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The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health
emergency of international concern, and an effective vaccine is urgently needed to
control the pandemic. Envelope (E) and membrane (M) proteins are highly conserved
structural proteins among SARS-CoV-2 and SARS-CoV and have been proposed as
potential targets for the development of cross-protective vaccines. Here, synthetic DNA
vaccines encoding SARS-CoV-2 E/M proteins (called p-SARS-CoV-2-E/M) were
developed, and mice were immunised with three doses via intramuscular injection and
electroporation. Significant cellular immune responses were elicited, whereas no robust
humoral immunity was detected. In addition, novel H-2d-restricted T-cell epitopes were
identified. Notably, although no drop in lung tissue virus titre was detected in DNA-
vaccinated mice post-challenge with SARS-CoV-2, immunisation with either p-SARS-
CoV-2-E or p-SARS-CoV-2-M provided minor protection and co-immunisation with p-
SARS-CoV-2-E+M increased protection. Therefore, E/M proteins should be considered
as vaccine candidates as they may be valuable in the optimisation of vaccination
strategies against COVID-19.

Keywords: SARS-CoV-2, DNA vaccine, envelope protein, membrane protein, humoral response, cellular response
Abbreviations: COVID-19, coronavirus disease 2019; E, envelope; ELISA, enzyme-linked immunosorbent assay; IFA,
immunofluorescence assay; IFN-g, interferon gamma; INHAND, International Harmonisation of Nomenclature and
Diagnostic; M, membrane; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SFU, spot-forming unit; FITC,
fluorescein isothiocyanate; DAPI, 4′,6-diamino-2-phenylindol; DMSO, dimethyl sulfoxide; VOC, variant of concern.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the cause of coronavirus disease 2019 (COVID-19), is the third
novel betacoronavirus belonging to highly pathogenic human
coronaviruses that have caused public health crises in the past 20
years (1). It transmits more efficiently among the population
compared with its predecessors, SARS-CoV and Middle East
respiratory syndrome coronavirus. Globally, SARS-CoV-2 has
infected more than 260 million people, resulting in more than 5
million deaths worldwide as of November 2021 (2). Therefore,
the rapid development of effective therapies and vaccines against
SARS-CoV-2 and emerging coronaviruses is a critical global
priority (3).

Human coronaviruses are enveloped positive-sense RNA
viruses. The genetic components of coronaviruses encode four
major structural proteins—spike (S), nucleocapsid (N), envelope
(E), and membrane (M) proteins. The S protein is the target of
neutralising antibodies during infection and is important for the
development of coronavirus vaccines (4). However, SARS-CoV-
2 variants are emerging in different parts of the world, posing a
new threat of increased virus spread and the potential to escape
vaccine-induced immunity. Most of the mutations in these
variants are within the S protein (5); thus, raises the concern
that monovalent vaccines targeting only the S protein may not be
the most optimal strategy for conferring protection against
continually emerging variants (6).

The E protein is a small ion channel-forming membrane
protein (75 amino acids; ∼8.4 kDa) that plays a significant role in
viral morphogenesis and assembly (6). The M protein is the most
abundant protein and is approximately 222 amino acid residues
in length. It interacts with other structural viral proteins and
plays a central organising role in coronavirus assembly (7). Both
proteins are highly conserved structural proteins of SARS-CoV-2
and SARS-CoV (8). Several reports have shown that the co-
synthesis of E and M proteins is sufficient for virus-like particle
assembly (9–11). Therefore, the E/M proteins are potential
targets for the development of SARS-CoV-2 cross-protective
vaccines. However, few studies have considered these proteins
as major targets for the development of SARS-CoV-2
vaccines (12).

A variety of SARS-CoV-2 vaccines are currently being
developed and some have been approved, including
inactivated-, subunit-, vector-, mRNA-, and DNA vaccines (13,
14). Although several vaccines against COVID-19 are promising,
developing more effective and cross-protective vaccines is
urgently required. Synthetic DNA vaccines are developed at an
accelerated rate because of the quick design of multiple
candidates for preclinical testing in comparison to other
vaccines (15–17). Currently, to the best of our knowledge, the
immunogenicity and protective potential of synthetic DNA
vaccines encoding the SARS-CoV-2 E/M proteins have not
been reported.

To explore the immune protective potential of the SARS-
CoV-2 E and M proteins as vaccine targets synthetic DNA
vaccines expressing the E and M proteins were developed and
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their immunogenicity and protective efficacy in mice were
evaluated in this study.
MATERIALS AND METHODS

Construction of DNA-Based
COVID-19 Vaccines
The full-length genes encoding the SARS-CoV-2 E and M
proteins (GISAID, No. EPI_ISL_402119) were synthesised
using a mammalian-optimised codon with a N-terminal Kozak
sequence(GCCACC) followed by initiation codon(ATG) and a
C-terminal 6x His tag (GenScript Co., Nanjing, China).
Subsequently, they were inserted into the eukaryotic expression
vector, pcDNA3.1 (+), via HindIII and XbaI digestion and
named as p-SARS-CoV-2-E or p-SARS-CoV-2-M (Figure 1A).
All DNA vaccine sequences were confirmed by Sanger DNA
sequencing, and vaccines were expanded using endotoxin-free
Maxiprep kits (Qiagen, Beijing, China). The expression of the
E/M proteins was identified by an indirect immunofluorescence
assay (IFA) and western blotting.

Indirect IFA
Human embryonic kidney 293T cells were grown in Dulbecco’s
modified Eagle’s medium (Hyclone, South Logan, UT, USA)
containing 10% foetal bovine serum (Gibco, NY, USA) and 1%
penicillin-streptomycin (Gibco, Grand Island, NY, USA) in a 5%
CO2 incubator at 37°C. 293T cells were transfected with either
the p-SARS-CoV-2 E/M or pcDNA3.1 (empty/mock) vector
using jet PRIME transfection reagent (Polyplus, Illkirch,
France). Cells were fixed in pre-cooled 4% paraformaldehyde,
mobilised in 0.2% Triton X-100, and blocked by 10% goat serum
in phosphate-buffered saline. Anti-6X His tag antibody (Abcam,
Cambridge, UK) diluted at 1:50 was used as the primary
antibody. After incubation, cells were washed and incubated
with secondary antibodies [fluorescein isothiocyanate(FITC)-
labelled goat anti-rabbit IgG] and 0.1% 4′,6-diamino-2-
phenylindol (DAPI) at 37°C for 10 min. Fluorescent images
were acquired using a Leica TCS SP8 confocal microscope with
LAS software (Leica Biosystems, Wetzlar, Germany).

Western Blot
The expression of the E or M protein was confirmed by western
blotting, as previously described (18). The anti-6× His tag
antibody (Abcam, UK) diluted at 1:500 or serum antibodies
(diluted at 1/10) from DNA-immunised mice were used as
primary antibodies. A 1:5,000 dilution of anti-mouse
horseradish peroxidase-conjugated antibody (Sigma Aldrich, St
Louis, MO, USA) was used as the secondary antibody. The
membranes were developed with a chemiluminescent substrate
and analysed using a chemiluminescent imager.

Immunisations and Challenge
All experiments were approved by the Committee on the Ethics
of Animal Experiments of the Chinese Centre for Disease
Control and Prevention where all live SARS-CoV-2 mice
February 2022 | Volume 13 | Article 827605
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experiments were performed in animal biosafety level 3
containment laboratories at the National Institute for Viral
Disease Control and Prevention.

For animal immunisation, 6-week-old female BALB/c mice
(SPF grade) were purchased from the Beijing Vital River
Laboratory Animal Technology, housed, and vaccinated at
25°C in a light-cycled facility (12 h light/12 h dark).”
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Mice were divided randomly into groups (Figure 2) and
immunised with pcDNA3.1 (+), p-SARS-CoV-2-E/M alone or
co-immunised with p-SARS-CoV-2-E+M, on days 0, 21, and 42
via intramuscular injection plus electroporation (35mg/50ml) (19,
20). In brief, DNA vaccine were injected into the TA muscle of
mice and were immediately pulsed with electricity using a two-
needle array electrode (ECM830; BTX) with needles that were
A

B

C

FIGURE 1 | Design and expression of recombinant DNA-based SARS-CoV-2 E/M proteins vaccine constructs. (A) Schematic diagram of the recombinant DNA-
based vaccines encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E)/membrane (M) protein genes. (B) E/M protein expression in
DNA vaccines were tested by indirect immunofluorescence staining and (C) western blot in 293T cells transfected with either of the pSARS-CoV-2-E/M plasmids.
February 2022 | Volume 13 | Article 827605

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. DNA Vaccine Encoding E/M Protein
5 mm apart. Their spleens were processed to measure cellular
immune responses to E or M antigens, and their sera were
collected and used to analyse humoral immune responses.

Viral challenge experiments were conducted as described
previously (21). Ad5-hACE2-transduced SARS-CoV-2 mice
were intranasally infected with 1×105 median tissue culture
infective dose (TCID50) of SARS-CoV-2 (Wuhan/IVDC-HB-
02/2019) in a total volume of 50 mL.

Interferon Gamma (IFN-g) Enzyme-Linked
Immune Absorbent Spot (ELISpot) Assay
Either the E peptide pool or M peptide pool spanned the entire
protein as consecutive 15-mers overlapping by 10 amino acids
were synthesised by Scilight Biotechnology LLC. Each purified
peptide of the peptide pool was at 2.5 mg per vial. The peptides
were dissolved in dimethyl sulfoxide (DMSO) at a concentration
of 50 mg/ml and stored at -80°C. The experiment was conducted
as described previously (22).

Enzyme-Linked Immunosorbent
Assay (ELISA)
Synthetic extracellular peptides of the E/M proteins coupled with
bovine serum albumin (synthetized by Scilight Biotechnology
LLC) or E/M proteins (purchased from Unique Biotechnology
LLC) diluted in carbonate buffer (0.1 M; pH 9.6) were used to
coat 96-well enzyme immunoassay/radioimmunoassay plates
(Thermo Fisher Scientific, Waltham, MA, USA) overnight at
4°C. ELISA was conducted as described previously (21).

SARS-CoV-2 Neutralisation Assay
The experiment was conducted in a biosafety level 3 laboratory
as previously described (21).

Evaluation of Protection in Mice Post
SARS-CoV-2 Challenge
Three days post-challenge, mice were euthanised, and necropsy
was performed. Lungs of mice were harvested after sacrifice (four
Frontiers in Immunology | www.frontiersin.org 4
mice per group). Partial tissues were used for nucleic acid
extraction and real-time fluorescence RT-PCR to quantify the
relative amount of viral RNA in lungs as previously described
(21). The TCID50 of the virus in samples was determined as
previously described (21). Remaining tissue samples were fixed
in a 4% formalin solution and sent to the College of Veterinary
Medicine, China Agricultural University, for the preparation of
haematoxylin and eosin-stained sections (four mice per group)
for pathological evaluation indicated by the International
Harmonisation of Nomenclature and Diagnostic Criteria
(INHAND) scores.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism 7.0
(GraphPad Prism Software Inc., San Diego, CA, USA). One-way
ANOVA with Dunnett’s multiple comparisons test was
performed to evaluate the statistical significance of differences
among groups. Statistical significance was set at P<0.05.
RESULTS

Characterisation of DNA Vaccines
Expression of E and M proteins in 293T cells transfected with p-
SARS-CoV-2-E/M was detected by IFA (Figure 1B) and western
blotting (Figure 1C). IFA showed the expression of E and M
proteins in the membrane and endoplasmic area of HEK-293T
cells transfected with p-SARS-CoV-2-E/M. Western blot results
revealed approximately 10 kDa and 25 kDa bands that were
predicted as E and M proteins based on the molecular weight in
the lysates of HEK-293T cells transfected with p-SARS-CoV-2-
E/M. Two bands of M proteins means that some M proteins can
undergo maturation leading to N-glycosylated M proteins found
in infected cells (23). This has also been observed in the case of
SARS-CoV-2, revealed by two specific bands for M proteins
using immunoblotting (24). No protein expression was detected
in pcDNA3.1 (+)-transfected cells.
FIGURE 2 | Immunisation and challenging schema of recombinant DNA-based SARS-CoV-2 E/M proteins coronavirus disease 2019 vaccines. Vaccination,
challenging, and blood/tissue sampling time course. BALB/c mice were divided randomly into groups.
February 2022 | Volume 13 | Article 827605
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Significant and Sustained E-/M-Specific
T-Cell Responses Induced by
DNA Vaccination
To systemically analyse the H-2d-restricted T-cell epitopes for
SARS-CoV-2 E and M proteins, peptide pools consisting of 10
consecutive 15-mer overlapping peptides of the E/M proteins
were used for IFN-g ELISpot assay screening in BALB/c mice
after vaccination with p-SARS-CoV-2-E/M. Individual peptide
reactivity analysis showed that E-07, E-11, E-12, M-07, M-08,
and M-29 contained immunodominant epitopes, the amino acid
sequences of which are shown in Figure 3.

As shown in Figure 4A, a significant level of IFN-g
production was observed in the p-SARS-CoV-2-E/M-
immunised and p-SARS-CoV-2-E+M-immunised groups,
while no IFN-g secretion was detected in the mock group. Co-
immunisation with p-SARS-CoV-2-E+M induced higher levels
of E protein-specific IFN-g secretion than immunisation with p-
SARS-CoV-2-E alone on days 35 (E+M: 118 spot-forming units
[SFU]/106 splenocytes vs. E: 49 SFU/106 splenocytes; P<0.05)
and 120 (E+M: 78 SFU/106 splenocytes vs. E: 41 SFU/106

splenocytes; P<0.05). However, co-immunisation with p-SARS-
CoV-2 E+M did not induce higher levels of M-protein-specific
IFN-g secretion than immunisation with p-SARS-CoV-2 M
alone on days 35 (E+M: 68 SFU/106 splenocytes vs. M: 100
Frontiers in Immunology | www.frontiersin.org 5
SFU/106 splenocytes) and 120 (E+M: 54 SFU/106 splenocytes vs
M: 93 SFU/106 splenocytes).

IgG and Neutralizing Antibody Responses
Induced by DNA Vaccination
ELISA results from plates coated with E/M proteins (AtaGenix
Laboratories, Wuhan, China) or E/M peptides (Scilight
Biotechnology LLC,Beijing, China) did not indicate robust E/M
protein-specific antibody responses after the first or second
vaccination (data not shown). Moreover, neutralising anti-E/M
IgG were not detected in the sera (1:10 dilution) of immunised
mice (data not shown). However, antibodies against M protein in
mice could be detected by western blot (Figure 4B), and the M-
specific band (as predicted by size) was observed when purified
SARS-CoV-2 particles (inactivated vaccine stock) were loaded
and incubated with serum (diluted at 1/10) of p-SARS-CoV-2-
M-immunised mice.

Co-Immunization With p-SARS-CoV-2-E+
M Induced Partial Protection
After Challenge
We determined whether there was enhanced protection against
SARS-CoV-2 challenge in p-SARS-CoV-2-E/M- and p-SARS-
CoV-2-E+M-immunised mice, compared to the control group
FIGURE 3 | Mapping severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes in BALB/c mice. The fifty-six 15-mer overlapping peptides that
cover the entire sequence of the SARS-CoV-2 E/M proteins were used in an enzyme-linked immune absorbent spot (ELISPOT) assay to measure the immunodominant
T-cell epitopes. Candidate T-cell epitopes are labelled with #.
February 2022 | Volume 13 | Article 827605
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by evaluating protective effects of the DNA vaccine in mice on
day 125. Tissue viral load (RNA copies and TCID50) and
histopathological changes were evaluated (Figure 5). Lung
viral load in DNA vaccine-immunised mice did not
significantly decrease compared to that in the control group
(Figure 5A). Lung histopathology demonstrated that mice in the
control group had ruptured pulmonary alveoli, excessive mucus
production, and immune cell infiltration. In contrast, DNA
vaccine-immunized mice had milder histopathological changes
(Figure 5B). INHAND scores of all DNA vaccine-immunised
groups were lower than those of the control group. Notably, mice
co-immunised with p-SARS-CoV-2-E+M exhibited the mildest
histopathological changes and lowest INHAND scores compared
to mice immunised with p-SARS-CoV-2-E/M alone. Moreover,
the INHAND scores of the SARS-CoV-2-E+M vaccine group
were significantly lower than those of the control group (P<0.05;
Figure 5C). Taken together, both p-SARS-CoV-2-E and
p-SARS-CoV-2-M immunisation provided partial protection in
mice after SARS-CoV-2 challenge, and co-immunisation with
p-SARS-CoV-2 E+M enhanced this protection.
DISCUSSION

In this study, two DNA vaccines expressing the SARS-CoV-2 E
and M proteins were developed. The data showed that
considerable cellular immune responses were elicited, whereas
no robust humoral immunity was detected in BALB/c mice.
Frontiers in Immunology | www.frontiersin.org 6
In addition, six novel H-2d-restricted T-cell epitopes were
identified in E and M proteins. Co-immunisation with two
DNA vaccines expressing E and M proteins provided
partial protection against SARS-CoV-2. To the best of our
knowledge, this is the first study to evaluate the immune
protective potential of the SARS-CoV-2 E and M proteins as
vaccine targets.

Previous studies have suggested that SARS-CoV-2-specific T-
cells play a key role in COVID-19 resolution and modulation of
disease severity (25, 26). The definition of SARS-CoV-2-specific
T-cell epitopes is important for evaluating the potential influences
of mutations on acquired immunity and vaccine efficacy. The
immunodominant T-cell epitopes in the E and M antigen regions
have only been determined in a few studies (27, 28). M protein-
specific cellular immune responses have previously been reported
from SARS−CoV vaccination in mice (29, 30), but there are no
reports on similar responses to the E protein. Previous studies
have reported that overlapping peptide pools of the E and M
proteins induce SARS-CoV-2-reactive T-cell responses in humans
with COVID-19 (25, 31). Immunoinformatic analyses in humans
have identified SARS-CoV-2 E-specific (LVKPSFYVYSRVKNL/
FYVYSRVKNLNSSRV/FLLVTLAILTALRLC) and M-specific
(RGHLRIAGHHLGRCD) T-cell epitopes. These peptides
elicited T-cell responses in 33%, 36%, 22%, and 72% of patients
with COVID-19 and overlapped with E11, E12, E07, and M29,
respectively (25, 27, 28, 32–34). Another predicted M protein-
specific T-cell epitope (LLQFAYANRNRFLYI) overlapped with
M07 and M08 (27, 28), which were identified in this study.
A

B

FIGURE 4 | T and B cell immunity induced upon immunisation of mice with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) and/or
membrane (M) proteins. (A) Splenocytes were isolated from mice (n=3 or 4 mice per group per time point) and stimulated with E/M peptides at days 35 and 120
after the 1st vaccination. (B) M protein-specific antibodies were detected by western blot analysis of purified SARS-CoV-2 particles (inactivated vaccine stock). The
statistical analysis among groups was analysed by two-way ANOVA after Tukey’s multiple comparison (*P<0.05). ns, no significance.
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However, a few predicted E/M protein-specific T-cell epitopes
were not confirmed in this study, possibly due to the differences
between mice and humans. Notably, one study with results
inconsistent with our data reported that SARS-CoV-2 E/M-
specific peptides were not able to stimulate CD4+ and CD8+ T-
cells from virus replicon particle-vaccinated BALB/c mice (35).
This may reflect differences in target protein expression between
DNA- and virus replicon particle-based vaccines. The multiple
amino-acids sequence alignment have been performed for
immuno-dominant epitopes for E and M identified in our
study, which shows a conservation of E07 (100% identity)
Frontiers in Immunology | www.frontiersin.org 7
between SARS-CoV and SARS-CoV-2. However, the suitability
of E11, E12, M07, M08, and M29 for SARS-CoV requires further
testing (36). Variant of concern (VOC) is a variant for which there
is evidence of an increase in transmissibility and disease severity,
significant reduction in neutralization by antibodies generated
during previous infection or vaccination (37). For E protein
among 5 of SARS-CoV-2 VOCs, there is only one substitution
(T9I) in the omicron variant, one substitution (P71L) in the Beta
variant. For M protein, there are three substitutions (D3G, Q19E,
and A63T) in the omicron variant, one substitution (I82T) in the
Delta variant (37, 38). Fortunately, most immuno-dominant
A

B

C

FIGURE 5 | Immunisation protects mice from live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge. (A) Tissue viral loads and (B) histopathology
analysis of SARS-CoV-2-challenged mice. (C) International Harmonisation of Nomenclature and Diagnostic Criteria (INHAND) scores of challenged mice organs, on a severity
scale of 0–3 (none, mild, moderate, and severe). Statistical significance for groups of a one-way ANOVA after Dunnett’s multiple comparison correction is shown (*P < 0.05).
ns, no significance.
February 2022 | Volume 13 | Article 827605
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epitopes for E and M identified in our study are conserved
between SARS-CoV and VOCs of SARS-CoV-2. Notably,
persistence of T-cell responses against E or M was shown by
Day 120 data until weeks 11 after vaccination (Figure 4).

A few studies have tested the potential of the E protein as a
vaccine target. One SARS−CoV vector vaccine study reported
that none of the animals immunised with vaccines expressing E,
ME, or SME proteins induced antibody responses specific to the
E protein (39). Therefore, we speculated that the SARS-CoV-2
E protein has a limited ability to induce a humoral immune
response. A few studies have reported that SARS-CoV M
protein-based vaccines can induce antibody responses in
immunised animals (29, 30, 39, 40). Of note, neutralising
antibody titres specific to SARS-CoV M protein were detected
in immunised animals and patients with SARS (41, 42).
Previous immunoinformatic studies identified M-specific B-
cell epitopes, which were confirmed by ELISA using
convalescent sera from patients who previously had COVID
−19 (28). However, there were no studies that identified E-
specific B-cell epitopes. One study identified two linear E-
specific B-cell epitopes (CoV2_E-1 and CoV2_E-1.1) by
immunoinformatic prediction, but statistical analysis revealed
that antibody responses against these epitopes in convalescent
sera were not significantly higher than those in healthy control
sera (43). Our study revealed that no significant IgG or
neutralizing antibody against E/M were detected in
vaccinated mice. This may be due to limited B-cell epitopes
relatively smaller molecular weight of E protein, and weaker
immunogenicity of DNA vaccination.

One study communicated that immunisation with bovine-
human parainfluenza virus type 3 expressing the S protein
provided complete and partial protection against SARS-CoV in
the lower and upper respiratory tract, respectively. This was
augmented slightly by co-expression with M and E. However,
the expression of M, E, or M plus E in the absence of S did not
confer detectable protection against SARS-CoV (39). Notably,
hamsters immunised with a vaccine co-expressing the M and N
proteins were protected against severe weight loss and lung
pathology and had reduced viral loads in the oropharynx
and lungs after SARS-CoV-2 challenge (12). Our study
demonstrated that p-SARS-CoV-2-E or p-SARS-CoV-2-M
immunisation provided minor protection (indicated by mild
lung tissue pathology), and co-immunisation with p-SARS-
CoV-2-E+M exhibited even more protection (indicated by the
mildest histopathological changes and lowest INHAND
scores), although no drop in lung tissue virus titre was
detected in DNA-vaccinated mice after challenge with SARS-
CoV-2. Furthermore, the longevity of protective immunity
provided by DNA vaccines expressing SARS-CoV-2 E/M was
supported here, even though the challenge study was carried
out nearly 3 months post vaccination.

This study had limitations. We only observed the DNA
vaccine strategy in BALB/c mice, and because of the low
immunogenicity of DNA vaccines, the protection efficacy could
be further explored in subunit vaccines, vector vaccines, or novel
combinations of DNA and other vaccines, and future studies
Frontiers in Immunology | www.frontiersin.org 8
should estimate the immunity effect in other animal models.
Importantly, additional research is needed to understand the
molecular mechanisms of the E/M-mediated immune protective
effect after SARS-CoV-2 challenge so as to harness this
knowledge to optimise COVID-19 vaccine design.

In summary, we present a detailed immunological study of
the SARS-CoV-2-specific immune response against E and M
proteins after DNA vaccination. This is the first experimental
report to support immune protection against SARS-CoV-2
provided by the specific cellular immune response against E
and M proteins in the absence of an obvious humoral immune
response. The emergence of SARS-CoV-2 variants has raised
concerns about the potential loss of protection from COVID-
19 vaccines targeting only the highly mutated S protein. The
role of conserved structural proteins of SARS-CoV-2,
including E/M protein, is worthy of attention in vaccine
design and application since vaccine-induced T- cell
responses against conserved epitopes will be unaffected by
SARS-CoV-2 variants (39). Our results will lay a strong
foundation for the development of a cross-protective
COVID-19 vaccine for controlling current and emerging
variants of concern, as well as for preventing future
b-coronavirus pandemics.
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