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Abstract: N-n-butyl haloperidol iodide (F
2
), a novel compound, has shown palliative effects in 

myocardial ischemia/reperfusion (I/R) injury. In this study, we investigated the effects of F
2
 on 

the extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase 

(ERK)/Na+/H+ exchanger (NHE)/Na+/Ca2+ exchanger (NCX) signal-transduction pathway 

involved in H
2
O

2
-induced Ca2+ overload, in order to probe the underlying molecular mecha-

nism by which F
2
 antagonizes myocardial I/R injury. Acute exposure of rat cardiac myocytes 

to 100 µM H
2
O

2
 increased both NHE and NCX activities, as well as levels of phosphorylated 

MEK and ERK. The H
2
O

2
-induced increase in NCX current (I

NCX
) was nearly completely inhib-

ited by the MEK inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis[o-aminophenylmercapto]

butadiene), but only partly by the NHE inhibitor 5-(N,N-dimethyl)-amiloride (DMA), indicat-

ing the I
NCX

 increase was primarily mediated by the MEK/mitogen-activated protein kinase 

(MAPK) pathway, and partially through activation of NHE. F
2
 attenuated the H

2
O

2
-induced 

I
NCX

 increase in a concentration-dependent manner. To determine whether pathway inhibition 

was H
2
O

2
-specific, we examined the ability of F

2
 to inhibit MEK/ERK activation by epidermal 

growth factor (EGF), and NHE activation by angiotensin II. F
2
 not only inhibited H

2
O

2
-induced 

and EGF-induced MEK/ERK activation, but also completely blocked both H
2
O

2
-induced and 

angiotensin II-induced increases in NHE activity, suggesting that F
2
 directly inhibits MEK/

ERK and NHE activation. These results show that F
2
 exerts multiple inhibitions on the signal-

transduction pathway involved in H
2
O

2
-induced I

NCX
 increase, providing an additional mechanism 

for F
2
 alleviating intracellular Ca2+ overload to protect against myocardial I/R injury.

Keywords: N-n-butyl haloperidol, hydrogen peroxide, Na+/Ca2+ exchanger, Na+/H+ 

exchanger

Introduction
Reperfusion of an ischemic myocardium leads to heart dysfunction and cardiomyo-

cyte injury. Such myocardial ischemia/reperfusion (I/R) injury is characterized by 

impaired blood flow, metabolic dysfunction, contractile dysfunction, dysrhythmias, 

cellular necrosis, and apoptosis.1 I/R injury is a complex process involving numerous 

mechanisms, including cytosolic and mitochondrial Ca2+ overload, release of reactive 

oxygen species (ROS), acute inflammatory response, and shift in substrate use.2

ROS, produced as by-products of oxidative metabolism, are easily managed under 

normal conditions by reactive oxygen scavengers.3,4 Several forms of ROS are generated 

during I/R, including superoxide (O
2
−), H

2
O

2
, and the highly reactive hydroxyl radical 

(⋅OH), which cause lipid peroxidation and myocardial injury and trigger the contractile 

dysfunction observed during reperfusion.5,6 It has also been suggested that the burst in 

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/DDDT.S63163
mailto:ggshi@stu.edu.cn


Drug Design, Development and Therapy 2014:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1258

Huang et al

ROS upon reperfusion may contribute to Ca2+ overload in 

cardiomyocytes.7,8 Rothstein et al9 and Sabri et al10 found that 

low doses of H
2
O

2
 (50 µM, similar to those generated during 

I/R) cause Ca2+ overload in cultured neonatal rat ventricular 

myocytes, which is associated with activation of the Na+/H+ 

exchanger (NHE) in part through extracellular signal-regulated 

kinase (ERK)-1/2-mediated phosphorylation of NHE-1, the 

only NHE isoform in the myocardium. A link between H
2
O

2
 

and diastolic Ca2+ overload in neonatal rat ventricular myocytes 

was proposed. Exposure to H
2
O

2
 results in the alteration of 

signaling proteins involved in the mitogen-activated protein-

kinase (MAPK) pathway, ultimately leading to extracellular 

signal-regulated kinase kinase (MEK) activation, which then 

phosphorylates and activates ERK1/2. Activated ERK1/2 

subsequently phosphorylates the COOH tail of NHE-1, 

increasing its exchanger activity to elevate intracellular Na+ 

concentrations. The resulting rise in intracellular Na+ decreases 

the activity of the Na+/Ca2+ exchanger (NCX), leading to an 

increase in diastolic Ca2+ levels.9 Therefore, pharmacological 

approaches to decrease MAPK, NHE-1, and/or NCX activity 

may ameliorate the alterations in Ca2+ homeostasis that con-

tribute to myocardial tissue injury following I/R.

N-n-butyl haloperidol iodide (F
2
), a novel quaternary 

ammonium salt derivative of haloperidol synthesized in our 

laboratory, can maintain the effects of coronary artery relax-

ation without adverse extrapyramidal reactions.11 Our previ-

ous studies show that F
2
 can attenuate myocardial I/R injury, 

as evidenced by amelioration of hemodynamics and myocar-

dial enzyme activity, reduction in myocardial infarction size, 

prevention of ventricular arrhythmias, and decreases in myo-

cardial inflammation.11–14 The cardioprotective mechanism of 

F
2
 was thought to be associated with calcium-homeostasis 

maintenance against intracellular Ca2+ overload by inhibiting 

cardiocyte L-type Ca2+ channels.12,13 However, intracellular 

Ca2+ overload during I/R results primarily from the func-

tional coupling of NHE and NCX. Ischemic hearts develop 

intracellular acidosis, which activates NHE to extrude H+ in 

exchange for an influx of Na+. Upon reperfusion, loss of 

extracellular H+ causes further extrusion of H+ in exchange for 

Na+. The subsequent elevation in intracellular Na+ promotes 

an increase Ca2+ influx into the cytosol via the reverse mode 

of NCX, resulting in Ca2+ overload.15 It is suggested that the 

mechanism of F
2
 antagonizing myocardial I/R injury might 

not be only related to suppression of the L-type Ca2+ channel. 

In this study, we used rat ventricular myocytes to investigate 

the effects of F
2
 on the MEK/ERK/NHE/NCX signal-trans-

duction pathway involved in H
2
O

2
-induced Ca2+ overload 

in order to probe the underlying molecular mechanism by 

which F
2
 maintains intracellular calcium homeostasis and 

antagonizes myocardial I/R injury.

Materials and methods
Materials
F

2
 (synthesized by our lab and identified by the Shanghai 

Organic Chemistry Institute of the Chinese Academy of Sci-

ences; purity greater than 98%) was prepared as a 0.1 M stock 

solution in dimethyl sulfoxide and diluted to the desired con-

centration with extracellular solution before each experiment. 

HEPES (4,[2-hydroxyethyl]-1-piperazine-ethanesulphonic 

acid]), CsCl, 1,2-bis(2-aminophenoxy)-ethane-N,N,N′,N′-
tetraacetic acid (BAPTA), ouabain, nifedipine, ryanodine, 

epidermal growth factor (EGF), angiotensin (Ang) II and  

5-(N,N-dimethyl)-amiloride (DMA) were purchased from  

Sigma-Aldrich Co. (St Louis, MO, USA). U0126 (1,4-diamino- 

2,3-dicyano-1,4-bis[o-aminophenylmercapto]butadi-

ene) was from Merck Millipore (Billerica, MA, USA), 

2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl 

ester (BCECF-AM), and Pluronic® F127 were from Thermo 

Fisher Scientific (Waltham, MA, USA). Anti-MEK, anti-

phosphorylated (p)-MEK, anti-ERK, and anti-p-ERK antibodies 

were from Cell Signaling Technology (Danvers, MA, USA), anti-

NCX from Santa Cruz Biotechnology Inc., (Dallas, TX, USA), 

anti-NHE-1 antibody from Abcam (Cambridge, UK), anti-β-

actin from Sigma-Aldrich, and secondary antibody (horseradish 

peroxidase-conjugated goat antirabbit immunoglobulin (Ig)G)  

from BosterBio (Pleasanton, CA, USA).

Isolation of ventricular myocytes
Adult male Sprague Dawley rats (180–250 g) were obtained 

from the Laboratory Animal Breeding and Research Center 

(Shantou, People’s Republic of China). All experiments were 

conducted in strict accordance with the Guide for the Care 

and Use of Laboratory Animals published by the US National 

Institutes of Health (publication 85-23, revised 1996).16 The 

protocol was approved by the Medical Animal Care and 

Welfare Committee of Shantou University Medical College 

(permit SUMC2010-093). All surgery was performed under 

sodium pentobarbital anesthesia, and all efforts were made 

to minimize suffering. Single ventricular myocytes were 

isolated by an enzymatic dissociation method described pre-

viously.17,18 Single ventricular myocytes were harvested after 

filtration through a nylon mesh (pore size 200 mm).

INCX recording
Myocytes were perfused with extracellular solution 

(140 mM NaCl, 1 mM CaCl
2
, 1 mM MgCl

2
, 0.33 mM 
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NaH
2
PO

4
, 10 mM glucose, 10 mM HEPES, 0.02 mM ouabain, 

0.01 mM nifedipine, 2 mM CsCl, and 0.01 mM ryanodine, 

pH 7.2) at a rate of 1 mL/minute in a recording chamber. 

Patch pipettes were forged from 1.5 mm diameter glass 

capillaries with a two-stage microelectrode puller (pp-830; 

Narishige, Tokyo, Japan). The pipette resistance was 2–3 MΩ 

when filled with the pipette solution (20 mM NaCl, 20 mM 

BAPTA, 10 mM CaCl
2
 [free Ca2+ concentration of 226 nM], 

120 mM CsOH, 3 mM MgCl
2
, 50 mM aspartic acid, 5 mM 

Mg-adenosine triphosphate, and 10 mM HEPES, pH 7.2).19 

NCX current (I
NCX

) was recorded by a tight-seal whole-cell 

voltage clamp with the use of an Axopatch™ 200B amplifier 

(Molecular Devices, Sunnyvale, CA, USA) with low-pass 

filtering at 2 kHz, digitized with a DigiData 1322A interface, 

and processed by pCLAMP® 8.2 software (Molecular Devices, 

Sunnyvale, CA, USA). The electrode capacitance was maxi-

mally compensated by use of the amplifier. No compensation 

was made for membrane capacitance or series resistance.

For recording I
NCX

, the extracellular solution contained 

ouabain, nifedipine, Cs+, and ryanodine to block Na+/

K+ pump current, I
Ca

, I
K
, and Ca2+ release channels of the 

sarcoplasmic reticulum, respectively. I
NCX

 was induced by 

ramp-voltage pulses from a holding potential of −60 mV to 

+60 mV, and then hyperpolarizing to −150 mV before ramp-

ing back to the holding potential at a rate of 600 mV/second. 

The descending limb (from +60 to −150 mV) was plotted as 

the current–voltage (I–V) relationship without capacitance 

compensation.20 I
NCX

 was measured as the N
i
2+-sensitive cur-

rent that could be selectively inhibited by 5 mM NiCl
2
.

Measurement of intracellular pH  
and NHE activity
Intracellular pH (pH

i
) was measured by monitoring the 

fluorescence of the pH-sensitive dye BCECF.9,10 Myocytes 

placed in a petri dish were loaded with BCECF by incuba-

tion for 15 minutes in the dark at room temperature with the 

acetoxymethyl ester form (BCECF-AM, 2 µM) in modified 

Krebs solution (135 mM NaCl, 5.9 mM KCl, 1.5 mM CaCl
2
, 

1.2 mM MgCl
2
, 11.5 mM glucose, 11.6 mM HEPES, pH 7.4) 

supplemented with 0.1% bovine serum albumin and 0.02% 

Pluronic F127. The cells were then washed three times and 

incubated for an additional 45 minutes in fresh Krebs solu-

tion in the presence or absence of the MEK inhibitor U0126 

(5 µM). BCECF fluorescence was recorded using confocal 

microscopy (FluoView FV1000; Olympus, Tokyo, Japan). 

A ratio of fluorescence emitted at 515 nm from excitation at 

490 nm to that at 440 nm was converted to intracellular pH
i
 

using the nigericin high-K+ protocol of Thomas et al.21

NHE activity was measured by monitoring the recov-

ery rate from rapid acidification using the NH
4
Cl prepulse 

technique.21,22 After determination of basal pH
i
, cells were 

exposed to Krebs solution containing 25 mM NH
4
Cl for 

5 minutes to cause rapid alkalinization as NH
3
 diffused 

into the cells and titrated intracellular H+. Then, perfusion 

with Na+-free Krebs solution (Na+ isosmotically replaced 

with N-methylglucamine) removed NH
4
+ from the external 

medium to cause a rapid decrease in pH
i
. There was no recov-

ery from this acid load in the absence of Na+. pH
i
 recovered 

when the perfusate was switched to an Na+-containing Krebs 

solution. This Na+-dependent recovery was operationally 

defined as NHE activity. To quantify the rate of pH
i
 recovery, 

the slope of a straight line fitted to the initial 60 seconds after 

the onset of recovery was measured.10

Western blotting
Total protein extracts were prepared from cells using cell-lysis 

buffer containing a protease-inhibitor cocktail (aprotinin, 

leupeptin, pepstatin A, and phenylmethylsulfonyl fluoride). 

The protein concentration was determined by a Bradford 

protein-assay kit (Bio-Rad Laboratories Inc., Hercules, CA, 

USA). Equal amounts of total protein (40 µg) were subjected 

to sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(10%), followed by electrophoretic transfer to nitrocellulose 

membranes (GE Healthcare UK Ltd., Little Chalfont, UK). 

The blots were incubated with primary antibody (rabbit 

antirat) at 4°C overnight, followed by secondary antibody 

(horseradish peroxidase-conjugate goat antirabbit IgG) for 

2 hours at room temperature. The bound antibodies were 

detected by the use of a SuperSignal Western blotting kit 

(Thermo Fisher Scientific ). Densitometric analysis of protein 

bands was performed with Quantity One® software (version 

4.5.2; Bio-Rad Laboratories Inc.,).

Statistical analysis
All values are presented as means ± standard error of the 

mean. Statistical analysis was carried out using paired 

Students’s t-tests or one-way analysis of variance followed 

by the Student–Newman–Keuls test, with P,0.05 considered 

statistically significant.

Results
F2 inhibits the H2O2-induced  
increase of INCX
Currents were recorded when myocytes were perfused in 

sequence with the control extracellular solution, and solutions 

containing H
2
O

2
 (100 µM), H

2
O

2
 + F

2
 (0.1, 1.0, or 10 µM), 
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and NiCl
2
 (5 mM) for 10 minutes, respectively. Bidirectional 

outward and inward I
NCX

 were induced by 1 mM Ca2+ and 

140 mM Na+ in the external solution, and 20 mM Na+ and 

226 nM free Ca2+ in the pipette solution. Under these ionic 

conditions, the reversal potential of I
NCX

 with a 3Na+:1Ca2+ 

stoichiometry was calculated to be −65 mV at room 

temperature according to the equation E
Na/Ca

=3E
Na

 − 2E
Ca

.23,24 

Figure 1A illustrates the I–V relation of control myocytes (a), 

and myocytes exposed to H
2
O

2
 (b), H

2
O

2
 + 0.1, 1.0, or 10 µM 

F
2
 (c–e), and NiCl

2
 (f). The net Ni2+-sensitive currents all 

crossed the voltage axis at about -65 mV (Figure 1B), con-

firming that the Ni2+-sensitive currents were I
NCX

. Both out-

ward and inward I
NCX

 increased after perfusion with 100 µM 

H
2
O

2
. F

2
 diminished the increase of I

NCX
 in a concentration-

dependent manner, with reverse-mode NCX being greater 

than forward-mode inhibition (Figure 1C).

U0126 and DMA inhibit H2O2- 
induced INCX increases
To confirm the involvement of the MAPK pathway and the 

NHE in H
2
O

2
-induced NCX activation, we tested the effects 

of U0126, a highly selective inhibitor of MEK, and DMA, 

an NHE inhibitor, on the H
2
O

2
-induced increase in I

NCX
. We 

initially determined the minimal effective concentrations 

that completely blocked H
2
O

2
-induced MEK activation and 

NHE-1 activity, and used those concentrations to examine 

the roles of MEK and NHE in F
2
-mediated inhibition of 

H
2
O

2
-mediated induction of I

NCX
 activity. Results showed 

that perfusion of 5 µM U0126 for 10 minutes, which alone 

did not affect I
NCX

,25 significantly inhibited the H
2
O

2
-induced 

increase in I
NCX

 at 60 mV by 81.13%±3.63% and at −150 

mV by 93.64%±4.52% (n=5) (Figure 2A and B). In contrast, 

perfusion of 20 µM DMA for 10 minutes only inhibited the 

H
2
O

2
-induced increase by 39.98%±3.00% at 60 mV, and 

by 32.42%±1.78% at −150 mV (n=5) (Figure 2C and D). 

This result indicates that the H
2
O

2
-induced increase in I

NCX
 

was primarily mediated by the MEK/MAPK pathway, and 

partially through activation of NHE-1.

F2 inhibits H2O2-induced MEK/ERK 
activation and EGF-induced INCX increases
To investigate whether F

2
 modulates MEK activity, we 

examined the effect of F
2
 on H

2
O

2
-induced and EGF-induced 

MEK/ERK activation. As shown in Figure 3A, H
2
O

2
 

(100 µM) and EGF (50 ng/mL) led to a significant increase 

in the level of phosphorylated MEK and ERK, and 1 µM 

F
2
 inhibited both H

2
O

2
-induced and EGF-induced MEK and 

ERK activation. We then observed the effect of F
2
 on the I

NCX
 

increase induced by EGF. I
NCX

 was increased by EGF, and 

treatment with 1 µM F
2
 resulted in a significant reduction 

in EGF-induced I
NCX

 rise at 60 mV by 72.88%±5.76% and 

at −150mV by 71.14%±3.19% (n=8) (Figure 3B).

F2 inhibits H2O2-induced and Ang II- 
induced NHE activity
To investigate the effects of F

2
 on NHE activity, we examined 

its effects on H
2
O

2
-induced and Ang II-induced, Na+-dependent 

recovery from acid load in rat ventricular myocytes. The mean 

resting pH of ventricular myocytes in bicarbonate-free Krebs 

solution at room temperature was 7.48±0.13 (n=10). The addi-

tion and removal of NH
4
Cl from the external medium caused 

a rapid rise and decrease in pH
i
. Cells were unable to recover 

from this acid load in Na+-free medium. Reintroduction of 

Na+ led to a rapid recovery of pH
i
 that approached resting 

values (Figure 4A). This Na+-dependent recovery was com-

pletely blocked by DMA (25 µM) (Figure 4B). Exposure to 
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Figure 1 Effect of F2 on the H2O2-induced increase in INCX. 
Notes: (A) I–V curves of control (a), or in the presence of 100 µM H2O2 (b), H2O2 + F2 (0.1, 1.0 or 10 µM) (c–e) and 5 mM NiCl2 (f). Inset: ramp-pulse protocol. (B) I–V 
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Abbreviations: F2, N-n-butyl haloperidol iodide; INCX, current of Na+/Ca2+ exchanger; I–V, current–voltage; H2O2, hydrogen peroxide; NiCl2, nickel chloride; Ni2+, nickel ion.
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100 µM H
2
O

2
 caused an increase in Na+-dependent recovery 

of pH
i
 from acid load (4.8±0.6×10−3 ∆pH/second [n=5] versus 

2.5±0.3×10−3 ∆pH/minute in controls [n=5], P,0.05) that was 

again completely blocked by DMA, indicating that H
2
O

2
-

mediated enhancement of recovery from acid load is mediated 

by the NHE (Figure 4C and D). Similar to DMA, pretreatment 

with the MEK inhibitor U0126 abolished H
2
O

2
-induced NHE 

activity (2.4±0.4×10−3 ∆pH/minute [n=4], P,0.05 versus 

control) (Figure 4E). Perfusion with 1 µM F
2
 completely 

blocked both Na+-dependent recovery in the presence of 

H
2
O

2
 (Figure 4F) and NHE activity in the presence of 1 nM 

Ang II (Figure 4G). These results suggest that F
2
 exerted its 

cardioprotective effects by blocking NHE activity.

F2 inhibits Ang II-induced INCX increases
Ang II at a low concentration stimulates NHE-1 activity 

to elevate intracellular Na+ levels,26,27 which reverses NCX 

activity and leads to I
NCX

 increases. We observed that 1 nM 

Ang II increased outward I
NCX

 at 60 mV by 26.92%±4.40% 

and inward I
NCX

 at −150 mV by 14.26%±2.95% (n=5), 

consistent with a prior report.28 Addition of 1 µM F
2
 resulted 

in a significant reduction in the Ang II-induced I
NCX

 rise at 

60 mV by 62.27%±3.42% and at -150 mV by 46.19%±3.36% 

(n=5) (Figure 5), consistent with a role for F
2
 in blocking 

NHE activation.

Effects of F2 on the protein  
expression of NHE and NCX
Exchanger activity is regulated by changes in protein expres-

sion and by phosphorylation of existing exchangers or a 

closely associated modulatory protein.29–33 Therefore, we 

examined the effects of F
2
 on the protein expression of NHE 

and NCX. The results showed that the total protein expression 

of NHE and NCX did not change after myocytes were treated 
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with H
2
O

2
, EGF, and Ang II for 30 minutes, and that F

2
 had 

no significant effect on the total protein expression of either 

NHE or NCX (Figure 6).

Discussion
The present study describes the effects of F

2
 on the H

2
O

2
-

induced signal-transduction pathway for I
NCX

 increase in rat 

ventricular myocytes. F
2
 can inhibit the signal-transduction 

pathway involved in H
2
O

2
-induced I

NCX
 increase at multiple 

sites.

Excess ROS production and intracellular Ca2+ overload 

play a prominent role in I/R injury. Moreover, there is a 

reciprocal interaction between excess ROS production 

and accumulation of cytosolic and mitochondrial Ca2+ 

due to the cross talk between ROS and Ca2+.34–36 Ca2+ can 

enhance ROS generation.37 ROS can activate MAPKs 
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(ERK, Jun N-terminal kinase [JNK], p38),38 which are 

activated during ischemia, and to a greater extent on 

reperfusion.39,40 Activated ERK1/2 leads to phosphorylation 

and activation of NHE-1,9,41 and this may contribute to a 

feed-forward activation loop (Ca2+ → ROS → ERK → more 

Na+ → more Ca2+), enhancing Ca2+overload in I/R injury.37 

The ability to disrupt this vicious cycle will exert beneficial 

effects on recovery from I/R injury. In this study, we 
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demonstrated that F
2
 can inhibit H

2
O

2
-induced increase in 

NCX activity through inhibiting both MEK/ERK activation 

and NHE activity, blocking intracellular Ca2+ overload to 

protect against myocardial I/R injury.

Our results show that acute exposure of cardiac myocytes 

to 100 µM H
2
O

2
 causes the I

NCX
 to increase, along with a rapid 

activation of MEK and an increase in NHE activity. The H
2
O

2
-

induced I
NCX

 increase was blocked almost completely by the 

MEK inhibitor U0126, but only partly by the NHE inhibitor 

DMA (Figure 2), indicating the I
NCX

 increase was primar-

ily mediated by the MEK MAPK pathway and partially 

through activation of NHE, consistent with prior reports.9,25 

Furthermore, the H
2
O

2
-induced increase in NHE activity was 

abolished by pretreatment with the MEK inhibitor U0126 

(Figure 4E), suggesting that MAPKs act upstream of NHE 

in H
2
O

2
-induced I

NCX
 increase. The present study shows that 

F
2
 blocks MEK activation-induced by not only H

2
O

2
 but 

also EGF (Figure 3A), suggesting that F
2
 directly inhibits 

MEK activation.

Dyck et  al found an increase in steady-state levels of 

NHE-1 messenger ribonucleic acid in chronic ischemia 

in rat myocardium, suggesting that increased activity is 

due to an increase in protein expression.31 However, in our  

experiments, acute exposure to H
2
O

2
 caused a rapid activa-

tion of NHE and NCX activity in the absence of changes 

in total NHE and NCX. The most likely explanation is that 

the exposure to H
2
O

2
 in our experiment was too short for 

changes in protein expression, indicating that posttransla-

tional modification rather than gene expression played the 

major role in the rapid time course for regulation of exchanger 

activity. Unfortunately, we could not detect phosphorylation 

of NHE-1 and NCX due to the absence of antibodies for 

phospho-NHE-1 and phospho-NCX, which was a limitation 

of this study.

NHE activation increases I
NCX

 through increasing intracel-

lular Na+ concentration. NCX is one of the major mechanisms 

for regulating intracellular Ca2+ concentration in cardiac 

myocytes. Under physiological conditions, the Na+/Ca2+ 

exchanger operates in forward mode, extruding Ca2+ from the 

cell to maintain intracellular Ca2+ homeostasis. Conversely, 

during I/R, a large burst of ROS contributes to Ca2+ loading 

via activation of the NCX Ca2+-influx mode, which accelerates 

intracellular Ca2+ overload.42 H
2
O

2
 increases NCX activity, 

leading to Ca2+ overload via activation of the MEK/ERK/

NHE pathway.4,9,10,25,43 Our previous studies demonstrate that 

F
2
 blocks L-type Ca2+ channels and protects the activity of 

sarco/endoplasmic reticulum Ca2+-adenosine triphosphatases 

to attenuate Ca2+ overload against I/R injury in cardiac myo-

cytes.12,14,18,44 We now show an additional mechanism for F
2
 in 

the regulation of calcium homeostasis, demonstrating that F
2
 

inhibits both MEK activation and NHE activity to diminish 

H
2
O

2
-induced I

NCX
 increase, but we do not rule out inhibition 

by F
2
 on NCX activity. Figure 7 illustrates the possible signal-

ing pathways from H
2
O

2
 to NCX and the target of F

2
 action.

In conclusion, we demonstrate an additional mechanism 

by which F
2
 can alleviate intracellular Ca2+ overload, and thus 

protect against myocardial I/R injury. F
2
, a novel quaternary 

ammonium salt derivative of haloperidol with a different 

chemical structure from classical Ca2+-channel antagonists, 

seems like an undesirable drug due to its broad, nonspecific 
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Figure 6 Effect of F2 on NHE and NCX protein expression. 
Notes: (A and C) Western blot analysis of total NHE protein. (B and D) Western blot analysis of total NCX protein. Upper, representative blot of three independent 
experiments; lower, quantitative densitometric data were normalized as a percentage of those of the control group, which was plotted as 100%.
Abbreviations: F2, N-n-butyl haloperidol iodide; NHE, Na+/H+ exchanger; NCX, Na+/Ca2+ exchanger; Ang, angiotensin; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(o-amino
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effects, but the study of its structure–function relationship 

may help to develop new drugs for the treatment of ischemic 

heart disease.
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