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Abstract
Within the field of robots in medical education, most of the work done during the last years 
has focused on surgeon training in robotic surgery, practicing surgery procedures through 
simulators. Apart from surgical education, robots have also been widely employed in assis-
tive and rehabilitation procedures, where education has traditionally focused in the patient. 
Therefore, there has been extensive review bibliography in the field of medical robotics 
focused on surgical and rehabilitation and assistive robots, but there is a lack of survey 
papers that explore the potential of robotics in the education of healthcare students and pro-
fessionals beyond their training in the use of the robotic system. The scope of the current 
review are works in which robots are used as didactic tools for the education of profession-
als in health sciences, investigating the enablers and barriers that affect the use of robots 
as learning facilitators. Systematic literature searches were conducted in WOS and Sco-
pus, yielding a total of 3812 candidate papers. After removing duplicates, inclusion criteria 
were defined and applied, resulting in 171 papers. An in-depth quality assessment was then 
performed leading to 26 papers for qualitative synthesis. Results show that robots in health 
sciences education are still developed with a roboticist mindset, without clearly incorpo-
rating aspects of the teaching/learning process. However, they have proven potential to 
be used in health sciences as they allow to parameterize procedures, autonomously guide 
learners to achieve greater engagement, or enable collective learning including patients and 
instructors "in the loop". Although there exist documented added-value benefits, further 
research and efforts needs to be done to foster the inclusion of robots as didactic tools in 
the curricula of health sciences professionals. On the one hand, by analyzing how robotic 
technology should be developed to become more flexible and usable to support both teach-
ing and learning processes in health sciences education, as final users are not necessarily 
well-versed in how to use it. On the other, there continues to be a need to develop effective 
and standard robotic enhanced learning evaluation tools, as well good quality studies that 
describe effective evaluation of robotic enhanced education for professionals in health sci-
ences. As happens with other technologies when applied to the health sciences field, stud-
ies often fail to provide sufficient detail to support transferability or direct future robotic 
health care education programs.
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Introduction

Common definitions of robots describe them as machines that resemble a living creature 
capable of moving independently, performing complex and, often repetitive tasks (Sarrica 
et al., 2019). Such definitions have a strong bias towards early industrial robots as manipu-
lators that can grasp and move objects in industrial environments. Nowadays, robots can 
cooperate closely with humans to perform jobs with greater precision and efficiency, for 
example surgical robots (Bonatti et  al., 2021; Chen et  al., 2021; Sharma & Bhardwaj, 
2021), with an increasing importance since the COVID-19 pandemic.

In fact, in terms of employing robots in health sciences, the field of surgery has been the 
most active during the last three decades (Ginoya et al., 2021; Leal Ghezzi & Campos Cor-
leta, 2016; Peters et al., 2018). However, robots have been increasingly used in the prov-
ince of health sciences to perform a wide number of health related tasks (Kyrarini et al., 
2021). Apart from surgical robotics, many other classifications have been proposed in the 
literature for health related robotics (Boubaker, 2020). One of the most widespread of such 
classifications is the one found in Cianchetti et al., (2018) who categorized health sciences 
related robotics as: medical robotics (Mapara & Patravale, 2017) including surgery (Col-
lins & Wisz, 2020; Kadakia et  al., 2020), diagnosis (Kaan & Ho, 2020; Tavakoli et  al., 
2020) and drug delivery devices (Mapara & Patravale, 2017; Nguyen et al., 2020); assistive 
robotics (Giansanti, 2021), such as wearable robots (Bai et  al., 2018) and rehabilitation 
devices (Alias et al., 2017; Mohebbi, 2020), and human body mimicking robots including 
phantom devices (Hughes et al., 2020; Takeoka et al., 2017) and body-part simulators (Cz 
et al., 2012; Horvath et al., 2020).

Focusing on employing robots in health sciences education, again most of the work 
done during the last years has focused in surgeon training in robotic surgery (Collins & 
Wisz, 2020; Forgione & Guraya, 2017; Kadakia et al., 2020; Khalafallah et al., 2020). In 
this sense, it is common to practice surgery procedures through simulators, as the han-
dling of robotic surgery devices requires additional skills (Azadi et al., 2021; Badash et al., 
2016). In addition, preoperative planning or workflow optimization in the operating room 
can also be simulated in order to increase patient safety in the context of robotic surgery 
(Lovegrove et  al., 2017). There is also a trend towards a standardized validated robotic 
surgery training curricula (Altok et al., 2018; Chen et al., 2020a, b), as the majority of cur-
rent training is delivered with traditional methods such as laboratories that have access to 
cadavers or phantoms and dedicated training robots (Chen et al., 2020a, b).

In terms of assistive and rehabilitation robotics, education has traditionally focused in 
the patient, whether from the point of view of improving their quality of life (Gochoo et al., 
2020; Louie et al., 2020; Pu et al., 2020), providing them with knowledge about their dis-
ease or a medical procedure they are about to undergo (Blanson Henkemans et al., 2013), 
or focusing on teaching them about the use of an aiding technology, such as wearable or 
rehabilitation devices (Ciullo et al., 2020; Mohebbi, 2020).

Physical mimicking systems (e.g., phantoms) have traditionally been used in training of 
medical students, both for diagnosis and practicing medical procedures (Cooper & Taqueti, 
2004). However, to date most of these simulation training devices are still merely designed 
to reproduce the physical properties of tissues, human organs (Altok et al., 2018) or whole 
body (Wallace et al., 2010).

In terms of survey papers, there has been extensive review bibliography in the field of 
medical robotics (Cianchetti et  al., 2018; Troccaz et  al., 2019). Most of the recent sur-
veys focus on surgical robots (Chen et al., 2021; Chen et al., 2020a, b; Gifari et al., 2019; 
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Simaan et al., 2018; Peters et al., 2018; Díaz et al., 2017) and rehabilitation and assistive 
robots (Giansanti, 2021; Meng et al., 2017; Mohebbi, 2020; Rupal et al., 2017).

However, based on the existing bibliography, there is a lack of survey papers that 
explore the potential of robotics in the education of professionals in health sciences beyond 
the training in the use of the technical system itself (e.g., handling a surgery robotic plat-
form or a rehabilitation device). As other works have shown (Murata et al., 2017; Lee et al., 
2020b), the use of robotic technology in health sciences education provides professionals 
with learning scenarios that are more motivating, collaborative, interactive, and help to 
make medical training safer and more creative. Moreover, technological enhanced learn-
ing approaches have gained even more importance since the COVID-19 pandemic (García-
Peñalvo et al., 2020, 2021). Therefore, the aim of the present survey is to explore the use of 
robotics as didactic tools for conveying learning in health sciences, to gain insights of how 
robotic technology is being incorporated in the teaching/learning process of health profes-
sionals, and if and how robotics is being added to their training curricula as a complement 
to traditional education methods. Research goals can be translated into the following main 
research questions: How are robotics considered in the health sciences education literature 
beyond surgical robots and the manipulation of robotic instruments? How are robotics inte-
grated into the teaching/learning of health sciences? Are there documented added-value 
benefits of the use of robotics against other approaches?

Putting all together, we were interested in investigating the enablers and barriers that 
affect the use of robots as didactic tools for the education of health sciences professionals.

Methodology

The following sections describe the process undertaken, which follows the recommen-
dations of the Associations for Medical Education in Europe (AMEE) (R. Sharma et al., 
2015), complemented with the recommendations of Kitchenham (2007), Petersen (2015) 
and (García-Holgado et al., 2020).

Review scope and eligibility criteria

The scope of the current review are works in which robots are used as didactic tools for the 
education of professionals in health sciences. However, this statement needs more clarifi-
cation, both in terms of what robots and didactic tools will be considered in the following 
sections.

Firstly, the review is oriented towards the education of professionals in health sciences, 
so those studies where robots are used to support professionals in the education of patients 
are out of the scope of the current review (Gochoo et al., 2020; Louie et al., 2020).

Current review does not consider proposals where there is no "physical" element, for 
example software robots where an AI (artificial intelligence) system runs on a host com-
puter (Eckert et  al., 2019), or virtual representations of robotic devices and/or patients 
without any type of robotic feedback (Fontanelli et al., 2019; Haji et al., 2021).

Finally, in terms of their use as didactic tools, the inclusion of papers in the current 
review is determined by the modelling goals of the robot. Robots provide an approxi-
mate representation of a real-world process which can be executed to perform a simula-
tion. Within the health sciences field, this representation (model) of the real world can 
be categorized as (Jörg et  al., 2013): (1) application model, that captures the procedure 
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(Application-Centric); (2) system model, that captures the implementation of the robotic 
system (System-Centric); (3) patient model, that captures the environment with the focus 
on the patient (Patient-Centric). Taking the above classification into account, pure system 
– centric robotic education papers (e.g. providing trainees with skills in the use of a par-
ticular robotic device as in (Chen et al., 2020a, b; Khalafallah et al., 2020)) are out of the 
scope of this systematic review.

In addition, this review does not consider haptic simulators for surgical training, where 
the physical properties of the human body are parameterized to formulate the haptic model 
for the surgery simulator. There are various reasons for excluding such studies. On the one 
hand, the borderline of whether such systems could be considered robotic constructions or 
software robots with a haptic interface is in many cases unclear. Secondly, it is often diffi-
cult to establish if they are system-centric or application-centric didactic tools. Last but not 
least, there exists extensive and recent review bibliography in the field, as it has been one 
of the main subjects of technology-related medical education during the last decades (Chen 
et al., 2020a, b; Ginoya et al., 2021; Sharma & Bhardwaj, 2021; Chen et al., 2021; Bonatti 
et al., 2021).

Database selection

The databases in which to conduct the search were selected according to the following 
criteria:

•	 The database is available for the authors’ institutions.
•	 The database accepts the use of logical expressions or a similar mechanism.
•	 The database allows full-length searches or searches only in specific fields of the works.
•	 The database allows additional filtering options such as publication year or publication 

language.
•	 The database is one of the most relevant in the main research areas of interest within 

this review process: education, health sciences and robotics.

Taking the above criteria into account, the search was conducted in the following elec-
tronic databases: Web of Science and Scopus. Both databases are commonly used in med-
icine, as they include most Embase, Cochrane and Medline results. In fact, medicine is 
the largest category of WoS and Scopus related papers over the last 15 years (Zhu & Liu, 
2020). On the other hand, returned results include more knowledge domains than those 
returned by specialized databases, which a major point considering the interdisciplinarity 
nature of the current review.

Search string

Several searches where piloted in order to identify which terms added value to the search 
(see “Appendix 1”).

The final search strings used in the search are shown in Table  1. Wildcards were 
employed to maintain the search broad enough, complemented with proximity operators in 
such a way that the terms related with education and health sciences do not appear too far 
apart in the returned papers, and the strings returned a manageable number of results. In 
addition, while reviewing the piloted obtained results, it was observed that including terms 
related with simulation biased the results towards non-robotic interfaces. For that reason, 
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and to include studies related with robotic human patient simulators, a second complemen-
tary search was performed which only focused on those terms.

Inclusion and exclusion criteria

The following inclusion criteria (IC) were developed by the two authors (SMP) and (FjGP) 
and employed to include or exclude a paper from the later analysis. If any of the papers 
failed to meet the IC, it was not further considered.

•	 IC1: The papers focused on robotics AND
•	 IC2: Those robotic solutions were utilized in health sciences education AND
•	 IC3: The papers were written in English AND
•	 IC4: The papers were published in peer-reviewed Journals, Books, Conferences or 

Workshops AND
•	 IC5: Papers had a document body that was more than three pages long. Papers shorter 

than 3 pages are excluded from the review to speed up the review process as they are 
unlikely to fulfil the quality criteria.

Quality assessment criteria

To assess the quality of the primary studies, a quality checklist was developed by the two 
authors (SMP) and (FjGP). The quality assessment checklist consists of a series of ques-
tions to be answered from reading of the paper content. The objective of the checklist was 
that final included papers were able to provide as much information as possible related to 
the main research questions, and to avoid subjectivity in the final inclusion of studies in the 
synthesis. The answer to each of the questions was labeled as Yes/Partially/No and given 
a score of 0/0.5/1 respectively. The Yes/Partially/No values stand for: Yes = information is 
explicitly present in the paper; Partially = information is implicit/stated; No = information 
is not inferable. A score of 6 was used as a cut-off point to ensure that the studies clearly 
met the criteria, as it was observed that several papers with a score below 6, although 
related to the study topic, did not contain sufficient information to adequately answer the 
research questions. The considered checklist was as follows:

Table 1   Final search strings Database Search String No. Results

WoS 1. (education OR teach* OR learn* OR 
train* OR instruct*) NEAR/3 (medi-
cine OR health* OR care* OR therapy 
OR treatment) AND (robot*)

1061

2. robot* patient simulator 843
Scopus 1. (education OR teach* OR learn* OR 

train* OR instruct*) W/3 (medicine 
OR health* OR care* OR therapy OR 
treatment) AND (robot*)

1425

2. robot* patient simulator 396
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	 1.	 Are the research aims related to teaching/learning with robots for health science pro-
fessionals? Y/N/partial

	 2.	 Is the use of a robotic platform clearly justified? Y/N/partial
	 3.	 Is the robot goal clearly described? Y/N/partial
	 4.	 Is the teaching/learning process clearly described? Y/N/partial
	 5.	 Is there any kind of evaluation of the teaching/learning process? Y/N/partial
	 6.	 Are data on the evaluation of the proposed solution available? Y/N/partial
	 7.	 Are metrics clearly described and specified? Y/N/partial
	 8.	 Is the proposed methodology compared against traditional teaching/learning 

approaches? Y/N/partial
	 9.	 Are the links between data, interpretation and conclusions made clear? Y/N/partial
	10.	 Is the modelling approach patient or application—centric (not system-centric)? Y/N/

partial

Study inclusion

The protocol followed consisted of the main steps as described below. The process was 
carried out using Google spreadsheets and is available at the following link: https://​bit.​
ly/​3eKhD​3a1.	The search was conducted by the first author (SMP) in the selected data-
bases and using the query strings previously described. All the results were collected 
in.csv format including title, abstract, authors, publication year, publication venue, etc.

2.	 The inclusion criteria were then applied by (SMP) to the downloaded list of candidate 
papers. In those cases where the title and abstract were not sufficient to make a decision, 
both authors (SMP) and (FjGP) assessed independently the entire content of the paper 
and discussed its inclusion until a consensus was made. The resultant candidate papers 
were added to another sheet of the spreadsheet document.

3.	 The papers were then read in detail and analyzed by (SMP) based on the quality assess-
ment checklist, and the results were collected in another spreadsheet. Additionally, 
(FjGP) double screened a sample of the excluded papers in step 2. Those papers with an 
overall score lower than 6 were excluded from the synthesis. Those papers which were 
instances of the same work were also excluded. Also, (SMP) double-checked that papers 
with an score higher than 6 clearly met the review scope (i.e. paper describes a physical 
robot, the robot is employed for the education of professionals in health sciences, robot 
model is not system-centric), and created an additional spreadsheet entitled “Addition-
ally excluded papers with reasons” for further reference (see https://​bit.​ly/​3eKhD​3a). 
Uncertainties and conflicts with respect to article selection were resolved by discussion 
between both authors (SMP) and (FjGP).

Following the above steps, the obtained results are shown in Figure 1 which is an adap-
tation of the PRISMA flow diagram (Moher et  al., 2009) and maps out the number of 
records identified, included and excluded, and the final obtained papers.

Data extraction

A qualitative data analysis approach was followed to extract relevant data from the selected 
studies. The conducted process followed three major stages:

https://bit.ly/3eKhD3a
https://bit.ly/3eKhD3a
https://bit.ly/3eKhD3a
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1.	 Papers were first read in detail localizing chunks of text related to each research question 
and were highlighted for further analysis.

2.	 Pattern labels to assign symbolic meaning to the highlighted information were created. 
Related patterns were grouped to find, extract, and categorize the segments relating to 
a particular research question.

3.	 A second in depth read of the text was performed and data was retrieved and stored in 
a spreadsheet (https://​bit.​ly/​3eKhD​3a) following the coding created during stage 2.

The following data extraction groups and labels were created by (SMP) and (FjGP) for 
each research question:

Articles identified through 
database searching

(n = 3,812)
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ty

Duplicates & incorrect 
abstracts removed
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Articles screened by 
title and abstract
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Fig. 1   Steps and results of review and mapping process. Reported as proposed in the PRISMA Statement

https://bit.ly/3eKhD3a
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Related to research question 1: How are robotics considered in the health sciences edu-
cation literature beyond surgical robots and the manipulation of robotic instruments? To 
answer this question, we considered the robot goal (a general description of the robotic 
construction); the skills objective of training; the related health sciences field and the target 
group of health professionals. It has to be noted that, while the health sciences field is eas-
ily inferable, because there are countless professional roles in the health sciences, the intent 
of the target group was to be all inclusive rather than providing specific professional roles.

Related to research question 2: How are robotics integrated into the teaching/learning 
of health sciences? To answer this second question, we followed the work of (Jörg et al., 
2013) related to the use of technology in medical education. We considered three types of 
training goals (prevention, diagnosis, or treatment); as another category, we labelled the 
studies that focused on modelling a health procedure as application-centric, and as patient-
centric studies those that focused on modelling the patient; furthermore, application-cen-
tric models could be related to a concrete task or a complete procedure. In addition, we 
divided patient-centric studies into general approaches that model the anatomical or physi-
ological properties of the human body, or case-specific if they also incorporate the restric-
tive parameters caused by a disease or impairment. To extract this information, we sticked 
to the objectives indicated by the authors even though additional modelling categories and 
applications could be inferred from the possibilities of the robots developed.

Related to research question 3: Are there documented added-value benefits of the use 
of robotics against other approaches? We considered whether the teaching/learning pro-
cess was described in the paper, and if the acceptance of trainees was collected (e.g. ques-
tionnaires, discussion groups, etc.). Complementary, and similar to other approaches aim-
ing to investigate the effects of the use of technology in medical education (van Gaalen 
et al., 2021), we used the framework proposed by Cook et al. (2008) for the classification 
of the teaching/learning process evaluation. The framework allows to classify the studies 
as descriptive, justificative and clarificatory. Descriptive studies focus on observation and 
describe what has been done without making any comparison. Justificative studies make 
comparisons between interventions, but without a proper conceptual framework which 
explains the observed effects. Clarificatory studies apply a theoretical background to 
explain the effects and differences of the interventions and make a clear statement of the 
future lines of research based on the observed effects.

Results

Results of the extracted data are summarized in “Appendix 2”.

Robot description

Most of the robots used as didactic tools in the studies (n = 22) are robotic instances 
of what are known as human patient simulators (HPS), differing in the body part they 
simulate (see”Appendix 2″ for a detailed description). From these, many replicate just 
extremity joints such as the upper limb (e.g. (Lee et al., 2020a, b)) or the hip and knee 
(Frey et  al., 2006). However, some studies like (Frey et  al., 2006) complement the 
robotic construction with a non-actuated human mannequin to resemble the rest of the 
human body, and other multimodal feedback channels such as screens or voice synthe-
sis. A variant of these approaches are wearable robots used as impairment simulator of 
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the knee joint (Ishikawa et al., 2015) and ankle + feet (Okumura et al., 2013). In addi-
tion, four studies present a robot that resembles the whole human body (e.g. (Lin et al., 
2020)) with a varying number of DOFs in each body joint depending on their goal. In 
(Chihara et al., 2013) and (Moosaei et al., 2017) they present human-like robotic heads, 
able to simulate the muscle movements of the human face. The number of degrees of 
freedom (DOFs) simulated in all these robotic constructions is variable, but in general 
they match the ones of the human joint they simulate.

Organ simulation robots are described in four studies, where the robotic construction 
models different physiological properties. Usually, these robotic constructions are com-
bined with phantom materials that provide the anatomical resemblance (Formosa et al., 
2018).

Finally, two studies (Couto et  al., 2017; Sampsel et  al., 2014) employ humanoid 
robotic mobile platforms (with displacement capability), and in (Hong et al., 2019) the 
robot simulates a hands-on process, in which the pre-recorded movements of an experi-
enced surgeon are transferred to the trainee.

Teaching/training goals

Teaching and training goals are mostly related to treatment training robots. Of these, 
six focus on manual rehabilitation of extremity joints. Other treatments include dental 
procedures, cardiopulmonary resuscitation (CPR), radiosurgery, mechanical ventilation, 
and surgery.

Diagnosis is the training goal of twelve studies. Again, half (n = 6) of those studies 
focus on the manual examination and diagnosis of extremities. Other studies aimed at 
training diagnostic skills include endoscopy training as in (Pepley et al., 2016) and colo-
noscopy training as in (Formosa et al., 2018). Finally, one paper (Moosaei et al., 2017) 
focuses on enhancing the skills to detect pain in facial expressions.

Fewer studies are focused on prevention. These include (Lin et al., 2020) which aims 
to prevent harming the patient during transfer to and from wheelchairs; (Couto et  al., 
2017) focused on the education of health professionals in hand hygiene practices, and 
(Lee et al., 2020a, b) focused on the prevention of upper-limb joint pain in the elderly 
by means of exercises. In addition, the goals of (Pepley et al., 2016) and (Formosa et al., 
2018) include the early detection and prevention of diseases.

Target groups & health sciences field

Studies target groups correspond to the nature of the robot and the training goals. As 
such, eleven studies lay in the province of physiotherapy and are oriented to physi-
cal therapy related students or practitioners, nine studies are focused on nursery skills 
development and two relate to dentists and dental assistants. Other specialties include 
gastroenterologists (Formosa et al., 2018), neurologists (Chihara et al., 2013), and sur-
geons (Hong et al., 2019). However, while in most cases the health sciences field and 
related specialty is described by the authors or can be easily inferred, few studies (e.g. 
(Swain, 2017) for nurse students or (Horvath et al., 2020) for intensive care unit interns) 
make an explicit distinction regarding the adequate level of knowledge of the target 
group (e.g. student vs intern vs resident vs fellow vs attending).
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Modelling category and level

Nine studies are purely patient centric. From these, eight simulate one or more case spe-
cific functional impairments of body joints (e.g. muscle spasticity (Othman et al., 2018), 
lead-pipe rigidity (Ishikawa et al., 2015) or limitation of motion range (Lee et al., 2020a, 
b)).

Only application—centric models can be found in eleven studies. Modelled procedures 
range from tele-rounding in ICUs (Sampsel et al., 2014) to correct transfer of patients to 
and from wheelchairs (Lin et al., 2020) or protocol when epileptic seizure (Zubrycki et al., 
2019). Examples of modelled basic tasks are detect pain in facial expressions (Moosaei 
et al., 2017) or hand hygiene (Couto et al., 2017).

The rest of the studies include both modelling the patient / symptomatology and the 
associated procedure, e.g. in (Takanobu et al., 2007), where a human-like dental robot sim-
ulator models full body joint movements, facial expressions, eye tracking, mouth move-
ments, and vomiting reflex and blood effusion during teeth drilling. In addition, the robot is 
remotely controlled by a supervisor to model diverse dental procedures.

Research type & evaluation method

Overall, almost half (n = 11) of the studies are descriptive and analyze the benefits of the 
robotic didactic tool by means of expert assessment or comparing its performance against 
data obtained from patients’ databases. Eleven studies are justificative, and interventions 
are composed by students/trainees vs. experts, laypersons vs. experts, between experts, and 
between students. Evaluation methods are commonly based on questionnaires or analyzing 
differences in parameterized data captured by the robotic platform. Other evaluation meth-
ods include the comparison of stroke patients ability to move an impaired hand before and 
after following a 60 days recovery program with a robotic intervention (Sharifi et al., 2016) 
and discussion groups (Swain, 2017). It must be noted that, although proposing a justifica-
tive approach, some studies do not specify the number of participants in each interven-
tion (Couto et al., 2017). In fact, only four clarificatory studies were found (Moosaei et al., 
2017; Sampsel et al., 2014; Swain, 2017; Wang et al., 2015).

Teaching/learning process

Even though all studies clearly stated the educational goal of the proposed robotic plat-
form, only nine studies describe in greater or lesser detail the teaching/learning process 
(e.g., teaching methodology, environment configuration, whether the practitioner/student 
needs directions, if the robot needs to be remotely operated, etc.).

Within those studies that do not describe the educational approach, we can consider 
Fleming & Mills VARK model (Fleming & Mills, 1992) to infer the learning process 
based on the robot goal. Therefore, kinesthetic learning can be inferred in most of stud-
ies that do not detail the learning methodology but develop human joint robotic simu-
lators, as robots are referred to as didactic tools for manual diagnosis or treatment (e.g. 
(Kong et al., 2021) or (Lee et al., 2020a, b)). Also, a hands-on learning is inferred from 
(Formosa et  al., 2018) and (Pepley et  al., 2016), as the robot goal is to simulate the 
environmental conditions faced when performing a colonoscopy or endoscopy, such as 
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physiological properties or disturbances from patient movement. The same considera-
tions can be extracted from (Zhou et al., 2004) and (Horvath et al., 2020), where the 
robots are respiratory motion simulators for performing radiosurgery and for correctly 
applying mechanical ventilators respectively.

On the other hand, visual learning is expected in (Chihara et  al., 2013), where an 
expressive robotic head emulates the facial nervous system when performing facial 
expressions. The student is expected to gain skills in the diagnosis of cranial neuropa-
thies through the visual examination of facial symptoms. The same approach appears 
in (Moosaei et al., 2017), where a robotic head simulates pain expressions to be recog-
nized by the learner.

In (Hong et  al., 2019) a hand-over-hand educational approach is proposed as an 
enhancement to passive haptic feedback simulators commonly employed in surgery 
education. Haptic feedback is given to the trainees based on the recordings of move-
ments made by a specialized surgeon during surgery tasks. During training, the robot 
goes together with the trainee’s hand and applies slight forces that simulate hand-over-
hand guidance. A similar approach is shown in (Sharifi et  al., 2016), where authors 
propose an additional variant based on a network-connected multiagent system for 
hemiparetic wrist of stroke patients’ rehabilitation. Here the guiding force feedback 
can be averaged over a network of interconnected wrist rehabilitation devices, allowing 
different configurations with one or more instructors or patients in the robotic network.

Visual and auditory learning are employed in (Couto et al., 2017), where the Robot 
performs video lectures, encouraging speeches and examples for the education of 
intensive care unit worker professionals in hand hygiene practices. Also, in (Zubry-
cki et al., 2019) the robot is shown simulating an epilepsy seizure during educational 
workshops on epilepsy.

Robotic platforms are also employed either autonomously or remotely operated as 
the pathway to deliver the learning content and guide the educational process. For 
instance, in (Sampsel et  al., 2014) instructor assists trainees in ICU tele-rounding 
through the use of a remotely controlled mobile robotic platform that accompanies 
them. In (Takanobu et al., 2007) and (Abe et al., 2018) the instructor evaluates the per-
formance of dental students giving instructions to the patient robot via a PC interface, 
simulating a real study case through voice synthesis and patient behavior.

In (Lin et al., 2020) the robot autonomously guides and evaluates the learning pro-
cess. By following a predefined checklist of steps for patient transfer procedures, voice 
commands and limb posture of the robotic patient can be used by nurses and students 
and to identify the steps to be executed during training. Meanwhile, the robot records 
its movements to provide feedback of the correctness of the procedure.

Robot acceptance

A small number of studies consider the acceptance of robots by the users. User accept-
ance is compiled by using questionnaires that include the acceptance of the technology 
(e.g. (Abe et  al., 2018)), by qualitative description of observed effects (Couto et  al., 
2017) or by using discussion groups (Swain, 2017; Zubrycki et al., 2019). As extracted 
from the results, the overall acceptance by the participants is good, as the health stu-
dents and professionals perceive them as useful tools for learning.
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Discussion

To the best of the authors’ knowledge, there is scarce literature focused on describing the 
factors affecting teaching–learning in health sciences education, apart from those focused-
on training in the use of surgeon robots or surgeon robotic simulators. Given that robots 
are technological tools, we can follow a similar approach of other works that involve the 
use of technology to improve educational processes to analyze the obtained data. A recent 
systematic review on the factors affecting e-learning in health sciences education (Regmi 
& Jones, 2020) indicates as factor enablers: facilitate learning, learning in practice, system-
atic approach to learning and the integration of e-learning into curricula. As for factor bar-
riers: poor motivation and expectation, resource-intensive, not suitable for all disciplines/
contents and lack of its skills. Similar enablers and barriers can be transposed to robotic 
technology in the discussion of the results found.

In terms of the enablers observed in our survey that coincide with those obtained by 
Regmi & Jones the following can be depicted:

Robots facilitate learning and quality assurance. Overall, results obtained from the ana-
lyzed papers seem to support this statement. For example, the results shown in (Sampsel 
et al., 2014), which studies the use of a remote telepresence robotic system in nursing edu-
cation show that from 69 total respondents including faculty staff, clinical staff and 56 stu-
dents, the majority (75%) felt that the robot was a good teaching/learning tool. In (Swain, 
2017), they divided into two groups: one received training in CPR with and without the 
robotic simulator. Mixed methods (questionnaires and discussion groups were employed 
to determine if subjects were more comfortable in clinical setting after unexpected event 
using a robotic human patient simulator. Their results show that the robot helps transfer-
ring deeper tacit knowledge through experience and provide more effective training than 
explicit procedural learning.

Robots foster learning in practice. it can be seen from the analyzed studies that most 
of the work focus on kinesthetic learning, utilizing robots as hands-on practice didactic 
tools. Kinesthetic learning has long proven to be useful in medical training, for example in 
anatomy learning (Hernandez et al., 2020), as it provides four different effective learning 
modes: concrete experience, reflective observation, abstract conceptualization, and active 
experimentation (Kolb, 1983). In several of the works analyzed that describe users’ judge-
ment, there is a common opinion that robots are useful for learning in practice, as robots 
can faithfully reproduce real symptoms and simulate illness effects.

Robots allow a systematic approach to learning. The fact that robots allow to param-
eterize symptoms and reproduce them in a systematic way means that trainees can reliably 
repeat the same training, both in terms of patient-centric and procedure-centric approaches 
(e.g. (Lin et al., 2020)). Moreover, robots allow the inclusion of real patient data to emulate 
the physiological implications of a disease such as its severity in a systematic way (e.g. 
(Zakaria et al., 2014)).

As for the coinciding observed barriers, they include the following:
Poor motivation and expectation. Contrary to the results shown by (Regmi & Jones, 

2020) in terms of e-learning, the use of other technology enhanced learning (TEL) in the 
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health sciences field has proven to enrich and facilitate the transmission of didactic content, 
favoring medical training and motivating the students for example by using virtual or aug-
mented reality (Escalada-Hernández et al., 2019; González Izard et al., 2020; Izard et al., 
2018). However, when using robotic technology, the users’ attitudes towards robots is a 
major concern, as robotic appearance and behavior influences and hinders their acceptance, 
especially when these robots resemble human beings (Müller et  al., 2020; Savela et  al., 
2018). This important aspect of robotic technology is considered in few of the compiled 
studies. Further acceptance—focused research needs to be done to consider them as moti-
vating, given that the questionnaires of the reviewed studies bias towards robot utility in 
pilot studies, and little towards user acceptance and long-term usage.

Robots may not be suitable for all disciplines/contents. This barrier can be inferred by 
the number of studies that coincide in the same health sciences field and robotic goals. It 
can be observed that most studies focus on diagnosis and treatment, while few focus on 
prevention. In addition, there is a dominant number of robots focused on modelling and 
simulating upper or lower limbs for physicians training. These results may come from the 
fact that traditionally robots have been built as industrial robotic arms as heavy objects 
manipulators to grasp and move objects in industrial environments. As such, most of the 
research done by robotic developers has focused on the study of the kinematic chain of 
robotic arms, which can be translated into the movement of joints present in human limbs.

Robots are resource intensive. Most of the studies in this systematic review use ad-hoc 
robotic constructions, which means that both their development process and their use and 
maintenance require specialized personnel. However, given the increasing development 
of commercial robotic platforms, the trend should be towards commercialization of spe-
cialized robotic constructions, with the consequent reduction in the cost of operation and 
maintenance. This evolution has already been observed both in surgical robots and in low-
cost haptic simulators for training with these robots (Ginoya et al., 2021). There are some 
examples of using commercial components in the retrieved studies that diminish the devel-
opment needed resources. For instance in (Couto et al., 2017) the low-cost humanoid robot 
MeccaNoid G15KS (Meccano Engineering & Robotics, n.d.) is employed. Or in (Sampsel 
et al., 2014), where a mobile platform is used endowed with the InTouch Health commer-
cial software (Intouchhealth, n.d.).

The use of robots requires IT skills. Following the above discussion, ad-hoc construc-
tions lead to the need for IT experts to manage them, which results in robots that do not 
evolve from piloted laboratory tests as is the case in most of the studies found. Even using 
commercial software, the need of IT skills is shown when evaluating the educational pro-
cess (e.g. (Sampsel et al., 2014)).

Integration of robot-mediated learning into curricula. It is precisely in terms of inte-
grating the activity developed with the robot into the training curricula that we observe 
the greatest hindering factor. This makes one of the enablers for health sciences e-learning 
described in (Regmi & Jones, 2020), to become a barrier when using robots. Contrary to 
what is happening in the field of robotic surgery, where there is a trend towards standard-
ized validated curricula (Forgione & Guraya, 2017; Chen et al., 2020a, b; Khalafallah et al., 
2020), the use of robots in other health sciences fields seems to be far from standardized. 
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The above-described barriers appear to be some of the causes for this delay. In addition, 
and maybe since the analyzed works are commonly developed by roboticists, it has been 
observed in most of the studies a lack of educational approach. For example, the training 
methodology is scarcely described nor is the target group specifically detailed. Even more, 
few studies make an explicit distinction regarding the adequate level of knowledge of the 
target group (e.g., student vs intern vs resident vs fellow vs attending). Our results seem 
consistent with those reported by (Nicoll et al., 2018), where they performed a systematic 
review of the literature relating to the evaluation of technology enhanced learning (TEL) 
programs for professionals in health sciences. As they described in their work, there con-
tinues to be a need to develop effective and standard TEL evaluation tools, and good qual-
ity studies that describe effective evaluation of TEL education for professionals in health 
sciences. Studies often fail to provide sufficient detail to support transferability or direct 
future TEL health care education programs.

Educational theories and learning processes that may facilitate the incorporation 
of robots in the teaching/learning process

As extracted from the previous discussion, different types of robots have different appear-
ances and structures (hardware), software, and behavior. These features play an important 
role in determining the instructional activities and the learning objectives (Ferrada-Ferrada 
et  al., 2020; Herrero, 2020). As these technological tools are usually developed from a 
roboticist perspective, they lack a common approach for their inclusion in the health sci-
ences teaching/learning process. Applying well-established educational theories and learn-
ing processes could help overcoming the observed barriers.

In classical conditioning, for instance, a response to a stimulus is reinforced when it is 
followed by a positive reward effect. In this sense, major efforts should be put in endow-
ing robots with user-friendly interfaces and interaction modalities (Camargo et al., 2021). 
On top of that, we observed few studies that considered user acceptance. Acceptance of 
robots by the users (students and teachers) should be further explored during and after 
robotic development, so to better adapt their design to users’ expectations. Also, in classi-
cal conditioning a response to a stimulus will become stronger through exercise and repeti-
tion. This is provided by robots as they allow repetition of the same procedure. However, 
besides repeating general procedures or mimicking a joint movement, it may be important 
to endow robots with more "case-specific" capabilities, that foster problem-based learn-
ing by consistently simulating specific symptomatology of real patients as students will 
encounter when they practice.

Standardization of procedures when developing robots can reduce differences in their 
appearance and behavior. Following Ausubel’s theory, using already developed and tested 
robotic components (e.g., using software already present in pcs) can help in reducing the 
need for IT skills, as learners will absorb new information by tying it to their existing 
knowledge. Also, employing user centered design principles and multimodal interaction 
that include human communication channels (i.e., voice or sound) can mitigate this barrier.

The use of robots beyond patient simulators should be promoted. For instance, fostering 
shadow learning as shown in (Sampsel et al., 2014), where they employ a mobile telepres-
ence robotic system during nursing rounding. Results revealed that usefulness emerged in 
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the areas of productivity, function, and observation, as participants felt that the robot facili-
tates course quality assurance when the lead faculty is not on site, and productivity was 
associated to the ability of the lead faculty to multitask.

In relation to the above and considering Bandura’s social learning theory, it has been 
long demonstrated that prosocial robots elicit more prosocial behavior among users. Stud-
ies suggest that social responsive machines increase de acceptance of users towards them, 
as the feeling of affinity towards the machine reduces negative perceptual feedback. How-
ever, special care must be taken when developing a social robot, so to avoid falling into the 
uncanny valley if the user perceives a mismatch between robot’s appearance and behav-
ior (Cheetham, 2017). Moreover, cultural, age and gender differences should be taken into 
account when employing robots in health sciences education (for example, eastern cultures 
often rate lower levels of the uncanny valley than western cultures (Korn et  al., 2021). 
Again, following user centered design principles and further analyzing the acceptance of 
robots by the users during the design process could help mitigating this effect.

From the above discussion, the case of (Lee et  al., 2020a, b) is an example of how the 
development process for this type of robots should be approached. Instances of the same work 
(Murata et al., 2017; Lee et al., 2019a, 2019b; 2020b) show how the focus evolves from the 
mere robot design to the development of the control interface and automatic data capture 
and feedback that eases both the manipulation of the robot and a self-learning approach for 
students.

Limitations

As with any research procedure, there could be threats to its validity and limitations in the 
current systematic review. The first threat is that the inclusion of all the relevant studies in 
the field is not guaranteed. This threat was mitigated by piloting different searches, analyz-
ing the retrieved results, and combining different databases. However, as can be depicted 
from the results, the number of papers that have reached the final stage after applying the 
quality criteria is quite low if compared with the number of papers retrieved from the 
search. To the best of the authors’ knowledge, one of the main reasons is that the research 
field of robotic technology in the education of health professionals is not a consolidated 
field beyond surgery education, so scarce information can be retrieved. For that reason, the 
search scope was broadened to capture as much information as possible within the limits of 
the established review scope, and a methodology for screening has been followed. Another 
limitation arises by employing only the retrieved abstract for screening. As the abstracts 
of publications contain way less information than is contained in the full paper, this could 
lead to a bias in the search results.

Another limitation is that due to the scope of the studies that merge different fields (edu-
cation, health, and robotics), most of the papers do not provide detailed descriptions for 
all the research questions. In addition, the identification of criteria for classification was 
not obvious in many cases, as many papers contained vague or fuzzy descriptions of the 
data to be extracted. For example, in terms of application-centric and system-centric robots 
there is a thin line in between determining if a robot is used to teach a procedure or if it is a 
system used to train the skills to handle a robotic tool. Furthermore, the boundary between 
what is and what is not a robot is a delicate one. To mitigate these effects, we tried to 
keep the review scope as concrete as possible, only considering robots those constructions 
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that clearly showed together sensing, computing and acting capabilities with more or 
less degree of autonomy as described by the IEEE (What Is a Robot?, n.d.). The above-
mentioned threads were also mitigated by following a review protocol that involved both 
authors and tried to assure the quality of the obtained studies. Additionally, both research-
ers independently reviewed full texts during the process and discussed jointly to resolve 
uncertainties and reach consensus when necessary.

Finally, it must be noted that due to the review scope many papers devoted to surgery 
robots and haptic simulators have been discounted from the final review. In any case, given 
that there are several studies and surveys dedicated to the training of robots in surgery as well 
as to the study of haptic interfaces, the authors consider that this survey can be complementary 
to those studies.

Conclusion

This systematic review provides a broad overview of how robotics is integrated and 
considered in the health sciences education literature, beyond well-established surgical 
robots and system-centric approaches, by scoping the enablers and barriers that affect 
the use of robots as didactic tools for the education of professionals in health sciences.

Results show that, although there exist documented added-value benefits of the use 
of robots as didactic tools in medical education, further research on the issues found 
needs to be done to foster their inclusion in the curricula of health sciences profes-
sionals. On the one hand, by analyzing how robotic technology should be developed 
to become more flexible and usable to support both teaching and learning processes in 
health sciences education, as final users are not necessarily well-versed in how to use 
it. On the other, there continues to be a need to develop effective and standard robotic 
enhanced learning evaluation tools, as well good quality studies that describe effective 
evaluation of robotic enhanced education for professionals in health sciences. As hap-
pens with other technologies when applied to the health sciences field, studies often fail 
to provide sufficient detail to support transferability or direct future robotic health care 
education programs.

If robots in health sciences education are developed with a roboticist mindset, with-
out clearly incorporating aspects of the learning process beyond development, they may 
remain as proofs of concept. Incorporating elements of learning may promote the potential 
for robots to improve parameterizing of results, autonomously guide learners to achieve 
greater engagement, and allow collective (multi-agent) learning including patients and 
instructors "in the loop".

Appendix 1

See Table 2.
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