perceptual input (such as visual spatial information) into
somatomotor areas. Thus, MOT-VI antagonism may reflect the
perceptual decoupling between perceptual system and motor-
planning system (dampened integration of visual input), which
are the characteristics of patients with PD42,43. This result could
also provide a neurological explanation for the fact that gait
performance could be improved by combining external visual
cues44,45. Furthermore, the importance of MOT-VI suggested that
new therapies aiming to improve the coordination between visual
and motor systems may have great potential in enhancing the
kinetic performance of PD patients.

Besides the consistent pattern with previous literature36, our
model also opened a new window onto the role of high-order
brain networks (DM and FP) in motor dysfunction. Numerically,
the MOT-DM and SUB-FP accounted for 8.54% and 8.52% of the
predictive weights respectively. The functional decoupling
between the frontoparietal cortices (responsible for execution
and control) and subcortical structures may be a mechanism
responsible for impaired efficiency of motor control12,37,46.
Notably, the DM, which is traditionally considered as an internal
processor related to self-referential processing47, was empha-
sized in the final model. From a topological perspective, the DM
seemed to be a hub port among MOT, SUB, and CER (Fig. 6),
reflecting the participation of DM into the cardinal motor
system. This finding could be supported by recent neuroima-
ging studies48,49 that revealed decreased functional interac-
tions of cognitive networks (including the DM) in cognitively
unimpaired PD patients with akinetic/rigid symptoms. The
decreased connectivity within sensorimotor and default mode
networks was also related to the freezing of gait29. This result
suggested that the role of DM might be overlooked in the
process of motor dysfunction in PD and more attention should
be paid into the internal processor in the future research

Fig. 5 Stage-specific analysis of the DPN predictive model. Using the samples showed a relatively accurate performance (R2 > 0), Study 1 to
3 (n = 176) were aggregated to evaluate the predictive performance of DPN along with PD progression. aWe delineated the observed UPDRS
III scores at different H&Y stages, and found a significant correlation (Spearman’s r = 0.63, P < 0.0001). b We showed the relationship between
predicted UPDRS III scores and H&Y stages (Spearman’s r = 0.29, P < 0.0001). c We correlated the residuals between observations and
predictions with H&Y stages (Spearman’s r = 0.49, P < 0.0001). d Based on the H&Y, patients were divided into mild (H&Y = 1, 1.5, 2; n = 83),
moderate (H&Y = 2.5, 3; n = 81), and severe (H&Y = 4, 5; n = 12) groups. Significant differences in predicted deviations were revealed
between each pair of groups using two-sample t-tests. Boxplots indicate the median (the black line in the box), upper and lower quartiles
(box), 1.5 times interquartile range (whiskers) and outliers (circles) for the values in each stage. DPN discordance predictive model.
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(e.g. whether the mediation exercise could have a positive
effect on motor function).
As the degenerative nature of PD, clarifying the predictive

performance on different stages is crucial for clinical translation.
We found that the prediction residuals of the final predictive
model were significantly associated with the H&Y values
(Fig. 5c). Significant differences were also observed among the
three groups (Fig. 5d). Notably, the significant difference
between the mild group (H&Y= 1, 1.5, 2) and moderate group
(H&Y= 2.5, 3) might correspond to the pivotal milestone in the
development of PD (the transition from H&Y stage II to III)50.
Prior research suggested that nearly 60% of substantia nigra
pars compacta dopaminergic neurons had already been lost at
the onset of PD clinical symptoms51, indicating that the actual
damage of neuron systems could be more severe than the
behavioral observations in this course. Thus, we infer that the
observations of significantly higher motor scores generated
from brain signature could be partially caused by the lagging
effect between the observed clinical motor symptoms and
severe dopaminergic loss in PD patients of mild group. It seems
that there tends to be a time delay for PD patients in the early
stages to manifest the actually damaged degree of neural
systems at the behavioral level. Our stage-specific analysis
provides novel insights into the brain antagonistic signature PD
and suggests that the final predictive model could be set as an
early alarm for PD patients.
The present study is limited in several ways, but it lays the

groundwork for additional future investigations. First, the final
predictive model was trained on the Chinese population (Asian
race). Although we tested the model on other ethnicity (the white
race) collected from the PPMI, the generalizability was not as
good as that of Study 2 and 3. As previous literature has
demonstrated that genetic and environmental factors could
contribute to the heterogeneity of PD52, the predictive models

based on different ethnicities are further needed. Second,
different motor symptoms rely on not only overlapping brain
regions but also distinctive patterns of neural activity in PD36,53.
Thus, future phenotype-specific predictive models would lead to
more fine-grained delineation of Parkinson’s motor neural
signature and provide more values in clinical applications. Third,
the current study focuses on the functional signature of motor
function of PD, although we have demonstrated that the motor-
related functional signature had insignificant sensitivity to predict
cognitive function in PD, it is also important to explore the
cognition-specific signature and clarify the potential shared and
distinct patterns with motor-specific signature (e.g. with demen-
tia or without dementia) in the future work. Additionally, our
current results on antagonistic functional connectivity and motor
function of PD likely reflect a mixture of direct and indirect
connections between brain regions. Future studies may combine
both structural modality (e.g. diffusion tensor imaging) and fMRI
in order to assess the joint contribution of structural and
functional connectivity to motor dysfunction in PD patients.
Finally, fewer samples in late stages (only 12 patients in the
severe group) could also affect the generalizability of the final
predictive model. Future studies that recruit more patients in the
late stages could fill the vacancy.
In summary, the current study utilized antagonistic interactions

within the functional connectome to identify a reliable Parkinson’s
motor signature via CPM framework. We demonstrated that PAMS
showed high sensitivity and generalizability across four indepen-
dent PD cohorts. Motor dysfunction of PD could be represented as
distributed antagonistic systems, particularly in SUB, MOT, VI, CER
as well as DM and FP networks. In the context of clinical
translation, the final predictive model has a great potential to
evaluate motor function of PD at the early stages and to develop
new behavioral therapies for PD.

Fig. 6 Parkinson’s antagonistic motor signature (PAMS): a functional connectivity biomarker of motor dysfunction in PD. We sketched
the top ten predictive network pairs in the final model. The widths of dots and lines are proportional to the predictive weights. We also
showed the function of each network according to previous literature and the corresponding anatomical regions. PrG precentral gyrus, PoG
postcentral gyrus, INS insula gyrus, Cun cuneus, LING lingual gyrus, Cal calcarine, Cau caudate; Put putamen, Thal thalamus; BS brainstem,
MFG medial frontal gyrus, SFG superior frontal gyrus, PhG parahippocampa gyrus; IFG inferior frontal gyrus, IPL inferior parietal lobe, PoC
posterior cingulate, AG angular gyrus, CAL cerebellum anterior lobe, CPL cerebellum posterior lobe.
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METHODS
Clinical assessments
Study 1 to 3 were approved by the ethics committee of the TMMU
(Chongqing, China) and CSU (Changsha, China). All participants (n= 176)
provided written informed consents in line with the Declaration of Helsinki
(DoH), and they were diagnosed with PD according to the UK Parkinson’s
Disease Society Brain Bank criteria54 by at least two or more experienced
neurologists. Patients were scanned under the off-medication state, at
least 12 h after using any antiparkinsonian drug. Only the patients without
any other neurological or psychiatric disorders (such as seizures, stroke,
severe depression, or claustrophobia) were recruited in this study. Study 4
from PPMI was conducted in accordance with the DoH and the Good
Clinical Practice guidelines after approval of the local ethics committees of
the participating sites31, including Baylor College of Medicine, Emory
University, Tulane University et al. Participants in Study 4 (n= 60) also
provided written informed consents.
Patients’ motor function was clinically assessed by the part III of the

UPDRS55 and the H&Y scale56. Cognitive function was assessed by the
MoCA scale57. Levodopa equivalent daily dose (LEDD)58 was also recorded
for PD patients with the online Levodopa Equivalent Dose Calculator
(https://www.parkinsonsmeasurement.org/toolBox/
levodopaEquivalentDose.htm). All participants were assessed before
scanning under an off-medication state. Notably, clinical motor scores in
Study 4 are assessed by the Movement Disorder Society-sponsored
revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part
III, which consists of 18 items compared with the original scale (14 items)59.
All clinical assessments were showed in Table 1.

MRI acquisition
From Study 1 to Study 3, subjects were instructed to close their eyes and
stay awake during scanning. Meanwhile, subjects must keep their mind
wandering without thinking of anything willfully. Foam padding and
earplugs were used to alleviate head motion and scanner noise. Study 1
and Study 2 were collected from the same center (TMMU), and Study 3
belonged to another center (CSU) with a different scanner. For Study 4, we
aimed to recruit patients scanned with the same equipment and

parameters from PPMI. Besides, the scanning parameters in Study 4 were
similar to those in Study 1. Detailed information was shown as below and
was summarized in Table 2.
TMMU: On a 3.0 T Siemens Trio Total imaging matrix (Tim) whole-body

MRI system (Siemens Medical Solutions, Erlangen, Germany), functional
data were collected transversely by using an echo-planar imaging (EPI)
sequence with the following setting: TR= 2000 ms, TE= 30ms, flip
angle = 90°, FOV= 192mm×192mm, slice thickness = 3mm, voxel size =
3.0 mm×3.0 mm×3.99 mm, and 36 slices. For each subject, a total of 240
volumes were obtained from the scan time of 8min. Structural 3D T1-
weighted images were acquired using a magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence for co-registration with functional
images: TR= 1900 ms, TE= 2.52ms, flip angle = 9°, slice thickness =
1mm, slices = 176, FOV= 256mm×256mm, matrix size = 256×256, and
voxel size = 1mm×1mm ×1mm.
CSU: All subjects were scanned on a 3.0 T GE Signa MR system (General

Electric, Fairfield, CT, USA). Functional data were acquired using a gradient
echo EPI sequence with the following parameters: TR= 2000 ms, TE=
30ms, flip angle = 90°, FOV= 220mm×220mm, slice thickness = 4.0 mm,
voxel size = 3.44 mm×3.44 mm×4.60 mm, and 32 slices. Finally, 180
volumes were acquired for each subject over 6 min. T1 images were also
collected for normalization: TR= 7.792ms, TE= 2.984ms, flip angle = 7°,
slice thickness = 1mm, slices = 188, matrix size = 256×256, and voxel
size = 1mm×1mm ×1mm.
PPMI: All patients were scanned on a 3.0 T Siemens MRI system using

the same sequence as TMMU and the parameters for functional
images are as follows: TR= 2400 ms, TE= 25 ms, flip angle = 80°,
FOV= 224 mm×217 mm, slice thickness = 3.3 mm, voxel size =
3.29 mm×3.29 mm×3.30 mm, and 40 slices. A total of 210 images were
acquired for each participant in 8 min. The scanning parameters for T1
images are as follows: TR= 2300 ms, TE= 2.98 ms, flip angle = 9°, slice
thickness = 1 mm, slices = 176, FOV= 240 mm×256 mm, matrix size =
240×256, and voxel size = 1 mm×1mm ×1mm.

Image preprocessing
All data were preprocessed using Data Processing Assistant for Resting-
State fMRI (DPARSF v5.0, http://www.restfmri.net)60, which was based on
Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm)
under MATLAB 9.5 environment (https://www.mathworks.com). Before the
preprocessing workflow, functional and structural scans were manually
realigned along the anterior–posterior commissure (AC-PC) line. The first
10 volumes of functional scans were discarded to stabilize the magnetiza-
tion of MRI signals, and then were corrected for the acquisition delay
between slices and head movement. Structural images were co-registered
to the remaining images and segmented into GM, WM, and CSF using
DARTEL61. The resulting deformation field maps were retained for further
spatial normalization of functional images. Regression Covariates included
the signals from WM and CSF, Friston-24 head motion parameters (six
motion parameters, six temporal derivatives, and their corresponding
squares), and the whole brain were regressed in the native image space.
Although global signal regression (GSR) is a controversial step, previous
studies have indicated that GSR can not only remove physiological noise
generated by head motion, particularly on movement disorders such as
PD62–64, but also increase the dependency between FC and behavior65.
Linear, quadratic, and cubic drifts were also removed from the time series.
After normalization to Montreal Neurological Institute space and
resampling to 3mm×3mm×3mm, residual images were temporally
smoothed with a band-pass filter (0.01–0.1 Hz) to retain the most
neurological-related signals. According to head movements, excluded
criteria of Study 1 were head translation > 3mm, head rotation > 3°, and
mean framewise displacement (FD) > 0.2 mm. Study 3 and Study 4 hold
the same criteria as Study 1. Statistics of mean FD were shown in Table 1.

Functional connectome construction
The nodes of the functional network were defined on the basis of the 268-
node Shen brain atlas, which covered the whole brain regions, including
cerebral cortex, subcortical, and cerebellum66. We extracted the average
signal of each node to represent regional brain activity. In our present
study, three profiles of FC were used to construct connectome: Pearson’s
correlation coefficients, the most popular measure based on the method of
covariance; and two recently developed measures (accordance and
discordance) based on the temporal analysis of extreme points28,39,67.

Table 2. Scanners and scanning parameters for each center.

Study 1 and 2 Study 3 Study 4

Scanner Siemens 3 T GE 3 T Siemens 3 T

Model name Trio Tim Signa HDxt Trio Tim

Anatomical scan

Weighting T1 T1 T1

Sequence MPRAGE 3D BRAVO MPRAGE

TR (ms) 1900 7.79 2300

TE (ms) 2.52 2.98 2.98

IT (ms) 900 800 900

Resolution (mm3) 1×1×1 1×1×1 1×1×1

FOV (mm2) 256×256 256×256 240×256

Flip angle 9 7 9

Resting state fMRI

Weighting T2* T2* T2*

Sequence EPI EPI EPI

TR (ms) 2000 2000 2400

TE (ms) 30 30 25

Resolution (mm3) 3.0×3.0×3.99 3.44×3.44×4.60 3.29×3.29×3.30

FOV (mm2) 192×192 220×220 224×217

Flip angle 90 90 80

Num. of slices 36 32 40

Slice thickness (mm) 3 4 3.3

Num. of vols 240 180 210

Scanning time 8min 6min 8min 24 sec
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To calculate accordance and discordance, we first normalized each
BOLD signal by subtracting its own mean and dividing by the standard
deviation. In finding extreme events, we set a predefined quantile of q=
0.9 as the threshold on continuous time courses, and each normalized time
series z was then divided into two discrete binarized series: activation
series zu and deactivation series zl. We used the same definition of positive
threshold vector zu and negative threshold vector zl as that described by
Yoo et al.67

8 timepoint t; zut ¼ 0 if zt <Φ�1 qð Þ; and zut ¼ 1 otherwise (1)

8 timepoint t; zlt ¼ 0 if zt >Φ�1 1� qð Þ; and zlt ¼ 1 otherwise (2)

where Φ�1 is the inverse cumulative distribution function; aij and dij
represent the accordance and discordance between each pair of nodes
respectively, which were calculated by using the following equations:

aij ¼ zui � zuj þ zli � zlj
� �

=σiσj (3)

dij ¼ zui � zlj þ zli � zuj
� �

=σiσj (4)

where σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zui � zui þ zli � zli

q

Predictive model training and validations
In this study, we adopted the CPM framework to identify FC patterns
underpinning motor dysfunction of PD patients. As shown in Fig. 1,
connectivity matrices and UPDRS III scores served as inputs, followed by
feature selection, model building, and model validation steps. The trained
models were applied to unseen individuals to test their sensitivity and
generalizability. Notably, head movements can contribute to a main and
complex confounding effect in CPM analysis, as robust but spurious
patterns of connectivity can be introduced by large amounts of head
motion22. Therefore, before CPM analysis, we first tested the dependency
between mean FD and UPDRS III scores using Pearson’s correlation. For
feature selection, given the reported dependency between aging and FC68,
predictive features were defined by partial correlation method. That is,
when we correlated FC with motor scores, age was set as a confounder. If
an edge was positively associated with UPDRS III scores (r > 0, P < 0.001),
this edge would be assigned to a positive network, and if an edge had a
negative correlation (r < 0, P < 0.001) with scores, this edge would be
assigned to a negative network. In model building, partial least square
regression (PLSR) was adopted to learn the regression line and provide
predictive weights on each feature, which can eliminate multicollinearity in
predictor variables by representing inputs with fewer components (here
we used the first component). Then the predictive performance was
evaluated with a LOOCV method on the discovery cohort (Study 1, n = 71),
which reduced the risk of overfitting by removing one subject from
training data and building a predictive model on N–1 subjects. After
obtaining predicted scores on all subjects, we used two estimators to
quantify the sensitivity of models. One is Pearson’s correlation between
predicted motor scores and observed motor scores, and the other is
predicted R-squared (R2). The latter estimator represented the explained
variance between predicted values and observed values, as defined by the
following equation:

R2 ¼ 1� SSE
SST (5)

where SSE is the sum of squared error, and SST is the sum of squared total.
Notably, a negative correlation indicated an unsuccessful prediction. We
could define candidate models with fixed parameters on the whole
discovery set for further validations and applications.
As the nature of cross-validation, the predictive features could be

slightly different in each iteration. We finally defined the predictive
networks by retaining the edges that showed a significant correlation (P <
0.001) at least 95% of the iterations. More stringent threshold (100%) and
looser threshold (90%) were also used for visualization and comparison.
For assessing the generalizability, the candidate predictive models were
directly applied to other independent datasets (Study 2, n = 45; Study 3,
n = 60; Study 4, n = 60) for external validations. Combining all validations
in this work, we could find the final predictive model with the best
sensitivity and generalizability. In addition, we further tested the relation-
ships between the predicted UPDRS III scores and extraneous variables
(age, mean FD, sex, education, and cognition) in a post hoc analysis to
validate the specificity of the motor-related brain signature. We also
investigated the covariance between the structural properties of brain and
the PAMS strength. Specifically, the absolute volumes of GM and WM were

first estimated using the Computational Anatomy Toolbox (CAT12, http://
www.neuro.uni-jena.de/cat/). Thereafter the volumes were associated with
the network strength of PAMS (the sum of antagonistic interactions) by
Pearson’s correlation.

Statistical analysis
In the internal validation, we first obtained the parametric P value of the
correlation coefficient between predicted scores and observed scores.
However, considering that the number of degrees of freedom in LOOCV
was overestimated23, a permutation test was adopted. We first shuffled the
UPDRS III scores and then performed the same predictive method. By
randomly permuting the motor scores 10,000 times, a null distribution of
correlation values between observations and predictions was obtained.
Ppermutation was calculated as the ratio of the number of values from the
null distribution that was larger or equal to the true correlation to the
number of permutations.
By using three profiles of FC, we obtained different predictive models to

map brain systems to behaviors. To determine which model is the best,
Steiger’s z test69 was used to compare the difference between two
dependent correlation coefficients (values between each pair of predicted
scores and observed scores). Sterger’s z test was performed with the
“cocor” package70 in R programming (R version 3.6.3).

Stage-specific analysis of the final predictive model
Given the progression nature of PD, the mapping between functional
connectome and individual behavior might vary across disease stages17.
We further investigated how the predictive performance of the final model
varied with H&Y stages to provide more precise illustrations for clinical
translation. Notably, this stage-specific analysis only focused on the results
with a positive R-squared value (Study 1, Study 2, and Study 3). We first
correlated observed and predicted UPDRS III scores with H&Y stages and
then correlated the prediction errors (residuals between predictions and
observations) with stages. According to previous literature71, we divided all
subjects into three subgroups from mild motor impairment to severe
motor impairment (mild group: H&Y stages = 1, 1.5, 2.0; moderate group:
H&Y stages = 2.5, 3.0; severe group: H&Y stages = 4.0, 5.0). Finally, we
compared the prediction errors between each pair of subgroups using two
sample t-test.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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