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A B S T R A C T

Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemi-
cals after World War II have a strong relationship with the increase of chronic diseases, health cost and en-
vironmental pollution. The link between environment and immunity is particularly intriguing as it is known that
chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we
emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent
to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups,
taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological im-
plications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the
cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly
fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and
lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus
threaten global public health, human prosperity and achievements, and global economy. Finally, we propose
metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and
those required to prevent similar future pandemics.

1. Introduction

Human and animal health threats from coronaviruses have been
present over time. Uncontrolled porcine, bat, mouse, bovine, avian and
human coronaviruses dispersal can impact both global public health

and economic stability. As early as 2002, beta coronaviruses (CoV)
zoonotic outbreaks have been reported (Ou et al., 2020), including
severe acute respiratory syndrome coronavirus (SARS)-CoV in
2002–2003 (Ksiazek et al., 2003), Middle East respiratory syndrome
(MERS)-CoV in 2012 (Zaki et al., 2012) and, in late 2019, the novel
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SARS-CoV-2 (Docea et al., 2020). The porcine epidemic diarrhea virus
(PEDV) should also be included (Chen et al., 2014). Coronaviruses have
been associated with various ailments, including respiratory, gastro-
intestinal, and central nervous system diseases both in humans and
animals, impacting not only human health but also economic stability
(Perlman and Netland, 2009). The transmission model, clinical mani-
festations, pathogenesis and treatment of coronavirus disease have been
recently reviewed (Docea et al., 2020).

Fig. 1 shows an anthropological and scientific approach for the
evaluation of the association of the global production of crude oil, at-
mospheric pollutants, and pesticides with the population growth and
chronic diseases trends (Guillette et al., 1998). We emphasize that long-
term exposure to anthropogenic pollutants, among other risk factors,
may have a positive association with chronic diseases such as neuro-
degenerative disorders (e.g., Parkinson's disease) and diabetes
(Dimakakou et al., 2018; Roca et al., 2012), breast cancer (DeSantis
et al., 2019), non-Hodgkin's lymphoma (Huh, 2012), cancer (Brown,
1992), leukemia (Cocco et al., 1997), obesity (OECD, 2014), congenital
heart defects (Liu et al., 2019), hypertension (WHO. Raised blood
pressure,” n. c.d.) and increased vulnerability to microbial and viral
infections and their mortality (Figà-Talamanca et al., 1993).

While increases in disease correlate with increases in anthropogenic
pollutants, correlation is not causation. For causation, mechanisms
need to be identified that link pollutants to eventual diseases credibly.
The remainder of this paper presents evidence of the biological me-
chanisms that link the pollutants to myriad diseases of interest, espe-
cially through adverse impacts on the immune system.

2. Influence of environmental risk factors on the immune system

The immune system can be the target of many chemical, biological,
and physical agents that may elicit adverse effects on the host's health;
however, it is still unknown the extent to which low exposure to en-
vironmental toxic stimuli may adversely affect human health. The
proinflammatory and immunomodulatory properties of many toxic
stimuli may have limited effects on the immune system, unless exposure
occurs early in life or concurrently with infections or malignant dis-
eases. Under these circumstances, there is an increased risk of pro-
gression from exposure to infection, autoimmune diseases, or even

cancer. Nevertheless, the compensatory mechanisms of the immune
system limit the potential health impact at the individual level, al-
though minor immunomodulatory effects may have an impact at the
population level by contributing to increased burden of diseases
(Hartung and Corsini, 2013).

Environmental factors are believed to contribute to the increased
prevalence of allergies and autoimmune diseases, many of which are
due to the activity of Th17 T cells. These Th17 T cells are a newly-
identified helper T-cell subset characterized by production of inter-
leukin (IL)-17 and IL-22, as observed in experimental autoimmune
encephalomyelitis (Veldhoen et al., 2008) and more recently in COVID-
19 patients in China. The immunologic response of barrier organs (e.g.,
skin, gut, lung, eyes, and oral and genital mucosal tissues) against pa-
thogenic microbes and protein antigens, including SARS-CoV-2, is dis-
rupted in hematopoietic stem cells, innate immune system cells, as well
as in T-cell subsets and B cells.

Chronic exposure to environmental chemicals has been shown to
suppress or enhance immune responsiveness, depending on factors such
as dose, timing, and route of exposure. For example, environmental
immunology has led to the understanding of how xenobiotics (such as
polycyclic aromatic hydrocarbons (PAH)) acting via im-
munomodulatory signaling pathways, and specifically the aryl hydro-
carbon receptors (AhR), may adversely affect the developing immune
system (which seems to be more sensitive to environmental insults than
the adult immune system (Kreitinger et al., 2016)). Immunotoxicology
can also be beneficial in investigating whether an epidemic/pandemic,
or a chronic disease, is idiopathic or a deterministic event reflecting
cumulative adverse effects on the immune system. Understanding the
impact of environmental toxic stimuli on the immune response ulti-
mately contributes to improving public health.

Many decades ago, infectious diseases were the main cause of
mortality globally. With the increased influx of modern technology and
its under-regulated adverse byproducts into the environment and
workplace, non-communicable diseases have replaced infectious dis-
eases as the leading cause of mortality world-wide. However, infectious
diseases are still amongst the top five causes of global death (Winans
et al., 2011).

Xenobiotics, whether natural or anthropogenic, can readily interact
with the immune system, leading to a suppressed or enhanced immune

Fig. 1. Association of global crude oil, atmospheric pollutants and pesticide production with population growth and chronic disease trends.
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responsiveness (Fenga et al., 2017). Of increasing concern is the ob-
served reduced immune response to viral and bacterial infection, as
well as myelosuppression and thymic dysfunction. For example, co-
planar polychlorinated biphenyls (PCBs) and dioxins have been shown
to mediate their effect via the AhR. Such effects include diminished
humoral antibody responses, humoral immune suppression (Silkworth
and Antrim, 1985), severe thymic atrophy, and reduced cell-mediated
immunity, to name a few.

2.1. The AhR signaling pathway in immune system responses against
xenobiotics and viruses

The AhR is an evolutionarily ancient protein that can be activated or
inhibited by various types of exogenous and endogenous ligands. While
AhR canonical signaling has been identified as a primary mediator of
biological responsiveness to environmental chemicals, alternative sig-
naling events are increasingly being understood to mediate the phy-
siological effects of AhR (Khazaal et al., 2018). AhR is a cytosolic signal
sensor and transcription factor that translocates into the nucleus upon
binding to planar aromatic hydrocarbons. In addition, AhR signaling is
intricately involved in fine-tuning distinct immune responses, particu-
larly at environmental interfaces where endogenous and exogenous
AhR ligands accumulate (Quintana et al., 2008). For example, AhR
activity has been documented to be a key determinant of T helper (Th)
cell differentiation. Notably, ligands with differential AhR agonist ac-
tivity may have opposing effects on Th cell differentiation, demon-
strating the finely tuned regulation of this transcription factor at the
ligand-binding level (Quintana et al., 2008).

The AhR signaling pathway plays a key role in innate and adaptive
immune responses, and controls transcription of xenobiotic-metabo-
lizing enzymes like cytochrome P450 family members (e.g., CYP1A1
and CYP1B1) (Stockinger et al., 2014). Exogenous AhR ligands include
environmental toxic stimuli (e.g., dioxin), bacterial metabolites, or
naturally occurring ligands, such as dietary ligands (e.g., flavonoids and
glucosinolates), abundantly found in plants (McIntosh et al., 2010).
Starting from infancy, AhR levels in hepatic, lung, and thymic cytosol
slowly decline with age. Thus, while innate immune cells in children
have high expression of AhR, immune cells in adults have conservative
to low AhR expression (Esser and Rannug, 2015), representing a po-
tential important highlighted finding in COVID-19 prevalence in adults.

It is recognized that polyhalogenated aromatic hydrocarbons
(PAHs), dioxins, and biphenyls can activate AhR given their structural
resemblance to physiologic ligands. This, in turn, may increase the
metabolic turnover of physiologic ligands, thus decreasing their half-
life. As a result, uncontrolled or persistent activation of the AhR by
exogenous small molecules or UVB radiation may alter the tightly
controlled and transient AhR-regulated cell functions (Esser and
Rannug, 2015).

AhR signaling is dependent of the formation of complexes with
other proteins (cross-talk), such as AhR-interacting protein (AIP), es-
trogen receptor (ER), inducible nitric oxide synthase (iNOS), matrix
metalloproteinase (MMP), nuclear factor-κB (NF-κB), prostaglandin
synthase (PGHS), retinoblastoma protein (RB), tumor necrosis factor α
(TNF-α) and xenobiotic-metabolizing enzymes (XME) (Beischlag et al.,
2008).

AhR canonical and noncanonical signaling pathways can regulate
master regulatory transcriptional factors, such as the nuclear factor
(NF)-κB promoter and signal transducer and activator of transcription
(STAT). These transcriptional factors regulate the general transcrip-
tional machinery to induce transcriptional, post-translational and epi-
genetic expression of selective inflammatory genes (Bhatt and Ghosh,
2014). Additionally, cytosolic AhR and NF-kB regulate calcium-related
genes, increasing rapidly the intracellular Ca2+ concentrations that
drive cardiac and skeletal muscle pathology. This sequence leads to
downstream pro-inflammatory responses mediated by c-src, cycloox-
ygenase-2 (COX2), and C–C motif chemokine ligand 1 (CCL1) (N'Diaye

et al., 2006; Peterson et al., 2018). AhR is also a key component for T
cell development and activation mainly through the action of the Wnt/
β-catenin pathway (Ma et al., 2012). Xenobiotics induce regulatory T
cell (iTreg) deficits, as found in autoimmune diseases such as multiple
sclerosis (Wing and Sakaguchi, 2010), through their impact on AhR.

Xenobiotics and viruses affect the immune cells (e.g. hematopoietic,
myeloid, lymphoid) as well as the immune system barriers of the lung,
gut, mucosal epithelia and the placenta through differential and vari-
able AhR expression levels (Quintana and Sherr, 2013). AhR deficiency
and AhR dysregulation can impair the development of the aforemen-
tioned tissue barriers as well as the function of the adaptive and innate
immune systems (Sherr and Monti, 2013). For example, smokers are
more sensitive to viral and bacterial infection due to increased
CYP1A1/CYP1B1 and matrix metalloproteinase-1 (MMP-1) expression
through AhR activation by PAHs present in tobacco smoke, in a dose-
dependent manner (Ono et al., 2013).

The AhR molecular pathway regulates the immune response against
bacterial and viral attacks. Therefore, it plays a role in the context of
autoimmunity, infection, and cancer. Additionally, AhR modulates the
circadian clinical manifestations of infectious diseases and opens po-
tential opportunities for developing targeted therapeutics (Gutiérrez-
Vázquez and Quintana, 2018). Hence, the circadian rhythm (evening)-
observed exacerbation of clinical symptoms in malaria, bacterial sepsis,
or seriously ill COVID-19 patients can be regulated by AhR.

AhR not only affects the immune responses to viral infection, but
can also interact with viral proteins and affects viral latency. This
suggests that AhR may modulate viral infection beyond influencing
innate and adaptive responses (Head and Lawrence, 2009).

Xenobiotics and viruses acting through AhR can affect the gut-as-
sociated immune system and microbiome (Gutiérrez-Vázquez and
Quintana, 2018) (Fig. 2). The human gut virome, the ‘missing link’
between gut bacteria and host immunity, is a poorly understood com-
ponent of the gut microbiota (Reyes et al., 2012). Diet, antibiotic use,
and geographic variation can substantially affect the gut virome. Syn-
thetic diets or diets with no vegetables and fruits have very low AhR
activators, such as polyphenols and glucosinolates. These deficient diets
can adversely affect the organogenesis of intestinal lymphoid follicles
and innate immune cell homeostasis in the gut (Holtz et al., 2014;
Tsiaoussis et al., 2019).

Exposure of the gut microbiota to various antibiotics has led to a
substantial enrichment of the gut microbiome with phage-encoded
genes that confer resistance to the administered and similarly acting
antibiotics. This increased resistance, however, has created rather
complicated biofilms promoting persistent infections or chronic in-
flammation (Modi et al., 2013). Interestingly, microbiome is a highly
dynamic ecosystem that evolves with age (Lim et al., 2015). This also
reflects the profound interpersonal diversity of the gut virome (Minot
et al., 2013). The virus–bacterial-host interactions in the gut play a
protective role against gastrointestinal diseases such as necrotizing
enterocolitis in preterm infants (Neu and Walker, 2011), ulcerative
colitis and Crohn's disease, and highlight the role of viruses in con-
tributing to the initiation of inflammation (Wang et al., 2015).

It is well established that pulmonary tissue is the most sensitive
human tissue in COVID-19. Of particular interest is the fact that al-
veolar cells express the AhR at high levels at the basal matrix under-
neath the alveoli in which immune cells are found [namely mast cells,
lymphocytes, dendritic cells (DCs), and innate lymphoid cells (ILCs)]
(Frericks et al., 2007). This part of the respiratory system, however, is
vulnerable to the effects of very fine particulate matter (especially
matter with a diameter less than 2.5 μm, which is mainly produced by
diesel engines, charcoal-burning, wood-burning, and industrial ex-
hausts). This vulnerability is because particles of this size are able to
bypass the protective mechanisms of the respiratory tract and accu-
mulate in the alveolar tissue. If the particles are less than 0.1 μm, they
can penetrate completely the alveolar cell membrane and enter the
bloodstream. However, airborne particulate matter may act as AhR
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activators and thus trigger immune responses (van Voorhis et al.,
2013).

Exposure to airborne particles (urban dust, PAH, diesel exhaust,
cigarette smoke) by intranasal administration has been shown to in-
crease pulmonary IL-17 expression (van Voorhis et al., 2013).
Th17 cells are associated with autoimmune diseases, such as multiple
sclerosis, rheumatoid arthritis, and psoriasis (Zambrano-Zaragoza et al.,
2014), but also glomerulonephritis, severe spontaneous colitis, asthma,
dengue virus disease (Jain et al., 2013), and swine flu determined by
pandemic H1N1 influenza virus (Bermejo-Martin et al., 2009). Epide-
miologic studies have linked ambient particulate matter, nitrogen di-
oxide and other air pollutants exposure to immunologic diseases of the
respiratory system (asthma and chronic obstructive pulmonary disease
(COPD)), atopic diseases, allergic sensitization, eczema and poly-
morphisms of inflammatory cytokines via AhR-dependent mechanisms
(Morgenstern et al., 2008). Furthermore, COPD has also been associated
with an abnormal pulmonary and systemic immune response to tobacco
smoking, although only the so-called “susceptible smokers” develop the
disease (Cruz et al., 2019). Smokers and COPD patients are sub-
populations with an increased risk of severe COVID-19, likely because
of the enhanced airway expression of angiotensin-converting enzyme 2
(ACE2) receptor, the entry receptor for the SARS-CoV-2 virus, in lower
airways (Leung et al., 2020). Thus, many COVID-19 patients with COPD
develop acute respiratory distress syndrome (ARDS), leading to pul-
monary edema and lung failure. They also have liver, heart, and kidney
damage, reflecting acute systemic inflammatory reaction syndrome and
further multiple organ dysfunction syndrome (Docea et al., 2020).

Cytosolic AhR levels and target genes, as well as AhR levels in the
nucleus, might be useful markers of COVID-19 patient prognosis, based
on previous studies reporting that AhR levels have been used for the
diagnosis and prognosis in several aggressive tumors and multiple
sclerosis patients (Wheeler et al., 2017). The contribution of innate
versus adaptive immune cells to lung pathology is still under in-
vestigation, as many inflammatory mediators are implicated (Esser and
Rannug, 2015). Excessive or non-effective host immune responses due
to long-term xenobiotic exposures or viral attacks can impair T cells and

monocytes functionality, burden lung pathology and im-
munodeficiency, as observed in critical COVID-19 patients (D Zhou
et al., 2020).

Macrophages are critical for the development of inflammatory
processes. These cells express the AhR, and several studies have cor-
roborated their activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), to produce and release modulatory chemokines and proin-
flammatory cytokines (Vorderstrasse et al., 2003). The AhR is a known
modulator of antiviral pulmonary immunity. AhR activation by TCDD
has been shown to decrease survival after infection with a nonlethal
dose of influenza A virus, concomitant with doubling of pulmonary
neutrophil influx and suppression of expansion and differentiation of
virus-specific effector CD8+ T cells (Vorderstrasse et al., 2003). Thus,
exposure to environmentally-derived AhR activators is associated with
increased respiratory infections such as bronchial asthma and COPD
(Roca et al., 2013). COPD affects approximately 200 million people
worldwide and is globally one of the leading causes of death. Smoking,
biomass burning, air pollution, and inhalation of fine dust are con-
tributing factors to COPD and atmospheric particulate matter —a
known carrier of AhR ligands— can aggravate COPD (Roca et al.,
2013). PCBs also act through AhR, causing severe thymic atrophy and
humoral immune suppression (Silkworth and Antrim, 1985).

2.2. Xenobiotics affect the developing and adult immune system

Immunological development is dependent on both genetic and en-
vironmental influences (Vassilopoulou et al., 2017). Both cellular and
humoral immunity are factors that drive inter-individual variation in
correlation with age, gender, and season. They all play a major role in
shaping the immune profile analogous to lymphoid and myeloid cell
level, B cell subsets, and Ig levels, or T cell immune traits as compared
to the B cell immune traits. All these parameters are sensitive to toxic
environmental exposures, especially in the adult immune system. The
developing immune system can also be disrupted by early-life en-
vironmental insults, which may adversely affect the health of the ex-
posed offspring later in life. These adverse effects could extend to

Fig. 2. Xenobiotics, viruses, bacteria, obesity and aging acting through AhR.
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following generations through epigenetic inheritance, thus weakening
future generations’ bodily defenses against infections (Vassilopoulou
et al., 2017). The increased risk for injury to the developing immune
system has been shown across several categories of drugs, chemicals, as
well as heavy metals, some metalloids and mold toxins, through peri-
natal genome reprogramming, increasing the risk for adverse immune
outcomes persisting into later life (Vassilopoulou et al., 2017). In par-
ticular, exposure to AhR agonists may cause persistent changes to im-
mune responses that can affect subsequent generations, meaning that
the environment of prior generations shapes susceptibility to pathogens
and antiviral immunity in later generations (Post et al., 2019).

Developmental exposure to AhR-activating chemicals perturbs im-
mune cell development, resulting in attenuated hematopoietic stem cell
(HSC) differentiation and long-term self-renewal (Sakurai et al., 2017).
It also results in delicate deviations in the architecture of the crystal
structure of AhR, thus contributing to increased incidence of auto-
immunity and decreased responsiveness to infectious pathogens in later
life, via gradual and long-term repression of AhR-mediated gene tran-
scription (Sakurai et al., 2017). Furthermore, long-term activation of
AhR by TCDD has been shown to induce epigenetic changes in lym-
phocytes, especially T cells, leading to DNA hypermethylation and re-
sulting in decreased CD8+ T cell antiviral immunity (Boule and Winans,
2015). Conversely, early life exposure to TCDD enhances the CD4+ T
cell response to viral infection in the lung, resulting in more significant
broncho-pulmonary inflammation and reduced antiviral immunity
(Boule and Winans, 2015).

Exposure to a wide array of environmental chemicals, such as pes-
ticides, heavy metals, and endocrine disruptors, may also affect the
developing immune system. Pesticides, such as organochlorines
(chlordane and DDT/DDE) organophosphates (diazinon) and carba-
mates (carbofuran) have been shown to induce developmental im-
munotoxicity (Holladay, 1999; Ruszkiewicz et al., 2017). Prenatal ex-
posure of humans to DDE has been associated with reduced levels of
IgG and recurrent respiratory infections in infants, enhancing allergic
responses via induction of Th2 cytokines (Sunyer et al., 2010). The use
of lead as a petrol additive, or more generally as an environmental
contaminant, has adverse effects on the immune system, since the im-
mune system appears to be quite sensitive to lead. Lead-induced
skewing of immune responses has the potential to alter the incidence of
asthma, autoimmunity, infectious diseases, or cancer (Dietert et al.,
2004).

Early-life exposure to environmental and anthropogenic chemicals
may result in reprogramming of the immune system. Exposure of the
developing immune system to heavy metals, specifically lead, has been
shown to adversely affect the generation of innate immune cells, such
as macrophages and DCs (Fenga et al., 2017; Gao et al., 2007;
Kishikawa and Lawrence, 1998). Dysregulated macrophages and DCs
effector functions reduce phagocytosis, lysosomal activation, produce
excessively reactive oxygen species, and other inflammatory mediators
(i.e., TNF-α, PGE2) by activation of the Erk/MAP kinase pathway,
contributing thus to persistent Th2-biased immune responses and in-
creasing the risk for inflammatory disorders and disease unmasked later
in life (Kim and Lawrence, 2000).

Endocrine disruptors, such as bisphenol A (BPA), have also been
shown to alter immune system by interfering with hormone production
and activity, and neuroendocrine axes (Karzi et al., 2018; Petrakis et al.,
2017). Perinatal exposure to low doses of BPA has been shown to alter
the neonatal immune system and render it more susceptible to food
intolerance (Nakajima et al., 2012). Low-dose BPA exposure during the
juvenile period of development may aggravate allergic airway in-
flammation by enhancing Th2 responses via disruption of the immune
system (Koike et al., 2018).

Long-term exposure to mixtures of anthropogenic pollutants such as
nanomaterials (NMs), pesticides, BPA, phthalates, heavy metals, parti-
culate matter, PAH and toxins during critical developmental periods,
could hypothetically impact the immune system and increase viral

infectivity, morbidity and mortality in children and adults (Kwak et al.,
2009). Xenobiotics can impair a protective immune response, especially
in organs expressing high ACE2 expressions, such as intestine and
kidney.

The degree to which xenobiotics deregulate immune responses de-
pends on cell-type and maturational state, especially in vulnerable
population groups. Both inflammatory and regulatory gene expressions
via cross-talk between transcriptional (e.g. AhR and NF-κB), xenobiotic
response elements activation and other posttranslational and epigenetic
alterations, together with viral immunotoxicological engagements,
contribute to unwanted complications on macrophages, dendritic cells,
the cytolytic activity of murine NK cells, innate lymphoid cells and
Foxp3+ regulatory T cells (Qiu et al., 2012).

3. Long-term low-dose exposures to mixtures of anthropogenic
chemicals may affect the human health through dysregulation of
the immune system

Exposure to single chemicals during development has been shown to
impair immune responses. However, under real-life exposure scenarios,
humans are widely exposed to mixtures of numerous chemicals and
other stressors, such as radiation, sound, biotoxins, etc., present in
different sources (environment, diet, workplace). Thus, the relevant
exposure framework for evaluating potential impairment of the im-
mune function relies on assessing mixtures of chemicals (and other
toxic stressors) rather than single chemicals in our changing environ-
ment. According to this approach, exposure to chemical mixtures
during development could be more detrimental to the immune system
than exposure to single chemicals, depending on the nature of the
chemicals and their dosages. While the developmental stage is the most
vulnerable period to chemical toxicity, exposure during non-critical
periods should also be considered. Furthermore, it should be high-
lighted that low-dose disruptive effects of chemicals on key biological
pathways and mechanisms in certain subpopulations may enhance
susceptibility to diseases.

The immune system recognizes engineered nanomaterials (NMs) as
foreign bodies, resulting in multilevel responses that can range from
acute to chronic. These responses can range from immune-stimulatory
to immunosuppressive, but can also vary in host toxicity and/or re-
duced therapeutic efficacy of conventional pharmaceuticals (Engin
et al., 2017; Kendall and Holgat, 2012; Neagu et al., 2017). NMs-in-
duced immune activation may increase the incidence of allergic reac-
tions, inflammatory responses, or autoimmunity. Additionally, NMs-
induced suppression may reduce maturation and proliferation of im-
mune cells, resulting in increased susceptibility to infectious diseases or
tumor growth.

In nanotoxicology, numerous studies clearly demonstrate that
multi-walled carbon nanotubes (MWCNT) and inhaled particulate
matter (PM) induce lung injury (Kendall and Holgat, 2012; Piperigkou
et al., 2016) through acute and chronic inflammation, granuloma for-
mation, and substantial interstitial lung fibrosis. MWCNT and PM can
also exacerbate asthma-like conditions via innate pathways such as
TLRs that trigger the generation of IL-25, IL-33, and thymic stromal
lymphopoietin (TSLP). MWCNT also induce epithelial damage resulting
in IL-33 release, which in turn promotes innate lymphoid cell recruit-
ment and the development of IL-13-dependent inflammatory response
(Beamer et al., 2013).

A number of studies similarly linked MWCNT-induced oxidative
stress, phagolysosomal permeabilization, cathepsin B release, NLRP3
inflammasome assembly, and caspase-1 activation with the secretion of
important regulatory cytokines (e.g., IL-1β and IL-18). Titanium di-
oxide nanomaterials, long carbon nanotubes, asbestos and silica, affect
innate immune activation through reactive oxygen species (ROS) gen-
eration, cathepsin B activity that activate Nalp3 inflammasome and
induce Il-1α and IL-1β secretion by caspase1, autophagy and lung fi-
brosis (Palomäki et al., 2011). These findings highlight that
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inflammasome activation and autophagy induction may occur via
pathways other than the well-established mTOR pathway (Palomäki
et al., 2011).

Pesticides can impact human health and the environment adversely
through cellular and extracellular, direct and indirect mechanisms in a
complex and synergistic mode. Extracellularly, synthetic pesticides ac-
tivate primarily receptors of cytokines (Gangemi et al., 2016) (Fig. 3).
These key receptors, via secondary signaling pathways such as TLR/
MYD/NF-kB, P38 MAPK/AP-1, AhR, ER/FFAs/PPARγ, B-cell receptor
or Cyclin D signaling pathways, directly and indirectly, alter tran-
scriptionally and epigenetically global gene expression (Vidya et al.,
2018) (Fig. 4).

Pesticides also, affect the metabolism of Ca+2, vitamin D and iron,
disrupt redox biology (Ffrench-Constant, 2013), activate proteasome
system, alter microbiome (Joly Condette et al., 2015), increase PGE2 via
COX2, increase Th 1 cytokines and decrease Th 2 cytokines, leading to
T-cell immaturity. The pesticidal loosening of tight junctions increases
the intestinal permeability and disrupts the integrity of vasogenic
homeostasis and vascular permeability, thus increasing translocation of
bacteria to distal organs and resulting in bacterial infectivity (Stanaway
et al., 2016). Pesticides also disrupt redox biology, reduce antioxidant
enzyme activities, increase reactive oxygen species (ROS) and oxidative
stress, which may impact the immune system function because of the
cross-talk between oxidative and pro-inflammatory pathways. In

Fig. 3. Molecular and cellular mechan-
isms triggered by long term pesticide
exposure. Pesticides induced pro-in-
flammatory mediators (TNF-α, IL-1β, IL-6)
of macrophages, aromatase expression,
growth factors and oxidative stress, oestro-
genicity, carcinogenesis, DNA damage,
genomic, epigenetic changes, obesity and
abnormal embryo development.

Fig. 4. Transcriptional alterations induced by selective pesticides.
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addition, pesticides can induce ATP and energy depletion and DNA
instability through DNA damage or epigenetic alterations, sister chro-
matid exchanges, telomere shortening, diverse mutations, and pre-
mature cell death, which also impact the immune system function
(Demsia et al., 2007; Fountoucidou et al., 2019; Tsatsakis et al., 2019a;
Tsiaoussis et al., 2018).

In any case, given the plethora of physiological pathways and
functions that can be disrupted by chemical exposures, the current risk
assessment approach based on the assessment of individual substances
is insufficient to address exposure to chemical mixtures under real-life
conditions (Kostoff et al., 2018; Tsatsakis et al., 2019c; Hernández
et al., 2020).

4. Molecular and cellular mechanisms of SARS-CoV-2 cell attack

SARS-CoV-2 is a member of the coronavirus family that has a single-
stranded RNA genome of positive sense. This gene encodes four struc-
tural proteins, namely spike glycoprotein (S), a small envelope protein
(E), matrix glycoprotein (M) and nucleocapsid protein (N) (Li et al.,
2020). The entry of the virus into cells is mediated by the S protein, in
particular by attaching its surface unit (S2) to ACE2, an enzyme present
in primarily type II pneumocytes (lung alveolar epithelial cells). Then the
S protein is cleaved by cellular proteases and the viral capside is fused
with the cellular membrane, thus allowing intracellular translocation of
SARS-CoV-2 coupled with ACE2 by endocytosis (Cava et al., 2020). This
is followed by massive intracellular replication of SARS-CoV-2, which
then undergoes exocytosis where it binds again to ACE2, thus entering
into a vicious cycle (Abassi et al., 2020) Furthermore, after endocytosis
of the SARS-CoV-2/ACE2 complex, surface ACE2 is down-regulated, re-
sulting in unopposed angiotensin II accumulation (Vaduganathan et al.,
2020). The binding affinity of specific receptor binding of S protein is
related to virus infectivity and pathogenicity (Li et al., 2020https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC7093363)). In this regard,
ACE2 genetic polymorphisms and expression levels in different tissues
might alter host susceptibility to COVID-19 by affecting the interaction
with SARS-CoV-2 S-protein.

ACE2 belongs to the renin-angiotensin-aldosterone system (RAAS),
which contributes to the pathophysiology of hypertension and cardio-
vascular/renal diseases by maintaining homeostasis of blood pressure,
electrolyte balance and inflammatory responses (Cava et al., 2020).
ACE2 can be considered as a key counterregulatory enzyme that de-
grades angiotensin II to angiotensin-(1–7), which exerts vasodilatory,
natriuretic/diuretic, anti-inflammatory, and antifibrotic effects via Mas
receptor (MasR) (Abasi et al., 2020; Vaduganathan et al., 2020).

ACE2 is highly expressed in the lung, where it appears to exert a
protective role in acute lung injury as loss of pulmonary ACE2 function
has been associated with acute lung injury. Hence, the binding of SARS-
CoV-2 with ACE2 neutralizes the advantageous physiological effects of
this enzyme. Attenuation of ACE2 catalytic function alters RAAS system
activity, resulting in enhanced inflammation and vascular permeability
observed in the pathogenesis of inflammatory lung disease, eventually
leading to acute lung injury and adult respiratory distress syndrome as
observed in patients with severe COVID-19 (Cheng et al., 2020 27).
Hence, local activation of the RAAS may mediate lung injury responses
to viral insults (Vaduganathan et al., 2020). Indeed, when angiotensin I
and angiotensin II receptors (AT1R and AT2R, respectively) are acti-
vated, they lead to the increased expression of proinflammatory med-
iators (e.g., IL-6), triggering an inflammatory process in the lungs and
other organs. In particular, AT1R activates the transcription factors NF-
kB and activator protein 1 (AP-1), which in turn increases cytokine
expression, apoptosis, vasoconstriction, fibroproliferation, retention of
Na+, and the enhancement of lung injury. The endogenous angiotensin
II inhibits alveolar fluid clearance and dysregulates epithelial Na+

channel (ENaC) expression via AT1R, contributing to alveolar filling
and pulmonary edema (Cava et al., 2020).

ACE inhibitors and angiotensin-receptor blockers (ARBs) have

shown to up-regulate ACE2 expression in animal studies, thus in-
creasing the availability of target molecules for SARS-CoV-2. These
considerations have led to speculation that ACE inhibitors and ARBs
might be harmful in patients with Covid-19. However, a number of
studies conducted in different populations and with different designs
have come to the conclusion that ACE inhibitors and ARBs are unlikely
to be harmful in patients with Covid-19 (Jarcho et al., 2020 1). Con-
versely, because of the protective effects of ACE2 on acute lung injury
and chronic diseases, the development of drugs enhancing ACE2 ac-
tivity might be an approach for the treatment of COVID-19 (Cheng
et al., 2020 27). The aforementioned speculations should not be re-
garded as evidence to prescribe or not these drugs in patients with
Covid-19. Clearly, randomized clinical trials are warranted to shed light
on this apparent paradox.

The early onset of rapid viral replication may cause massive epi-
thelial and endothelial cell apoptosis and vascular leakage, triggering
the release of exuberant pro-inflammatory cytokines and chemokines
(Yang, 2020). The excessive immune reaction produced by SARS-CoV-2
infection in the host can lead in some cases to the so-called ‘cytokine
storm’ or ‘cytokine release syndrome’. This syndrome can be triggered
by a variety of factors, such as infections and certain drugs, and consists
of an acute systemic inflammatory syndrome characterized by fever and
multiple organ dysfunction resulting in an extensive tissue damage. The
main cytokine responsible of this storm is IL-6, which is produced by
activated leukocytes and acts on a large number of cells and tissues
(Cascella et al., 2020).

The Toll-Like Receptor (TLR) signaling pathway is evolutionarily
conserved and functionally linked to innate immunity. Signaling results
in nuclear translocation of the transcription factor NF-κB, which reg-
ulates the expression of distinct genes in immunity or development
(Anthoney et al., 2018). TLR has been implicated in the pathogenesis of
airway disease resulting from respiratory virus infections, with TLR
signaling leading to the activation of type I interferons (IFN-α and IFN-
β), proinflammatory cytokines (IL-6, TNF, IFN-γ, and CCL5), and in-
terferon-stimulated genes (Totura et al., 2015). The binding of SARS-
CoV-2 to the TLR activates the its downstream signaling pathway,
causing the release of pro-IL-1β (which is cleaved by caspase-1). This is
followed by inflammasome activation and production of active mature
IL-1β, which is a mediator of lung inflammation, fever and fibrosis
(Conti et al., 2020).

5. Xenobiotics and viruses have common and more than one
mechanisms of action

Chronic organochlorine, organophosphate, paraquat and pyrethroid
exposures have been linked to Parkinson's disease and other neurode-
generative diseases through mitochondrial dysfunction, oxidative
stress, and apoptosis via cell signaling pathways (Cao et al., 2019).
Some pesticides have been reported as potential risk factors of chronic
erectile dysfunctions (Polsky et al., 2007), probably via NADPH oxi-
dase/ROS production and reduced bioavailability of NO (Jin and
Burnett, 2008). Experimentally, DDE (a metabolite of DTT) exposure
exhibits a diabetogenic potential, with an underlying im-
munomodulatory mechanism likely via cytokine cascades, or disrupted
glucose homeostasis (Cetkovic-Cvrlje et al., 2016). Cardiovascular
toxicity has also been reported following exposure of zebrafish to del-
tamethrin (Meng et al., 2019).

Adjuvants in pesticides formulations are used to increase the pes-
ticidal effect of the active ingredient. However, this is a constant un-
derestimated factor of pesticide mixture chronic toxicity (Mesnage
et al., 2013). For instance, it has been shown that animals subjected to
concomitant exposure to certain fungicides, such as ergosterol bio-
synthesis inhibitors, are able to increase the pyrethroid and neonicoti-
noid insecticides cytotoxicity up to 1000- and 8-fold respectively. This
combined exposure may result in enforced lipogenesis and/or onco-
genic transcriptional alterations, which may not occur with individual
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chemicals (Thompson et al., 2014).
Xenobiotics and viruses activate similar transmembrane receptors of

cytokines, toll-like receptors, growth factors, secondary signaling
pathways, such as TLR/MYD/NF-kB, P38 MAPK/AP-1, AhR, hormone
receptors, B-cell receptor or Cyclin D signaling pathways, directly and
indirectly and thus alter the global gene expression transcriptionally
and epigenetically (Conti et al., 2020; Gangemi et al., 2016). Xeno-
biotics and viruses affect the metabolism of Ca+2, K+ and Cl− efflux,
vitamin D, iron and coagulation factors, disrupt redox biology, activate
proteasome and the inflammasome system, alter microbiome and
virome, increase PGE2 via COX2, and increase Th 1 cytokines, resulting
in T-cell immaturity (Go and Jones, 2014; Joly Condette et al., 2015).

Xenobiotics and viruses disrupt the redox biology, reduce anti-
oxidant enzyme activities, increase reactive oxygen species (ROS) and
oxidative stress, ATP and energy depletion, DNA instability through
DNA damage or epigenetic alterations, premature cell death and ageing
(Go and Jones, 2014; Joly Condette et al., 2015; Martínez-Valenzuela
et al., 2017). Furthermore, both xenobiotics and living microorganisms
may contribute to increased resistance to treatments, bacteria or viruses
aggressiveness, communicable diseases and decreased vaccination ef-
fectiveness.

Viral infections and chemical exposures can produce pro-in-
flammatory mediators that, if sustained over time, result in chronic
inflammation in target organs. This condition often entails tissue da-
mage, increased mutation rate and genomic instability, which re-
presents a cancer-prone microenvironment (Kidane et al., 2014). In
cardiovascular morbidity, xenobiotics and viruses have been found to
increase chemokines, cytokines, heart mitochondrial GPx activity, DNA
damage, cholesterolemia, expression of tissue plasminogen activator
(tPA), plasminogen activator inhibitor-1 (PAI-1) and pro-coagulant
activity, ROS, TNF-α and TGF-β, protein and lipid oxidation in heart
cells, endothelial dysfunction, and decreased mitochondrial GSH levels,
resulting in hyper-coagulability and thrombosis (Zafiropoulos et al.,
2014).

Both xenobiotic and viral immune morbidity are due to alterations
in gene mRNA and protein expression via pro-inflammatory cytokine,
chemokine, kinase and neuroendocrine signaling, activation of T-cells,
disruption of gut microbiota and immune homeostasis (Go et al., 2015;
Jin et al., 2017). These reprogram the cell cycle control in the Golgi
region via cycline gene alterations and premature cell death (Chiappini
et al., 2014). Crohn's disease, rheumatoid arthritis, autoimmune thyr-
oidopathies, systemic lupus erythematosus, psoriasis, fibromyalgia-os-
teoarthritis, chronic pain, and multiple chemical hypersensitivity have
been associated with pesticide exposure (Fernández-Solà et al., 2005;
Langer, 2010; Williams et al., 2018). Global immune deficiency, vac-
cine and drug ineffectiveness, bacterial and virus virulence, cancer
aggressiveness, increased chronic inflammatory pathologies are asso-
ciated with various pesticide adverse immune effects.

Additionally, pesticide exposure in neonates and children is corre-
lated with alterations in B-cell maturation, rapid cell proliferation,
disruptive homeostasis of the pro-oxidant agents, altered fecal micro-
biota composition, cytokine expression and antioxidant defenses, ster-
oids and genomic alterations (Gonzalez et al., 2018; Ling et al., 2014;
Mona et al., 2012). Both NMs and viruses can affect the adaptive im-
mune response by direct activation of antigen-presenting cells (APCs),
including B cells, dendritic cells, macrophages, helper and cytotoxic T
cells, and can contribute to both intracellular and extracellular immune
response deficiency to pathogens but also to increase tissue-specific
autoimmunity, observed in autoimmune diseases (Kalkanidis et al.,
2006). Both hydrophobic nanoparticles< 5 nm and viruses dictate the
immune response exhibiting the greatest expression of inflammatory
cytokines (Moyano et al., 2012).

Moreover, many nodal points used by viruses and chemicals to
generate, develop and disperse pathologies and diseases have been used
over the last three decades individually or in combination as targets for
modern checkpoint therapies through monoclonal antibodies in order

to address these diseases (Peng et al., 2016; Hafeez et al., 2018).
Transcription factors, membrane receptor signaling pathways, and
protein kinase signaling pathways, are all key players of xenobiotic-
induced cancer in adults (Eldakroory et al., 2017) and children
(Hargrave et al., 2006), hematological and lymphoid malignancies
(Leon et al., 2019), Alzheimer's disease and Parkinson's disease (Aloizou
et al., 2020) and stroke (Tsatsakis et al., 2019b). Furthermore, this
knowledge has also been valuable for molecular-oriented anti-cancer
therapy (Liu et al., 2018).

ACE2 expression has been shown to be upregulated by infection
with SARS-CoV-2 (Wang and Cheng, 2020). However, the relation be-
tween ACE2 and SARS-CoV-2 virulence is complex and it is attracting
extreme interest currently (Hoffmann et al., 2020), following concern
about the potential ability of some anti-hypertensive drugs, such as
ACE-inhibitors and angiotensin-receptor blockers (ARBs) to increase
Covid-19 severity and case fatality rate (Day, 2020). This is a clear
example of environmental toxins laying the groundwork for increased
susceptibility to COVID-19 (and other viral diseases), and subsequent
treatments exacerbating the severity of COVID-19, and is why elim-
ination of the environmental toxin is the much preferred route.

On the other hand, the relation between ACE2 levels and SARS-CoV-
2 virulence might go in both directions, i.e. both high and low ACE2
activity could theoretically increase Covid-19 severity (Guo et al.,
2020). Therefore, more research is urgently needed about the interac-
tion between the ACE-inhibitor/ARB use and the susceptibility to in-
creased Covid-19 severity. Observational studies are currently un-
derway on this issue, and need to be expanded. In the meantime,
caution has been suggested by scientific and professional societies
about any modifications to current anti-hypertenive drug therapy based
on ACE-inhibitors and ARBs in people with high blood pressure, in the
absence of convincing clinical evidence of their benefits against severity
of Covid-19 (Fang et al., 2020; ESC, 2020).

It has been posited that the antimalaric drugs chloroquine and hy-
droxychloroquine reduce glycosylation of ACE2, thus preventing SARS-
CoV-2 from binding to host cells (Devaux et al., 2020). Chloroquine has
also been shown to inhibit quinone reductase 2, an enzyme that func-
tions prominently in sialic acids biosynthesis (Olofsson et al., 2005) and
critical components of ligand recognition (Kwiek et al., 2004). Many
trials have recently been initiated on the real clinical usefulness of these
drugs, which have been suggested to be useful in early therapy and
even in the prevention of Covid-19. However, based on their estab-
lished and potentially very serious side effects, these drugs should not
be initiated until there is clear evidence of their efficacy for the treat-
ment of Covid-19.

In addition, given that SARS-CoV-2 entry into the host cells is
mainly mediated by the endocytic pathway, chloroquine seems effec-
tive in blocking endocytosis and/or inducing viral entrapment into the
lysosome. The latter can be achieved by neutralizing the endosomal pH,
thus favoring virus–endosome fusion, inhibit lysosomal protease ac-
tivity, and prevent the cleavage of S protein and therefore viral entry
into the host cell (Yang et al., 2004). Chloroquine may also thwart viral
protein maturation, block the recognition of viral antigens by dendritic
cells, and increase cytotoxic CD8+ T-cell activity to viral antigens. In
addition, it blocks phosphorylation (activation) of the p38 mitogen-
activated protein kinase (MAPK) and caspase-1 (Steiz et al., 2003) in
THP-1 cells, both of which are required for SARS-CoV-2 and other
viruses replication (Briant et al., 1998). Moreover, chloroquine affects
immune system activity by mediating an anti-inflammatory response,
which might reduce damage due to the cytokine storm. Chloroquine
inhibits IL-1β mRNA expression in THP-1 cells, reduces IL-1β release,
IL-1 and IL-6 cytokines in monocytes/macrophages, and IFNα, IFNβ,
IFNγ, TNFα, IL-6 and IL-12 gene expression (Devaux et al., 2020). Ly-
sosomotropic agents, ammonia chloride and bafilomycin A, have been
found to reduce the transduction on 293/hACE2 cells by SARS-CoV-2 S,
and thus inhibit the SARS-CoV-2 entry into cells through endocytosis
(Villamil Giraldo et al., 2014; Ou et al., 2020).
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Finally, the newly-introduced anti-viral agent Remdesivir was found
to be beneficial against SARS and MERS in animal models (Holshue
et al., 2020). Remdesivir is an adenosine analogue, antagonizing ade-
nosine for RNA-dependent RNA polymerase, causing their premature
viral RNA termination (Sheahan et al., 2017). However, as Remdesivir
is a prodrug, it has to be metabolized in order to reach its active form
GS-441524. Its clinical significance was proved during the West African
Ebola virus epidemic of 2013–2016 and the Kivu Ebola epidemic in
2018 (Warren et al., 2015). Given its promising effectiveness against
previous corona-viruses, Remdesivir has also been tested against
COVID-19. According to various studies, favorable outcome is to be
expected from animal use given the in-vitro efficiency of the drug
(Wang et al., 2020). Although Remdesivir has led to quick recoveries in
symptoms of Covid-19 patients in a clinical trial, results from its Phase
III trial involving severe Covid-19 patients are expected to be available
soon.

6. Approaches and challenges to tackle the Covid-19 epidemics/
pandemics

It is well understood that COVID-19 outbreak and current policies
are based on regulations; the main strategy worldwide mirrors and
expands the strategy used in the prior SARS pandemic to limit the
spread of the pandemic: ‘Stay at home’/quarantine. This approach
primarily does not account for human real-life needs scenarios, lacks
realism as a directive for subsequent new viral epidemics or pandemics,
does not provide the protections afforded by ‘herd immunity, does not
meet current and future needs in health and safety of the global po-
pulation, and adversely impacts development of production and
economy worldwide. The only advantages are 1) flattening the con-
tagion curve through social distancing and lockdowns and 2) avoiding
hospitals (and Intensive Care Units) overwhelmed by Covid-19 cases.

The global spending on cancer therapies, cholesterol-lowering
drugs, malaria, spina bifida and anencephaly, osteoporosis, vaccine
market and diabetes nowadays exceeds $ 5 trillion USD and, according
to WHO is expected to grow at a compound annual growth rate of 5% in
the next ten years period (WHO, 2019a). According to WHO, the global
total 2019 health cost is about 10 trillion USD, 10% of Gross National
Product (GDP) and 1080 USD per capita (WHO, 2019b). The total
global cost for COVID-19 will be unknown for months, and it will likely
have a substantial secondary cost burden for decades.

As health authorities are developing effective measures to stem the
health effects of COVID-19, uncertainties remain regarding both the
virus-host interaction and the evolution of the epidemic. The spatial-
temporal features of the pandemic, the attempts to conceal the origin
and the first medical data from Wuhan, the route and the difference of
the spread of the virus, the criteria used to assign deaths to the COVID-
19 category, the reduced mortality-to-incidence ratio as testing rises
and more patients are identified, the non-observance of individual
protection measures and treatment of mild Covid-19 cases in new tem-
porary hospitals, the intensified competition and mutual accusations
between USA and China, the lack of scientific data on treatment and
vaccine, difficulties in verification of alleged or attempted biological
attacks by the use of living-biologically modified - viral agents, all raise
insecurity and reasonable questions worldwide.

As of mid-March 2020, many countries in the world are on partial
lockdown to control the pandemic (COVID-19) spread, and the only
effective ‘treatments’ at this time are good hygiene (washing hands),
wearing a mask, and quarantine. Although quarantine may reduce the
spread of the virus, it may impose the self-medication at home for
chronic diseases without medical diagnosis and treatment, increase the
risk of adverse complications of cardiovascular, metabolic, autoimmune
and psychiatric diseases, shifting thus the health cost from public pro-
viders to patients. Scientists in fields of public policy have presented
combined tactical and strategic treatment approaches that aimed at

preventing and reversing COVID-19 and other diseases, including
treatment repurposing as well. Optimally, the tactical and strategic
approach components would be implemented in parallel, to provide
benefit from the synergies of the combined approach This combined
approach would allow the vulnerable to survive the near-term poten-
tially lethal effects of SARS-CoV-2 exposure through tactical treatments,
and would allow the most vulnerable and the larger population to be
more resistant to future viral attacks of all types through strategic
treatments (Kostoff, 2020).

7. Effects of diet on immune system and role of nutrient
supplements on infected vulnerable groups

The immune system is remarkably dynamic throughout life in re-
lation to its components’ number and its function. Interestingly, older
adults exhibit a decline in immune function -known as im-
munosenescence-resulting in increased susceptibility to infectious dis-
eases and a higher risk of serious complications than younger people,
reflecting altered acquired and innate immunity (Crooke et al., 2019).
Aging is associated with altered T cell function, decreased thymic
output and thymic involution, and reduced numbers of naive T cells
(Berzins et al., 2002) and micronutrient deficiencies. All these elements
play key roles in increasing inflammation and its resulting morbidity
and mortality (Salanitro et al., 2012). Immune function may be im-
proved in immune competent adults, particularly those over 65 years
old, by restoring deficient micronutrients, such as vitamins A, C, D, E,
B2, B6, and B12, folic acid, iron, selenium, and zinc to optimal (Maggini
et al., 2018). Adequate intake and bodily levels of these micronutrients
has been shown to be critical in reducing risks stemming from in-
flammatory and non-communicable diseases (Miles et al., 2008).

Nutritional modulation of the immune system is also associated
with reduction or delayed onset of immune-mediated chronic diseases.
Several micronutrients and dietary components have been shown to
play specific roles in the development and maintenance of an effective
immune system. For example, arginine is necessary for the nitric oxide
generation by macrophages, and vitamin A and zinc are known reg-
ulators of cell division. Vitamin E is both an antioxidant (Lee and Han,
2018) and protein kinase C activity inhibitor (Childs et al., 2019).
Dietary and supplementation interventions enriching the gut micro-
biome, such as the use of probiotics and prebiotics (Hill et al., 2014),
may be needed to help enhancing or restoring a healthy gut micro-
biome. In addition, diets lacking vegetables may decrease the diversity
of nutrients reaching the gut microbiome. This in turn alters epithelial
integrity resulting in increased permeability or ‘leaky gut’, allowing
immune cells within the gut-associated lymphoid tissue to be directly
exposed to intraluminal nutrients or elements of the gut microbiota. A
great example of altered gut permeability induced by micronutrient
status is that of vitamin D. Specifically, vitamin D-deficient diets are
found to be responsible for increased epithelial permeability due to
dysfunctioning tight junctions, resulting in both acute and chronic gut
inflammation (Bischoff et al., 2014; Sassi et al., 2018). Optimal pro-
biotic bacterial composition has been shown to effectively reduce in-
flammation, characterized by reduction of proinflammatory Th1 and
Th17 cytokines, such as IL-17 and IFN-γ, and concomitant increases in
the levels of inflammation-resolving cytokine, such as IL-10 (Santiago-
Lopez et al., 2018). On the other hand, prebiotics can be used not only
as substrates for bacterial metabolism but also to enhance barrier
function. The unparalleled importance of natural and well-balanced
diets has been also highlighted vis-à-vis infant formula consumptions. It
is well established that breastfeeding affords passive immunity to the
infant via transfer of antibodies, growth factors, and cytokines to the
offspring (Torres-Castro et al., 2018; Plaza-Diaz et al., 2018). Breast-
milk is also enriched with microbiota thatpromote the maturation of
gut-associated lymphoid tissue (Donovan and Comstock, 2016), playing
a key role in development of the immune system during thymus
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maturation, particularly for T cell function. In breastfed infants, com-
plementary feeding with prebiotics for optimal microbiome main-
tenance has been proposed (McKeen et al., 2019).

The Western-type diet (described as a diet rich in processed sugars,
trans- and saturated-fats, but low in complex carbohydrates, fibers,
micronutrients, and other bioactive molecules such as polyphenols and
omega 3 polyunsaturated fatty acids) has been shown to predispose to
inflammation, likely by increasing the uptake of lipopolysaccharide
(LPS) from gut microbes secondary to altered gut permeability and
increased leakiness (Vardavas et al., 2011; Zinöcker and Lindseth,
2018). Although activation of TLR4 by LPS may cause inflammatory
response, a number of nutrients, such as long-chain omega 3 poly-
unsaturated fatty acids, have been shown to thwart TLR4 activation,
thus attenuating inflammation (Rogero and Calder, 2018). In contrast, a
Mediterranean-type diet, which is rich in certain foods (vegetables,
fruit, nuts, legumes, fish, ‘healthy’ dietary fats such as virgin olive oil),
has been shown to be associated with lower risk for chronic diseases,
including cancer, cardiovascular disease, and neurological disorders
(Dinu et al., 2018). These effects have been attributed to immune-
modulation and the anti-inflammatory properties of various poly-
phenols and other bioactive compounds inherent to these foods, espe-
cially fruits and vegetables (Yahfoufi et al., 2018). Νutrients from ge-
netically modified organisms (GMOs) affect the adaptive immune
response because the cellular ability for specific recognition of a ge-
netically modified protein is lacking. There is no ‘memory’ on repeated
exposure, resulting in allergic reactions observed in consumers after
consuming modified plants. One example is the “Starlink” maize, which
was engineered with genetic information from Bacillus thuringiensis to
increase the plant's resistance to various insects (Nawaz et al., 2019;
Tsatsakis et al., 2017; Zhang et al., 2016). Except for xenobiotic and
GMOs allergenicity, there are genetic hazards arising from the inserted
gene, its expressed protein per se, and secondary or pleiotropic effects
on other gene expression. This results in disruption of natural genes in
the manipulated organism (Bawa and Anilakumar, 2013).

Micronutrients, such as Zn and Selenium, have important catalytic
and structural roles as co-factors in numerous proteins involved both in
adaptive and innate immune response (Ibs and Rink, 2003). Sig-
nificantly, selenoproteins regulate immunity in numerous infectious
diseases, including human immunodeficiency virus infection (Avery
and Hoffmann, 2018).

Under acute infections, such as COVID-19, glutamine consumption
rate by immune cells increases, especially in rapidly dividing cells of the
immune cells. Thus, glutamine supplementation in critically ill patients
is necessary (Cruzat et al., 2018). Finally, the activation of vitamin D
nuclear receptor (VDR) by 1,25(OH)2D3 (calcitriol, the active form of
vitamin D) is found to enhance both the innate and adaptive immune
response (Wang et al., 2004). This can be very important in cases of
infectious diseases in the elderly, such as COVID-19, where the patient
is probably suffering from exhausted vitamin D.

8. Discussion

Atmospheric pollutants from power plants, industries, transport,
fuel combustion of military missiles and aircrafts, weapon of mass de-
struction such as chemical, nuclear and biological weapons (Petrakis
et al., 2016), spacecrafts, electromagnetic fields (Kostoff and Lau, 2017)
and irradiation from nuclear weapons, nuclear power plants and
modern technology radiation (Kostoff, 2019; Kostoff et al., 2020) are
environmental factors that seriously harm health of humans, and other
forms of life (Malagoli et al., 2010). Historically, viruses may have been
used in the past as biological weapons. Today, despite the ‘Biological
and Toxins Weapons Convention’ that entered into force in 1975, it is
known that many countries are still working on and stockpiling biolo-
gical weapons (Christopher et al., 1997). Chemicals, metals, particulate
matter, nanoparticles, anthropogenic climate change, and increased
UVB radiation disrupt health, ecosystems and environment. These
toxins, along with the toxic modern lifestyle and smoking, constitute an
ideal man-made environment for the development, and spread, of
modern diseases, including the new viral epidemics/pandemics that
occurred during the two last decades (Fig. 5).

We have described the common intracellular mechanisms that en-
vironmental and anthropogenic pollutants, as well as the SARS-CoV-2,
use for their immunotoxicity and mechanism-based treatment ap-
proaches. Βasic and applied immunotoxicology can enhance public
health and provide significant advantages in the prevention and treat-
ment of epidemics/pandemics and chronic diseases.

While several animal species may harbor SARS-CoV-2, the precise
animal reservoir has yet to be confirmed. It seems likely that a spike
mutation, which probably occurred in late November 2019, triggered
transmission of the virus to humans (Cascella et al., 2020). Τhe current
anti- SARS-CoV-2 therapies used in some patients have been unable to
counteract disease progression and to save patients’ lives. Since the S2
subunit of SARS-CoV-2 is highly conserved, it could be a target for
antiviral (anti-S2) drugs; however, the potential for viral mutations may
be responsible for future disease relapses (Cascella et al., 2020). In this
study, we emphasize that in addition to the urgent measures that are
necessary to interrupt the coronavirus transmission from farming ani-
mals to humans, there is also a need to improve the current global
strategy for energy management and other factors that may adversely
affect the immune system of the human, and thereby increase the risk of
both infectious and chronic-degenerative diseases. Exposures to large
classes of xenobiotics have a triple impact on the immune system. First,
xenobiotics promote immunomodulatory effects in immune cells.
Second, xenobiotics increase the range of immunotoxicity of human-
associated micro-organisms or new viral and microbial attacks. Third,
xenobiotics may reduce vaccine efficacy.

Global health cost and COVID-19 effects on the world economy,
health systems, and production are massive currently, and will be far
more massive when a final accounting is performed. We recommend

Fig. 5. The common mechanisms through which exposure to different stressors and viruses leads to inhibition of immune system.
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application of massive COVID-19 screening tests as an important step
for properly 1) recording the extent of the COVID-19 outbreak and,
through evidence-based corrective actions, 2) delaying the spread of the
pandemic. Given the guidance of the health authorities to transfer
COVID-19 patients into hospitals only when presenting fever and dys-
pnea, it appears that for all admitted patients, and especially for ICU
patients, the inflammosome is already at an advanced stage precluding
effective treatment. Accordingly, novel AhR-mediated im-
munotherapies for a plethora of immune-associated diseases/disorders
should be pursued.

Conclusively, additional common safety factors need to be added
when calculating COVID-19 prevalence and infectivity, including the
cooperation of healthcare providers and the scientific community ex-
perts. The use of a self-managed qualitative and quantitative evaluator
for COVID-19 spread is also a realistic suggestion, keeping in mind that
the increased incidence in COVID-19 outbreak in Italy, Spain, Iran,
Turkey, USA and United Kingdom appears to have a close correlation to
probably inadequate and delayed implementation of uniform antivirus
measures, despite the socio-economic, racial, demographic, cultural
and administrative characteristics of each country. New investigations
into both genetic and environmental fields of immunotoxicology will
advance our understanding of immune function, provide the foundation
for the development of novel immunotherapeutics and, more im-
portantly, decrease the effect of immunological risk factors.

9. Conclusion

This paper highlights that environmental-related diseases (e.g., en-
ergy-metabolism-immune mediated obesity, type II diabetes, metabolic
syndrome and cancers) and infectious diseases (e.g., parasitic, influenza
or coronavirus-related epidemic or pandemic) share the same patho-
genic mechanisms at the molecular level, particularly the AhR pathway.
Viral epidemics and pandemics, in addition to causing significant
morbidity and mortality, can challenge societal structure and health-
care. As novel viruses continue to emerge, novel therapies and pre-
ventative measures must be sought. Understanding and optimizing host
cell health and viral infectivity parameters are critical steps for any
successful cytolytic virology.

Χenobiotics immunotoxicity, and immune deficiency, deviation or
dysregulation affect immunological development, and induce immuno-
dependent diseases that are transmitted transgenerationally to off-
spring. The best long term therapy to mitigate the effects of anthro-
pogenic pollutants related to immune deficiency and fatal viral out-
breaks is to introduce much more stringent regulation on the emissions
resulting from unabated introduction of modern technologies into our
environment, our workplace, and our daily life.

In addition, integrated chemical management, economic and poli-
tical measures to reduce industrial pollution, greenhouse gases and the
effects of climate change on human and environmental health (the ‘one
health’ goal), new technology systems should continue to provide po-
sitive outcomes for immune system function and chronic disease pre-
vention, as well as for restriction of viral and bacterial invasion and
aggressiveness. Currently, the public health measures based on social
distancing, appropriate quarantine, and increase of COVID-19 diag-
nostic tests globally are the necessary options for our defense against
the SARS-CoV-2 pandemic, although they don't contribute to the po-
tentially protective ‘herd immunity’.
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