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Sustained Visual Priming Effects Can Emerge from
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Priming refers to the influence that a previously encountered object exerts on future responses to similar objects. For many
years, visual priming has been known as a facilitation and sometimes an inhibition effect that lasts for an extended period of
time. It contrasts with the recent finding of an oscillated priming effect where facilitation and inhibition alternate over time
periodically. Here we developed a computational model of visual priming that combines rhythmic sampling of the environ-
ment (attentional oscillation) with active preparation for future events (temporal expectation). Counterintuitively, it shows
that both the sustained and oscillated priming effects can emerge from an interaction between attentional oscillation and
temporal expectation. The interaction also leads to novel predictions, such as the change of visual priming effects with tem-
poral expectation and attentional oscillation. Reanalysis of two published datasets and the results of two new experiments of
visual priming tasks with male and female human participants provide support for the model’s relevance to human behavior.
More generally, our model offers a new perspective that may unify the increasing findings of behavioral and neural oscilla-
tions with the classic findings in visual perception and attention.
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priming
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There is increasing behavioral and neural evidence that visual attention is a periodic process that sequentially samples differ-
ent alternatives in the theta frequency range. It contrasts with the classic findings of sustained facilitatory or inhibitory atten-
tion effects. How can an oscillatory perceptual process give rise to sustained attention effects? Here we make this connection
by proposing a computational model for a “fruit fly” visual priming task and showing both the sustained and oscillated pri-
ming effects can have the same origin: an interaction between rhythmic sampling of the environment and active preparation
for future events. One unique contribution of our model is to predict how temporal contexts affects priming. It also opens up
the possibility of reinterpreting other attention-related classic phenomena. j

minus RT for congruent trials, may vary with the prime-to-target
delay (“stimulus onset asynchrony” SOA). Classic findings
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Introduction

Prior encounter with an object may speed up one’s response to a
similar object, a pervasive phenomenon in human cognition
known as priming (Tulving and Schacter, 1990; Schacter and
Buckner, 1998). The visual priming task has proved to be a
powerful behavioral paradigm in probing the temporal dynamics
of human attention (Eimer and Schlaghecken, 2003). In its sim-
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plest version (Fig. 1A), participants judge the pointing direction
of a target arrow preceded by a congruent or incongruent prime.
The priming effects, response time (RT) for incongruent trials
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Figure 1. OTEM reproduces the three priming effects in Huang et al. (2015). A, The unmasked priming task. Participants reported the pointing direction of the target arrow by key press.
When the prime and the target pointed to the same direction, they were congruent (C), otherwise incongruent (IC). SOA was defined for the unmasked priming task as the delay between the
onsets of the prime and the target. B, Mean RT as a function of SOA in the unmasked priming task, separately for the congruent (red) and incongruent (blue). Solid lines indicate data. Dotted
lines indicate OTEM fits. Shadings represent SEM. Following Huang et al. (2015), raw RTs of the unmasked priming task (B) were decomposed into slow trends (€) and detrended RTs (D),
where positive priming (€) and oscillated priming (D) were observed. E, The masked priming task. The same as unmasked priming task, except that a mask followed the prime and the delay
between the onsets of the mask and the target was referred to as SOA. F, Mean RT as a function of SOA in the masked priming task, where positive priming followed by negative priming
(slow trends, G) and oscillated priming (detrended RTs, H) were observed. I, Phase of attentional oscillation reset by the prime in the unmasked priming task. J, K, Phases of attentional oscilla-
tion reset by the prime and the mask in the masked priming task. & prime and @ mask were parameters of OTEM estimated from data. Rose plot represents the distribution of @ prime or
6 mask across participants, which had significantly coherent values (Rayleigh tests, with p values marked on panels). The mean phase (red line) was close to 0 for 6 prime and to 7 for
6 mask. That is, attention is biased toward the congruent in the next half cycle following the prime and toward the incongruent in the next half cycle following the mask.
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Figure 2.

Illustration of the assumptions of OTEM. Temporal expectation: After each trial, the belief of SOA distribution (p,,, ()) is updated following the & rule (A). Within a specific trial,

the temporal gain (B) is computed based on p,,, (t) and updated from moment to moment until target onset. Attentional oscillation: The attentional gain for the congruent (C, red) and incon-
gruent (I, blue) oscillates over time, whose amplitude and phase are reset by the prime and the mask (C, D). In the masked priming task, the oscillation induced by the mask superimposes
on the oscillation induced by the prime. Preparedness accumulation: Before target onset, two threads of preparedness accumulate over time separately for the congruent and incongruent, with
the accumulating speed at each moment determined by the product of the corresponding attentional and temporal gains (E, F). After target onset, only the thread for the realized target con-
tinues to accumulate until it reaches the responding bound. The RT for a specific target is thus determined by the preparedness accumulated for the target up to its onset. Intuitively, the atten-
tional oscillation in the unmasked priming task (C) gives the congruent thread a head start in the race (E), thus leading to sustained positive priming. In contrast, the mask in the masked
priming task resets attentional oscillation (D) and reverses the ranking of the congruent and incongruent threads (F), thus leading to transient positive priming followed by sustained negative

priming.

include sustained positive priming in unmasked priming tasks
(Neumann and Klotz, 1994) and transient positive priming fol-
lowed by sustained negative priming in masked priming tasks
(Eimer and Schlaghecken, 1998; Eimer, 1999).

Recently, a 3-5Hz (close to theta-band) RT oscillation has
been separated from these classic priming effects by spectral
methods (Huang et al,, 2015): RT fluctuates up and down as a
function of SOA in cycles of ~300 ms, with the peaks of congru-
ent trials accompanied by the valleys of incongruent trials and
vice versa (see Fig. 1D,H). Such ongoing oscillations are visually
pronounced, even in the raw RTs of extensively tested individual
subjects (Huang et al., 2015, their Fig. 4). The finding of oscillated
priming was a surprise but not entirely unexpected. On one hand,
“sawtooth” patterned priming effects (Lingnau and Vorberg, 2005;
Sumner and Brandwood, 2008) and oscillatory spatial cueing
effects (Chen et al., 2017; Song et al., 2014) were reported. On the
other hand, theta-band behavioral oscillations are widely observed
in human perception (Landau et al., 2015; Tomassini et al., 2015;
Wautz et al., 2016; Benedetto and Morrone, 2017; for review, see
VanRullen, 2016), which may reflect a rhythmic perceptual sam-
pling of the environment.

What may explain the coexistence of the classic and oscillated
cueing/priming effects, which seem to suggest two conflicting
time schedules for attention orienting? Previous theories on spa-
tial cueing (Klein, 2000; Nobre and Rohenkohl, 2014) or visual
priming (Eimer and Schlaghecken, 2003; Lleras and Enns, 2004;
Bowman et al., 2006; Sumner, 2007; Huber, 2014) have been
devoted to the classic effects, which apparently cannot predict
any ongoing oscillations. To explain the oscillatory RT effects, an
attentional oscillation mechanism seems to be necessary. An
additional factor that may have a major impact on RT but is

largely neglected by previous cueing/priming theories is tempo-
ral expectation. Although the cue/prime is noninformative about
the identity of the target, it signals the countdown to the target
arrival. Temporal expectation has thus been assumed in the fore-
period task (Niemi and Néitinen, 1981; Luce, 1986; Los and
Van Den Heuvel, 2001; Nobre et al., 2007; Los et al., 2014) to
account for the decrease of RT with increasing SOA and is likely
to explain a similar RT effect in cueing/priming (e.g., Fig. 1B,F).

Here we proposed a computational model that introduces
attentional oscillation and temporal expectation into the visual
priming task to predict the RT patterns. Its basic idea is close to
“active sensing” (Lakatos et al., 2008, 2013) that the perceptual
system actively predicts and prepares for potential future events
(Summerfield and de Lange, 2014; Nobre and van Ede, 2018).
Meanwhile, theta-band attentional oscillations provide fine-
grained temporal windows of excitation and inhibition for the
accumulation of preparedness (van Vugt et al,, 2012). We call
the model Oscillated Temporal Expectation Model (OTEM),
whose key assumptions are illustrated in Figure 2 and unfolded
in Results. In brief, OTEM predicts not only the oscillated pri-
ming effect and the decrease of RT with increasing SOA, but also
the classic priming effects. That is, sustained positive and nega-
tive priming effects can arise as emergent properties of the
model, despite that no sustained excitation or inhibition mecha-
nisms are assumed.

Materials and Methods

Experimental design and statistical analysis

We had analyzed data from two published experiments of Huang et al.
(2015) and two new experiments (the temporal context experiment and
the Int0-Int60 experiment). The experiments had been approved by the
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ethics committees of Institute of Biophysics at Chinese Academy of
Sciences (#2006-IRB-005) and School of Psychological and Cognitive
Sciences at Peking University (#2015-03-13c). All participants provided
informed consent before the experiment. Participants were paid for their
time and might also receive bonus for an accuracy of >95%. The study
was not preregistered. No statistical methods were used to predetermine
sample sizes, but our choice of sample size was based on previous work,
including Huang et al. (2015).

Experiments of Huang et al. (2015). The unmasked and masked pri-
ming experiments of Huang et al. (2015) that we reanalyzed had 16 partic-
ipants (6 male) and 18 participants (8 male), respectively. Participants
were seated in a dark room, 57 cm from the computer monitor (refresh
rate 100 Hz), with their heads stabilized by a chinrest. Stimuli were black
visual shapes (0 cd/m?) presented on a gray background (0.99 cd/m?). As
shown in Figure 1, the prime was a left- or right-pointing solid arrow
(2.86°x1.21°), the mask was a rectangular outer shape (3.43°x1.79°) with
an inner cut that fit the prime, and the target was a larger left- or right-
pointing hollow arrow (6.21°x2.29°).

The temporal course of one trial is shown in Figure 1A for the unmasked
priming task and in Figure 1E for the masked priming task. After a 400 msec
fixation point, a 20 ms prime stimulus was presented. It was followed by a
100 ms target (unmasked priming), or a 100 ms mask and a 100 ms target
(masked priming). Participants were asked to respond as fast as possible
(time limit: 1500 ms) whether the target arrow pointed to the left or right.
Their responses were recorded by a parallel-port response keypad.

The interstimulus interval between the prime and the mask in the
masked priming task was 60 ms. The SOA was defined for the unmasked
priming task as the delay between the onsets of the prime and the target
and for the masked priming task as the delay between the onsets of the
mask and the target. Fifty different SOAs were sampled for each experi-
ment, in a 20 ms step from 0-980 ms. When the prime and the target in
a trial pointed to the same direction, the trial was referred to as congru-
ent (C), otherwise incongruent (IC). Each combination of SOA and con-
gruency was repeated for 16 times, with all trials randomly interleaved.

Temporal context experiment. The temporal context experiment was
designed to test the temporal expectation component of OTEM. Sixty-
four young adults (29 male, age 19-27 years) participated, with 16
participants randomly assigned to each of the four conditions of the
experiment. The experiment used the masked priming task of Huang
et al. (2015) but consisted of four experimental conditions that dif-
fered in local temporal contexts. In the 40-SOA condition, 40 different
SOAs (0-780 ms in a 20 ms step) were repeated in a random order, as
in Huang et al. (2015). In the 20-SOA condition, the same 40 SOAs
were divided into two blocks, the first 20 SOAs and last 20 SOAs, so
that the SOA was expected to be within 0-380 ms for the former and
within 400-780 ms for the latter. Similarly, the 10-SOA condition had
four blocks of 10 SOAs and the 4-SOA condition had 10 blocks of 4
SOAs. In all the conditions, each combination of SOA and congruency
was repeated for 12 times, and the order of the blocks was randomized
for each participant.

Int0-Int60 experiment. The Int0-Int60 experiment was designed to
test the attentional oscillation component of OTEM. Nineteen partici-
pants (9 male, age 18-25 years) completed the experiment. One addi-
tional participant quitted after the first session and was excluded. In the
masked priming experiment of Huang et al. (2015), the interstimulus
interval between the prime and the mask was always 60 ms. In the Int0-
Int60 experiment, we used the same masked priming task (RT limit:
1000 ms) but manipulated the prime-to-mask interval to be 0 or 60 ms,
referred to as the Int0 and Int60 conditions, respectively. In each condi-
tion, the mask-to-target SOAs ranged from 0-620 ms in a 20 ms step,
with each combination of SOA and congruency repeated for 20 times,
randomly interleaved. Each participant completed the Int0 and Int60
conditions in two different sessions on two separate days. The order of
the two conditions was counterbalanced across participants.

Statistical analysis. Time-out trials, trials with premature responses,
and trials with RTs outside the 3 SDs of each participant were excluded.
For the unmasked and masked experiments of Huang et al. (2015), as in
the original paper, SOAs >800 ms were truncated before further statisti-
cal analysis. We followed the approach of Huang et al. (2015),
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decomposing raw RTs into slow trends and detrended RTs. For each
participant and separately for the congruent and incongruent trials, we
smoothed raw RTs using exponential fits to obtain slow trends.
Subtracting slow trends from raw RTs resulted in detrended RTs.

FFT, implemented by MATLAB function ff, was used for spectral
analysis. FFT was performed on the detrended RTs of each participant
and then averaged across participants in the frequency domain. The per-
mutation procedure and multiple-comparison correction method of
Huang et al. (2015) were performed to test the statistical significance of
the amplitude spectrum of detrended RTs as follows, separately for the
congruent and incongruent trials. We generated surrogate signals by
randomly shuffling the detrended RT's across SOAs within each partici-
pant, applied FFT to these surrogate signals, and computed the mean
amplitude spectrum across participants. This procedure was repeated
1000 times to produce a distribution of mean amplitude at each fre-
quency point, from which we elicited the uncorrected p < 0.05 threshold
for false positives. To correct for multiple comparisons, we set the maxi-
mum of the uncorrected thresholds across frequency points as the cor-
rected p < 0.05 threshold (Nichols and Holmes, 2002; Song et al., 2014).

As in Huang et al. (2015), the 3-5Hz phase difference between
the congruent and incongruent was calculated for each participant as the
mean phase difference across 3-5Hz. Rayleigh tests were used to test the
phase coherence across participants. Statistical tests and averaging on circular
variables were implemented by MATLAB toolbox CircStat (Berens, 2009).

OTEM

See Results for a brief summary of the assumptions and motivations of
OTEM.

Preparedness accumulation. We assume that two threads of preparedness
are accumulated in parallel for the two potential targets after the prime
and before target onset, each of which can be formulated as follows:

deym(t
deaenll) _ g (0, (0) ~ 1 o)
where alt denotes whether the potential target is congruent (C) or incon-
gruent (IC) with the prime, m denotes trial number, t denotes the delay
since prime, ey, (t) denotes accumulated preparedness, ¢, (t) denotes
attentional gain, p,,(f) denotes temporal gain, u is a leaky rate
parameter.

We assume e, ,,(0) = 0. To avoid premature responses before target
onset, an upper boundary is imposed on e, (0) = 0. After the target
arrives, the preparedness for the target continues to accumulate at a con-
stant rate v while the other thread stops. The expected RT for Trial m is
the duration from target onset (Target,m) to the moment the prepared-
ness hits the response threshold b as follows:

b— Calt,m ( Ttarget,m)

Kexptym — f (2)

The observed RT x,ps » is modeled by adding a log-normal noise as
follows:

logxobs.m = 10gXexpem TN (O7 O'fmise). (3)

Attentional gain. We assume that the attentional gains for the two alter-
native targets add up to 2 and oscillate antiphased over time, with the ampli-
tude of oscillation decaying exponentially with time and the phase of
oscillation reset by the onset of the prime or mask (Fig. 2C,D). We consider
two alternative hypotheses about phase resets (Ding et al., 2016): substitutive
and additive, that is, whether the attentional oscillation triggered by the
mask overwrites or superimposes on that of the prime. Define

wit) = exp(—«t)sin(2f 7t + 0 prime ), £ < Task,
B EXP(—K(t - Tmask))Sin(zfﬂ'(t - Tmask)+0mask)7 t Z T mask s
4

for substitutive phase reset and
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W(t)
) exp(—«t)sin(2f 71+ 6 prime ), t < Tomasks
) exp(—«t)sin( 2f 7+ 0 prime ) Texp(— K (t — Timask))
sm(2f7T(t - 7-mask)—"_amask)7 t 2 T mask s
(5)

for additive phase reset, where « is a free parameter for decaying rate, f
denotes the frequency of attentional oscillation, 6 yrime and 6 mqq. are free
parameters for phases reset by the prime and mask. The moments ¢ = 0
and t = T,k respectively, correspond to the onsets of the prime and
the mask. For the unmasked priming task, Tma — 00. In our major
model fitting procedures, we set f = 3.3 following the finding that oscil-
lated priming peaks at 3.3 Hz (Huang et al., 2015).
The attentional gains for C and IC can be written as follows:

Temporal gain: trial-by-trial learning. We assume that the partici-
pant’s temporal expectation for the target is learned from previous expe-
rience trial by trial (Fig. 2A) following the &-rule learning (Rescorla and
Wagner, 1972) as follows:

P =Pt (Pt — Pui), (7)

where p,, and p,,_; denote the expected distribution of Ti,rgt at the be-
ginning of Trial m and m — 1,0 < a < 1 is a free parameter for learning
rate. The p'mf1 denotes the perceived distribution of Tyt on Trial
m — 1, which is a Gaussian distribution around Tiarget,m—1 as follows:

(t = Trargetm—1 )2> (8)

, 1

pm71 (t) mUWeber P ( ZU%Neber
where Tweber follows Weber’s 1aw, oweber = KTtarget,n for unmasked
and O weper = k(’rtargem — Tmask) for masked priming tasks, with
Weber’s fraction k = 0.13 (Jazayeri and Shadlen, 2010). We set p; to be a
uniform distribution between the minimum and maximum 7,rget.

Temporal gain: real-time updating within trial. We assume that,
within each trial, the brain keeps updating its expectation for the arrival
time of the target (Fig. 2B). On Trial m, the expected distribution of
Trarget at Time ¢ (E<Ttarget,m) is as follows:

0, r<t,

oty =4 -2 ©)
/pm(u)du

As a special case, the hazard rate of target onset at Time ¢ is h(t) = g,,,
" =t|t).

Treating the target as a future reward, we define the temporal gain at
Time ¢ as the expectation of the discounted future reward as follows:

pu(t) :/ Y Qu (u|t)du, (10)

where 0 < y < 1is a free parameter for discounting rate.

In total, OTEM has nine parameters for unmasked priming tasks:
learning rate, ; temporal discounting rate, y; leaky rate, u; decaying
rate of oscillation, ; phase reset by the prime, 6 prime; maximum prepar-
edness before target onset, {; accumulating rate after target onset, v;
responding threshold, b; SD of log-normal noise, 0 poise. For masked pri-
ming tasks, there is one more parameter: phase reset by the mask, € pask.

Extension of OTEM with a decision process

To explain the patterned errors in visual priming tasks, we enhanced
OTEM with an error-prone decision process. The extended OTEM
assumes that after target onset both the congruent and incongruent
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threads continue to accumulate, inhibiting each other and racing to the
responding bound. The racing follows a noise-free version of the leaky
competing accumulator model (Usher and McClelland, 2001) as follows:

detarget,m _ v 7]9
- target other,m »
J dt (11)
€other,m o
dt = Vother — " €rarget,m-

where 7 is a free parameter, Viarger aNd Vogper are accumulating rates for
the target and the other threads. The values of Vg and Vomer 0N €ach
trial are randomly sampled from Gaussian distributions N <z7ta,get,
and N (77 other (T(Z)ther) > with l_/target > Vother-

Because of computational difficulties, we did not fit the extended
OTEM and focused on qualitative predictions. To simulate for the
results of Vorberg et al. (2003), we used the fitted parameters from the
4-SOA condition and manually set the additional parameters for the de-
cision process.

2
a-target

Oscillated urgency model

The oscillated urgency model is the same as OTEM, except that the pre-
paredness for a potential target is not accumulated over time but deter-
mined by hazard rate. That is, Equation 1 is replaced by the following:

Calt,m — walt(t)hm(t) (12)

where ¢, (t) denotes attentional gain, h,,(t) denotes hazard rate.

In total, oscillated urgency model has seven free parameters: learning
rate, o; decaying rate of oscillation, k; phase reset by the prime or mask,
0; maximum preparedness before target onset, {; accumulating rate af-
ter target onset, v; response threshold, b; SD of log-normal noise, 0" poise-

Constant accumulation model
The constant accumulation model is based on the accumulator model of
Vorberg et al. (2003). The model assumes two accumulators for the two
potential targets, the congruent and incongruent. Response is made when
the absolute difference between the two accumulators exceeds the response
threshold b. The same log-normal noise applies as in OTEM (Eq. 3).

Each accumulator follows:

dealt,m (t)

dt = _y‘ealt,m(t)-"_)\all(t) (13)

where u is a free parameter for growth-decay rate, A, (¢) denotes the rate
of accumulation triggered by the prime, mask, or target as defined below.
Following Vorberg et al. (2003), we assume that the prime and target
would trigger positive accumulation rates for accumulators in their direc-
tions. To account for the observed effect of the mask (i.e., negative pri-
ming in masked priming tasks), we further assume that the mask would
trigger a negative accumulation rate for the accumulator in the direction
of the prime. That is, when the target is congruent with the prime,

/\37 OS t<7—mask7
_/\57 T mask § t< Ttarget,vm
/\37 Ttargei,m S t7

Ac(t) =

Ac(t) = 0. (14)
When the target is incongruent with the prime,

/\57 OS t<Tmask7

/\C(t) = _)\57 T mask <t< Trarget,m s
07 Ttarget,m S t7
0, t < Ttarget.m>
Aic(t) = ’ setms 15
IC( ) {)‘57 T(arge(,m S L. ( )

where A is a free parameter, t = 0 corresponds to prime onset, and
Tmask corresponds to mask onset. For the unmasked condition,

Tmask = Ttarget,m-
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The threshold parameter b is redundant and fixed as 1. In total, the
model has four free parameters: effect of stimulus, A,; growth-decay
rate, u; maximum preparedness before target, {’; SD of log-normal noise,

O noise-

Model fitting and comparison procedures

All the models were fitted on the individual level using the maximum
likelihood estimate. For the Int0-Int60 experiment, where each partici-
pant completed two different prime-mask interval conditions, the same
set of parameters were shared across the two conditions, except for the
responding threshold b and the SD of log-normal noise o ise. We used
the interior-point algorithm of the fmincon function in MATLAB (The
MathWorks) to find the parameters that minimized negative log likeli-
hood. To verify that we had found the global minimum, we repeated the
search process with different starting points.

We used AICc, the Akaike information criterion with a correction
for finite sample size (Akaike, 1974; Hurvich and Tsai, 1989), for model
comparison and calculated the protected exceedance probability of the
group-level Bayesian model selection (Stephan et al., 2009; Rigoux et al.,
2014) as an omnibus measure across participants.

Model simulation procedures

For each model and participant, 100 simulated datasets were generated
based on the fitted parameters. These simulated datasets were analyzed
in the same way as the real datasets, whose results were further averaged
across participants to produce the model predictions on the group level.

Data availability
All data and codes are available for download at https://osf.io/69by5/.

Results

We tested OTEM quantitatively by first fitting it to the behav-
ioral datasets of the unmasked and masked priming experiments
in Huang et al. (2015) and found that it well reproduced all the
priming effects as well as the overall RT patterns. Next, we per-
formed two new experiments where temporal expectation or
attentional oscillation was manipulated to test the key predic-
tions that distinguish OTEM from previous accounts of visual
priming effects (e.g., Vorberg et al., 2003; Bowman et al., 2006;
Boy and Sumner, 2010). As predicted, the visual priming effects
were influenced not only by SOA but also by temporal expecta-
tion and attentional oscillation. Third, we tested two alternative
models and found neither of them could reproduce all the pri-
ming effects. Last, we showed that OTEM can be extended to
predict error rates and atypical priming effects in the literature.

OTEM

The key assumptions of OTEM (Fig. 2) is specified below (for
details, see Materials and Methods). For fluency of presentation,
we only briefly describe their motivations here and leave a full
treatment of the justification and implications of the assump-
tions to the Discussion.

Preparedness accumulation

We assume that responses are generated by an accumulation-to-
bound process analogous to the racing models of perceptual de-
cision-making (Luce, 1986). After the onset of the prime, two
threads of preparation are separately accumulated for the two
prospective targets, the congruent and incongruent, until the tar-
get arrives (Cisek, 2007; Cisek and Kalaska, 2010), after which
only the preparedness for the realized target continues to accu-
mulate. A response occurs when the responding bound is
reached. The RT for a specific target is thus determined by the
preparedness accumulated for the target up to its onset.
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Temporal expectation

We assume that a belief of SOA distribution is learned from past
trials following the & rule (Rescorla and Wagner, 1972). On each
trial, the brain uses this distribution as its (probabilistic) tempo-
ral expectation for the SOA of the incoming target and, as time
elapses, keeps updating the expectation of remaining time until
the target appears (de Lange et al., 2013; McGuire and Kable,
2013).

At any specific moment, the temporal expectation, a probabil-
ity distribution over all future time points, decides how urgent
the brain should prepare for prospective targets. Similar to previ-
ous studies on temporal expectation (Janssen and Shadlen, 2005;
Bueti et al., 2010; Sharma et al., 2015), we also considered the
participant’s temporal uncertainty and used Weber’s law
(Gibbon, 1977; Allan, 2001) to model it, with the Weber fraction
parameter set to be a constant estimated from previous research
(Jazayeri and Shadlen, 2010).

To map the influence of the distribution of temporal expecta-
tions to a single value, we introduce an economic concept: tem-
poral discounting, the longer the expected delay of a reward, the
lower the reward is valued in the brain (Frederick et al., 2002;
Kable and Glimcher, 2007). In our case, it implies that the
expected probability of target onset at a time point in the farther
future has a smaller influence on the current preparing rate.
Analogous to the application of temporal discounting in the rein-
forcement learning literature (Sutton and Barto, 1998), we
assume that the preparing rate at a specific moment is propor-
tional to the temporal gain at the moment, defined as the
expected sum of the temporally discounted values of all future
probabilities.

Attentional oscillation

There is increasing evidence that visual attention is a periodic
process that sequentially samples different alternatives in the
theta frequency range (Landau and Fries, 2012; Fiebelkorn et al,,
2013; Song et al., 2014; Landau et al.,, 2015; Tomassini et al.,
2015; VanRullen, 2016; Kienitz et al., 2018). Spontaneous theta-
band neuronal oscillations are fairly common in the human
brain and are readily reset by task-relevant stimuli (Tesche and
Karhu, 2000; Rizzuto et al., 2003; for review, see Buzsdki, 2006).
Further, the oscillatory entrainment of sensory stimuli is anti-
phased for the attended and unattended stimuli (Lakatos et al.,
2013).

Following these empirical findings, we assume that the focus
of attention switches gradually between the two prospective tar-
gets in theta-band oscillations, leading to antiphased attentional
gains for the congruent and incongruent. The phase of the atten-
tional oscillation is reset by the prime and the mask, while its am-
plitude decreases exponentially with time, as suggested by
stimulus-induced resets of theta-band neuronal oscillations
(Tesche and Karhu, 2000; Makeig et al., 2002; Rizzuto et al.,
2003; McCartney et al, 2004; Buzsaki, 2006) and behavioral
oscillations (Landau and Fries, 2012; Fiebelkorn et al., 2013;
Song et al., 2014). In our modeling, we consider two alternative
hypotheses about phase resets (Ding et al., 2016): substitutive
and additive, that is, whether the attentional oscillation induced
by the mask overwrites or superimposes on that of the prime.
We assume that the preparing rate for the congruent or incon-
gruent target is scaled by its attentional gain as well as by the
temporal gain.

Buzsaki (2006) suggested that theta-band neuronal oscilla-
tions serve as synchronizers to integrate information over time.
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Analogously, the attentional oscillation assumed in OTEM can
in effect help to integrate temporal expectations over time.

To avoid introducing too many degrees of freedom into
OTEM, some of our assumptions were simplified. For example,
we assumed a transition from oscillatory dynamics to constant
preparedness accumulation for the realized target immediately
after target onset. To assume a delayed transition would be more
realistic, since it takes time to detect the target. Given that the
target appears at central vision with high contrast, such a delay
tends to be negligible and whether to include it or not should
have little influence on our conclusions.

OTEM reproduces both the classic and oscillated priming
effects

The datasets of Huang et al. (2015) include one unmasked
experiment (N=16) and one masked priming experiment
(N=18), where RTs for the congruent and incongruent varied as
functions of SOA (Fig. 1). Fifty different SOAs were sampled for
each experiment, in a 20 ms step from 0 to 980 ms.
Decomposing each raw RT curve into a slow trend and a
detrended curve, Huang et al. (2015) identified the classic and
oscillated priming effects, respectively, in the two components.

We fit OTEM to the RTs of individual trials for correct
responses for each participant using maximum likelihood esti-
mates and plot the model fits against data (Fig. 1B,F, dotted vs
solid curves). We considered two versions of OTEM, differing in
whether the phase reset of attentional oscillation is additive or
substitutive. For the experiments of Huang et al. (2015) and for
the temporal context experiment introduced below, the two
OTEMs had similar fits to the data. For these experiments, we
thus only present the results of the “additive” OTEM, which had
a slightly better goodness of fit than the “substitutive” OTEM
(see Fig. 60). Unless explicitly specified, OTEM hereafter refers
to the additive OTEM.

The OTEM fits captured the following patterns of the
observed RT curves. First, the slow trends for both the congruent
and incongruent trials decreased monotonically with SOA at a
decreasing speed. Second, in the slow trends of the unmasked
priming task (Fig. 1C), positive priming (i.e., incongruent RTs
above congruent RT's) persisted throughout all SOAs, with the
difference between the incongruent and congruent RTs first
increasing then decreasing. Third, in the slow trends of the
masked priming task (Fig. 1G), positive priming occurred for
short SOAs (<100 ms) and changed into negative priming (i.e.,
congruent RTs above incongruent RTs) for longer SOAs. Fourth,
the detrended RT curves (Fig. 1D,H) oscillated at frequencies of
3-5Hz and were antiphased for the congruent and incongruent
(for details, see Fig. 8).

In other words, OTEM reproduces both the classic and oscil-
lated priming effects. Given that theta-band attentional oscilla-
tions are assumed in OTEM, it is probably not surprising the
model can predict the observed oscillated priming. However, the
classic positive and negative priming are emergent properties of
the model, since no persistent attentional biases toward the con-
gruent or incongruent have been assumed. That is, these classic
priming effects arise also from the attentional oscillations.
According to the phase parameters estimated from data (Fig. 11-
K), both the prime and the mask induced phase resets that were
coherent across participants (Rayleigh tests: unmasked prime,
r=0.82, z=10.87, p <0.0001; masked prime, r=0.52, z=4.84,
p=0.006; masked mask, r=0.55, z=5.47, p=0.003). On average,
the prime reset the phases of the attentional gains for the congru-
ent and incongruent oppositely to ~0 and 7 (in sine), so that the
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preparedness of the congruent would accumulate faster than the
incongruent in the first half cycle. Conversely, the mask reset
the congruent and incongruent phases to approximately 7 and 0,
giving the incongruent an advantage in the subsequent half cycle.

Here is an intuition of how the classic priming effects emerge
from OTEM (for illustrations, see Fig. 2): After the attentional
oscillations are reset by the prime, the specific phase difference
allows the attentional gain of the congruent to climb to the peak
earlier than that of the incongruent, giving the congruent a lead
in preparedness. For unmasked priming tasks, the congruent
keeps the lead throughout the race despite that the congruent
and incongruent receive alternating advantages in attentional
gains, and thus positive priming is observed. For masked pri-
ming tasks, a second reset of the attentional oscillations by the
mask reverses the lead, resulting in early positive priming and
late negative priming.

According to our simulations, the emergence of the classic
priming effects from OTEM in the experimental settings of
Huang et al. (2015) is insensitive to the choice of most parame-
ters in OTEM. Except for the phase reset parameters, changing
the parameters of OTEM would only alter the overall RT and the
magnitudes of the priming effects but hardly the qualitative find-
ing of the priming effects.

OTEM predicts the effects of temporal expectation

OTEM predicts that the RT of a trial should depend not only on
its SOA (i.e,, the actual moment of target onset), but also on the
temporal expectation that is shaped by past trials. We tested this
prediction in a new masked priming experiment, referred to as
the temporal context experiment, which consisted of four experi-
mental conditions that used the same set of SOAs but differed in
local temporal contexts. In the 40-SOA condition, 40 different
SOAs (0-780 ms in a 20 ms step) were repeated in a random
order, as in Huang et al. (2015). In the 20-SOA condition, the
same 40 SOAs were divided into two blocks, the first 20 SOAs
and last 20 SOAs, so that the SOA was expected to be within 0-
380 ms for the former and within 400-780 ms for the latter.
Similarly, the 10-SOA condition had four blocks of 10 SOAs and
the 4-SOA condition had 10 blocks of 4 SOAs. In all the condi-
tions, each SOA was repeated for 24 times (12 congruent + 12
incongruent) and the order of the blocks was randomized for
each participant. In the same procedure applied to the datasets of
Huang et al. (2015), we fit OTEM to the RTs of individual trials
for each participant in each condition and plot model fits against
data (Fig. 3A).

We found distinctive RT patterns in the four conditions
(N=16 for each condition). The 40-SOA condition replicated
the results of the masked priming experiment of Huang et al.
(2015), which would serve as a baseline. A hallmark of the other
three conditions was a “jump” in RT at the border of two adja-
cent blocks, for example, the dramatic increase of RT from
SOA =380 ms to SOA =400 ms in the 20-SOA condition. Of the
26 block borders (separately for the congruent and incongruent)
of the 20-SOA, 10-SOA, and 4-SOA conditions, 8 had significant
RT increases (one-tailed ¢ tests, p values < 0.05). To assess the
base rate of false positive increasing RT's, we performed ¢ tests for
the same SOA pairs in the 40-SOA condition and had only one
significant RT increase of the 22 comparisons. The proportion of
jumps at the block borders was significantly above the base rate
(8/26 vs 1/22, Fisher’s exact test, p =0.028).

The OTEM fits agreed well with the observed RT patterns
(Fig. 3A). In particular, OTEM could predict the dramatic
increase of RT at the borders of SOA blocks, although it makes
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OTEM predicts the effects of temporal expectation in the temporal context experiment. A, Mean RT as a function of SOA, separately for the congruent (red) and incongruent

(blue). Solid lines indicate data. Dotted lines indicate OTEM fits. Shadings represent SEM. Each panel is for one temporal context condition, with the experimental manipulation schematized
above the panel. *Statistically significant “jumps” at block borders (p << 0.05). B, Observed priming effects and (€) OTEM predicted priming effects as functions of SOA. RT difference refers to
the difference in RT between the congruent and incongruent. Priming effect was computed as the mean of incongruent RT minus congruent RT within a specific time window that is indicated
by shading. Error bars indicate SEM. Around the peaks of positive priming (SOA 0—60 ms; light gray shading) and negative priming (SOA 100—160 ms; dark gray shading), the magnitudes of
mean priming effects (bar graphs) increased over the four conditions. D, Phases of attentional oscillation reset by the prime and the mask. Conventions follow Figure 1J, K. These phases

resembled their counterparts of Huang et al. (2015) (see Fig. 1,K).

no special assumptions about SOA blocks. According to OTEM,
the closer the time approaches the last SOA of the block, the sooner
the target is expected to arrive, the faster the accumulation of pre-
paredness. Thus, the last SOA of a block could have a faster RT
than the first SOA of its next block, despite the general decreasing
trend of RT with SOA due to preparedness accumulation.

The magnitudes of priming effects differed across the four
conditions (Fig. 3B). Around the peak of positive priming
(SOA=0-60 ms), the mean priming effect (RT difference
between the incongruent and congruent) went larger and
larger from 40-SOA, 20-SOA, 10-SOA, to 4-SOA (one-way
ANOVA, F;60)=13.02, p<0.001). The mean peaked
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and the current SOA serving as nui-
sance covariates. As predicted, the
coefficients were significantly greater
than zero for the last (t tests, p
values < 0.001 for all conditions), sec-
ond last (¢ tests, p values < 0.001 for the
20- and 10-SOA conditions) and even
up to the third last SOA (¢ tests, p values
< 0.05 for the 40- and 20-SOA condi-
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terns of the data ().

negative priming effect (SOA =100-160 ms) exhibited a sim-
ilar pattern (F(; 60y = 3.81, p=0.014). Both patterns were cap-
tured by OTEM fits (Fig. 3C).

The estimated phase reset parameters in OTEM (Fig. 3D) for
the 20-, 10-, and 4-SOA conditions were indistinguishable from
those of the 40-SOA condition and the masked priming experi-
ment of Huang et al. (2015) pooled (Watson-Williams test,
F(3,78)=2.53, p=0.063 for prime phase; F(3 s, =1.65, p=0.18 for
mask phase). That is, the attentional oscillations were little influ-
enced by the temporal context of the experiment.

As we mentioned earlier, OTEM correctly predicts that the
different temporal expectations associated with different contex-
tual blocks may lead to RT “jumps” at the block borders (Fig.
3A). These quasi-periodic RT jumps should lead to perturbations
at 2.5, 5, and 12.5Hz in the detrended RT time series, respec-
tively, for the 20-, 10-, and 4-SOA conditions, selectively enhanc-
ing or reducing specific frequency components. Some of the
spectral perturbations predicted by OTEM fits were indeed
observed in the data, most evident in the following two phenom-
ena (see Fig. 8). First, there was a second or extended peak for
the incongruent at ~3-5Hz in the 20- and 10-SOA conditions,
respectively, echoing the 2.5 and 5Hz RT jumps. Second and
counterintuitively, for the 20-SOA condition, OTEM predicted
that the congruent-incongruent phase difference estimated
from the detrended RTs should be close to 0 rather than to
o, despite attentional oscillations were assumed to be anti-
phased. This phase change was due to the vicinity of the fre-
quency of perturbation (2.5Hz) to the frequency of attentional
oscillation (3.3 Hz). Consistent with the OTEM fits, the observed
congruent-incongruent phase difference in the 20-SOA condi-
tion was close to 0, with the coherence across participants reach-
ing marginal significance. But we are also aware that in the 20-
or 10-SOA condition, spectral analysis would hardly allow us to
separate a 3—-5 Hz oscillation from the 2.5 or 5Hz RT “jumps” at
the block borders due to their vicinity in frequency; thus, the 3-
5Hz peaks observed in these two conditions may not necessarily
be evidence for 3-5 Hz oscillations in RT.

In addition, OTEM predicts that sequential effects would
arise from the trial-by-trial updating of temporal expectation.
When the preceding trials have longer SOAs, the temporal ex-
pectation for the current SOA would be longer, thus the pre-
paring speed would be lower, resulting in a longer RT. We
tested this prediction by regressing the current RT over the
SOAs of the last three trials, with the RT's of the last three trials

tions), with the patterns of the data
closely following those of the model fits

So
4 (Fig. 4).

N3

Sequential effects of SOAs. OTEM predicts that, when the preceding trials have longer SOAs, the temporal expecta-
tion for the current SOA would be longer; thus, the preparing speed would be lower, resulting in a longer RT. To quantify this
possible sequential effect, we regressed the current RT over the SOAs of the last three trials, with the RTs of the last three trials
and the current SOA serving as nuisance covariates. The regression coefficients (3) from OTEM fits (B) closely resembled the pat-

OTEM predicts the vanish of
priming effects at minimum prime-
mask interval

Instead of treating the prime and the
mask as one unit for priming (“masked
prime”) (see Eimer and Schlaghecken,
1998; Eimer, 1999), OTEM assumes
that the prime and the mask reset the phases of attentional oscil-
lations separately. As we showed above, this assumption allows
OTEM to explain the early positive priming and late negative
priming in our temporal context experiment as well as in the
masked priming experiment of Huang et al. (2015). In these
experiments, however, the same 60 ms interval was used between
the prime and the mask, which made them temporally yoked,
preventing us from reaching stronger conclusions about their
separate influences on priming effects.

To test whether the prime and the mask separately reset atten-
tional oscillations, we performed the Int0-Int60 experiment,
where for the same participants the prime-to-mask interval was
varied across sessions to be 0 or 60 ms. The other settings were
similar to the masked priming experiment of Huang et al. (2015),
except that SOAs were sampled from a narrower range (32 differ-
ent SOAs from 0-620 ms in a 20 ms step) so that the priming
effects, if any, could be stronger due to reduced temporal uncer-
tainty (as we found in the temporal context experiment). For
each of the two conditions (Int0 and Int60), each SOA was
repeated for 40 times (20 congruent + 20 incongruent).

If the priming effects in the masked priming task had been
caused by the (presumably unconscious) perception of the
“masked prime” (e.g., Eimer and Schlaghecken, 1998; Eimer,
1999), the Int0 and Int60 conditions would result in similar pri-
ming effects as soon as the masking of the prime is similarly effi-
cient. In contrast, OTEM predicts that priming effects should
vary with the prime-to-mask interval. The Int0-Int60 experiment
also allowed us to distinguish between the two alternative
hypotheses about phase resets (Ding et al., 2016), implemented
as the additive OTEM and substitutive OTEM models, whose
predictions are similar in the Int60 condition (i.e., positive pri-
ming followed by negative priming) but very different in the Int0
condition.

The predictions of the two OTEM models are illustrated in
Figure 5A-D. Suppose, as we found earlier, the onsets of the
prime and the mask start cycles of attentional oscillations that
are antiphased, respectively, favoring the congruent and incon-
gruent. When the prime-to-mask interval is minimum, accord-
ing to the additive OTEM (Fig. 5A), the two oscillations would
almost cancel out each other and thus lead to null priming
effects. Conversely, the substitutive OTEM predicts that the
attentional oscillation induced by the mask would overwrite that
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Figure 5.  Additive OTEM predicts the vanish of priming effects at minimum prime-mask interval in the Int0-Int60 experiment. 4, B, Additive OTEM predictions. (, D, Substitutive OTEM pre-
dictions. Conventions follow Figure 2. The prime and the mask are assumed to induce cycles of attentional oscillations that are antiphased (i.e., 6 yime = 0 and 6 oy = 77), respectively,
favoring the congruent and incongruent in the next half cycle. The assumptions of the additive and substitutive OTEM models differ in whether the attentional oscillation induced by the mask
superimposes on or overwrites that of the prime. The two OTEM models have similar predictions for the Int60 condition but distinctively different predictions for the Int0 condition. E, F, Mean
RT as a function of SOA in the Int0 () and Int60 (F) conditions, separately for the congruent (red) and incongruent (blue). Solid lines indicate data. Dotted lines indicate additive OTEM fits.
Shadings represent SEM. G, Observed RT difference between the congruent and incongruent as a function of SOA for the Int0 (dark purple) and Int60 (light purple) conditions. Light gray shad-
ing and dark gray shading, respectively, represent the time windows of positive priming (0-60 ms) and negative priming (100-160 ms) defined earlier in the temporal context experiment. H,
Observed priming effects (incongruent RT minus congruent RT) averaged in the two time windows. In the Int60 condition, positive priming was followed by negative priming. In the Int0 condi-
tion, there were little priming effects in either time window. /, J, Additive OTEM fits for priming effects, which replicated the observed lack of priming effects in the Int0 condition as well as
the observed positive and negative priming effects in the Int60 condition. K, L, Substitutive OTEM fits for priming effects, which failed to replicate the observed differences between the Int0
and Int60 conditions. M, N, Phases of attentional oscillation reset by the prime and the mask. € pime and € agc Were estimated phase parameters in the additive OTEM that were shared across
the Int0 and Int60 conditions. Conventions follow Figure 1/~K. 0, Model comparisons between the additive OTEM and substitutive OTEM models for each experiment or condition. The
unmasked masking experiment was not included because the two OTEM models are mathematically equivalent for unmasked priming. The summed AAICc across participants were plotted,
with smaller AAICc indicating better goodness of fit. The additive OTEM outperformed the substitutive OTEM in all the experiments.

as the 3-5 Hz oscillated priming (see Fig. 84). We further quanti-

of the prime from the very beginning and consequently negative
fied the priming effects using the same time windows as we used

priming effects would dominate all through.

We found that the RT patterns in the Int0 and Int60 condi-
tions were distinctively different for the same participants
(N=19). In the Int60 condition (Fig. 5F), we replicated the find-
ings of the masked priming experiment of Huang et al. (2015):
the classic positive priming followed by negative priming, as well

in the temporal context experiment (i.e., SOA = 0-60 ms for pos-
itive priming and SOA =100-160 ms for negative priming). For
the Int60 condition (Fig. 5G,H), significant positive priming
effects were observed in the previous positive-priming window (¢
test, f(15)=4.95, p<<0.001) and significant negative priming
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effects in the previous negative-priming window (¢ test, t5) =
-5.50, p <0.0001). In contrast, in the Int0 condition (Fig. 5E),
little priming effects were observed at any SOA and the priming
effects quantified in neither time window reached significance
(Fig. 5G,H; t tests, t(13)=0.47, p=0.65, and f(15)=1.79, p=0.091).
The differences between the Int60 and Int0 conditions in the
magnitudes of priming effects in the two windows were signifi-
cant (f tests, #(15) = 3.21, p=0.005, and #(;5) = -5.17, p < 0.001).

The vanish of priming effects at minimum prime-mask inter-
val is predicted by the additive OTEM (Fig. 5A4,B) but not by the
substitutive OTEM (Fig. 5C,D) or a “masked prime.” For each
participant, we further fit both the additive OTEM and substitu-
tive OTEM models to the RT data using maximum likelihood esti-
mates. The “OTEM” in Figure 5E,F refers to the additive OTEM
fits, whose patterns agree well with the observed RT time series.
Similarly, according to a direct comparison of the observed pri-
ming effects (Fig. 5G,H) with the two OTEM fits (Fig. 5L)), the
additive OTEM fits successfully captured the observed patterns in
both the Int0 and Int60 conditions, whereas the substitutive
OTEM fits failed and apparently mixed up the two conditions.

Figure 50 summarizes the model comparison results between
the additive OTEM and the substitutive OTEM for all the
masked priming experiments reported in the present paper. (The
two OTEMs are identical for unmasked priming.) The AICc
(Akaike, 1974; Hurvich and Tsai, 1989) was used as the metric of
goodness of fit and smaller AICc indicates better fits. The AAICc
of a specific model for a specific participant was defined as the
difference between the AICc of the model and the participant’s
lowest AICc. The protected exceedance probability (Rigoux et
al., 2014; Stephan et al.,, 2009), the probability a specific model
outperforms all the other models, was calculated as the group-
level measure for model comparison. In all the experiments, the
additive OTEM outperformed the substitutive OTEM in good-
ness of fit (lower summed AAICc across participants), although
the differences were small, except in the Int0-Int60 experiment,
for reasons we stated earlier. In the Int0-Int60 experiment, the
AICc difference between the two OTEM models was large and
the probability for the additive OTEM to be the winning model
(protected exceedance probability) was 96.6%.

It is noteworthy that a common set of phase parameters were
estimated for the Int0 and Int60 conditions when the OTEM
models were fitted to data. The estimated phase parameters of
the additive OTEM (Fig. 5M,N) were significantly coherent
across participants for both the prime (Rayleigh test, r=0.73,
z=10.15, p<<0.0001) and the mask (Rayleigh test, r=0.61,
z=7.04, p < 0.001). Consistent with our findings in previous
experiments and with the phase parameters we had used to gen-
erate the predictions in Figure 5A,B, the average phases induced
by the prime and the mask, respectively, were close to 0 and 7
(in sine).

OTEM outperforms alternative models

We considered two alternative computational models that
can produce visual priming effects. Among them, the “constant
accumulation model” was based on the accumulator model of
Vorberg et al. (2003). The original model, applying only to
unmasked priming tasks to explain positive priming, assumes
that the prime triggers a constant-speed accumulation of a deci-
sion variable toward the congruent. In the constant accumula-
tion model, we extended the model to masked priming tasks
with the additional assumption that the mask would change the
direction of the constant accumulation toward the incongruent,
so that it can produce negative as well as positive priming effects.
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A second alternative model was motivated by a widely
accepted idea in the foreperiod task (Niemi and Néitinen, 1981;
Luce, 1986; Nobre et al, 2007) that RT for a delayed target
depends on the urgency of response at target onset: The higher
the urgency, the shorter the RT. In particular, urgency is defined
by hazard rate, that is, the conditional probability the target is
expected to occur at the next moment, given that it has not
occurred yet. To account for oscillated priming, attentional oscil-
lation is assumed as in OTEM. We call the model “oscillated ur-
gency model”, whose assumptions are otherwise the same as
OTEM, except for how temporal expectation influences RT: The
preparedness for the congruent or incongruent is proportional to
the instantaneous hazard rate instead of being accumulated over
time (see Materials and Methods).

We fit the constant accumulation model and oscillated ur-
gency model to the RT data of Huang et al. (2015) and our two
new experiments using maximum likelihood estimates, in the
same procedure as we fit OTEM. For all the datasets (Fig. 6B),
OTEM outperformed the other two models in goodness of fit
(measured by AICc, smaller is better). According to the group-
level Bayesian model selection (Stephan et al., 2009; Rigoux et al.,
2014), the probability for OTEM to be the best model (protected
exceedance probability) approached 100%.

The deviation of the constant accumulation model from data
was obvious (Fig. 64, right column): By definition, it could only
predict two opposing RT trends for the congruent and the incon-
gruent, if one decreases with SOA, the other must increase with
SOA, a unique finding of Vorberg et al. (2003). In the case both
the congruent and incongruent RTs decrease with SOA, as in
our datasets and most previous visual priming studies (Eimer
and Schlaghecken, 2003; Lleras and Enns, 2004; Sumner, 2007),
the constant accumulation model would simply fail. The prob-
lem with the oscillated urgency model was its inability to pro-
duce an enduring positive or negative priming effect (Fig. 64,
middle column), although its assumptions of attentional oscil-
lation and temporal expectation are similar to those of OTEM.
It is because the emergence of positive and negative priming
in OTEM relies on the accumulation of preparedness over
time as well as on attentional oscillation and temporal expec-
tation. Without the accumulation, the congruent and incon-
gruent RTs would merely follow the fluctuation of attentional
oscillations.

Extended OTEM explains error rates and atypical priming
effects
The OTEM introduced above only applies to correct responses,
which make up ~95% of the trials of most visual priming experi-
ments including ours (Eimer and Schlaghecken, 1998; Eimer,
1999; Schlaghecken and Eimer, 2002; Verleger et al, 2004;
Huang et al., 2015). The error rates, though small, could be pat-
terned (Fig. 7A): In the 4-SOA condition, for example, the error
rate of the incongruent was higher than that of the congruent
around the peak of positive priming (0-60 ms), while it was the
reverse around the peak of negative priming (100-160 ms). This
cannot be explained by speed-accuracy trade-off, since the accu-
racy for fast responses was even higher than that of slow
responses. Such patterns (positive priming is accompanied by a
higher error rate for the incongruent and negative priming by a
higher error rate for the congruent) were also observed in previ-
ous studies using visual priming tasks (Eimer and Schlaghecken,
1998; Eimer, 1999; Vorberg et al., 2003).

To model error responses, we extended OTEM to include an
additional decision process after target onset, where the
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OTEM outperforms alternative models. A, Model fits of OTEM (left column), oscillated urgency model (middle column), and constant accumulation model (right column). Mean RT

is plotted as a function of SOA separately for the congruent (red) and incongruent (blue). Solid lines indicate data. Dotted lines indicate model fits. Each row represents one experimental condi-
tion. Unmasked and masked, respectively, refer to the unmasked and masked priming experiments of Huang et al. (2015). 40-SOA, 20-SOA, 10-SOA, and 4-SOA refer to the four temporal con-
text conditions in the temporal context experiment. Int0 and Int60 refer to the two conditions in the Int0-Int60 experiment. The model fits of the two alternative models had obvious
deviations from the RT data. B, The summed AAICc of the oscillated urgency model and constant accumulation model relative to that of OTEM (i.e., OTEM as the 0 baseline). A >0 AAICc indi-
cates worse fit than OTEM. In all experiments and conditions, both alternative models fit the RT data much worse than OTEM did.

congruent and incongruent accumulators race against and in-
hibit each other (see Materials and Methods). Consistent with
the observed patterns, the extended OTEM predicts a higher
error rate for the incongruent than the congruent at positive pri-
ming and the reverse pattern at negative priming (Fig. 7B). The
RTs and error rates are not cause and effect, but the effects of a
common cause: When one accumulator has achieved a higher
preparedness than the other at target onset, the subsequent

decision process would be biased toward the leading accumula-
tor. In an unmasked priming task, Vorberg et al. (2003) found
that the congruent RT decreased with SOA but the incongruent
RT increased with SOA, which deviated from the typical finding
that both the congruent and incongruent RTs decrease with SOA
(e.g., Fig. 1B). They also found that error rate increased with
SOA. We noticed, however, the SOAs they used were unusually
short (no longer than 108 ms), so did all the following studies
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Extended OTEM explains error rates and atypical priming effects. A, Mean error rate as a function of SOA, separately for the congruent (red) and incongruent (blue). Shadings

around the mean error rates represent SEM. Light and dark gray shadings, respectively, represent the time intervals around the peak of positive and negative priming (defined as in Fig. 3).
Each panel represents one temporal context condition. B, Mean error rate simulated by the extended OTEM, which reproduced the empirical pattern: positive priming was accompanied by a
higher error rate for the incongruent and negative priming by a higher error rate for the congruent. ¢, Mean RT and error rate simulated by the extended OTEM for the visual priming task of
Vorberg et al. (2003), which captured the atypical patterns of their empirical findings: RTs for the congruent and incongruent, respectively, decreased and increased with SOA; error rates

increased with SOA.

that had found similar RT patterns (Sack et al., 2009; Mattler and
Palmer, 2012). Such short SOAs would be within the first half
cycle of the attentional oscillation of OTEM (~300 ms per cycle),
where the attentional gain for the incongruent is still low. That
is, the increase of RT with SOA for the incongruent and the
decrease of RT with SOA for the congruent they observed can be
part of oscillated priming. Using the same SOAs as in Vorberg et
al. (2003), the extended OTEM can reproduce their RT and error
rate patterns (Fig. 7C).

Additional evidence for the 3-5 Hz oscillated priming

Given that the oscillated priming effect was a major motive of
our work, we need to confirm that the 3-5Hz oscillation
reported in Huang et al. (2015) was not just an artifact from
spectral analysis. Indeed, Huang et al. (2015) reported an extra
visual priming experiment (referred as “single-subject experi-
ment”) where each subject completed several thousands of trials
so that the subject’s mean RT at each SOA could be reliably esti-
mated (64 trials for each data point). Six subjects participated in
this extensive test. As shown in Huang et al. (2015, their Fig. 4),
“sawtooth” priming patterns (the difference between incongru-
ent and congruent goes up, then down, then up, then down, as a
function of SOA) were observed in the raw RT data of all the

individual subjects as well as on the group level. The “single-sub-
ject experiment” thus provides independent evidence for the
3-5Hz oscillated priming without using any spectral analysis.

It was noted by a previous reviewer that the specific moving-
window detrending procedure used by Huang et al. (2015), with
its edge artifact, might cause illusory 3-5Hz oscillations in the
detrended curve when it was applied to a simulated exponentially
decreasing RT curve without any oscillations. To avoid this edge
artifact, we used exponential curve for detrending instead in the
present study. We have replicated the 3-5Hz oscillated priming
in our two new experiments as well as in the unmasked and
masked priming experiments of Huang et al. (2015).

Figure 8 summarizes the results of spectral analysis (ampli-
tude spectrum and the congruent-incongruent phase difference
in the 3-5Hz oscillation) for all the experiments, for which,
again, OTEM fits agree well with the data. As we explained in
detail earlier for the temporal context experiment, the phase dif-
ference in the spectral analysis of the 20-, 10-, or 4-SOA condi-
tions deviated from 7 partly due to the disturbance of the SOA
blocks (i.e, RT “jumps” at block borders). As predicted by
OTEM, the phase difference in the Int0 condition was close to 0
and in the other four conditions (unmasked, masked, 40-SOA
and Int60) was close to 7. The coherence of the phase difference
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Figure 8.  Spectral analysis of the detrended RT for data (A) and OTEM fits (B). Each panel represents one experiment or condition. Main plots: amplitude spectrum, separately for the con-

gruent (red curve) and incongruent (blue curve). Dashed lines indicate the 0.05 significance threshold of permutation test (corrected for multiple comparisons). Significant frequency points are
marked by dots above the spectrum curves. Insets, Phase difference between the congruent and incongruent in the 3—5 Hz oscillation. Rose plot represents the distribution of phase differences
across participants, with the mean phase difference marked by a red line. p value indicates the result of Rayleigh test on coherence. Unmasked and masked, respectively, refer to the unmasked
and masked priming experiments of Huang et al. (2015). 40-SOA, 20-SO0A, 10-SOA, and 4-SOA refer to the four temporal context conditions in the temporal context experiment. Int0 and Int60
refer to the two conditions in the Int0-Int60 experiment. Aggregated refers to the results pooled across the similar conditions in three experiments: the masked, 40-SOA, and Int60 conditions.
For all the experiments and conditions, the oscillations in the data were well captured by the OTEM fits.

was significant for the Int60 condition (Rayleigh test, r=0.43,
z=3.51, p=0.028) but did not reach significance in the unmasked,
masked, or 40-SOA condition. We conjecture that the latter three
conditions had a lower statistical power than the Int60 condition:
each combination of SOA and congruency was repeated 20 times in
the Int60 condition, but only 16, 16, and 12 times in the unmasked,
masked, and 40-SOA conditions, respectively. To improve statistical
power, we performed spectral analysis for participants pooled from
the masked condition and its two replications, the 40-SOA and the
Int60 conditions (N =53 in total). The phase difference of the aggre-
gated dataset not only was close to 77 on average but also had highly
significant coherence (Rayleigh test, 7= 0.35, z=6.26, p = 0.002).
That OTEM well fit all these datasets itself provides an addi-
tional line of evidence for oscillated priming, given that anti-
phased attentional oscillations are assumed for the congruent and
incongruent. Moreover, the phase reset parameters estimated
from different experiments were highly consistent, with the prime
and the mask, respectively, resetting the phases of attentional
oscillations to ~0 and 7 (Figs. 1I-K, 3D, 5M,N). That is, for the
temporal context experiment, similar attentional oscillations were
underlying different temporal contexts. As shown in the Int0-

Int60 experiment, the same attentional oscillations can also pre-
dict the vanish of priming effects at minimum prime-mask
interval.

For the model fitting results reported above, we had fixed the
frequency of attentional oscillation to be 3.3 Hz, the observed fre-
quency of oscillated priming in spectral analysis. The RT's pre-
dicted by OTEM exhibit a similar frequency of oscillated
priming as that of the assumed attentional oscillation (Fig. 8).

We also tested whether the frequency of attentional oscilla-
tion is 3.3 Hz and whether attentional oscillations are necessary
at all. To do this, we varied the frequency of attentional oscilla-
tion as a free parameter, fit the OTEM model for each frequency,
and compared their goodness of fit in AICc. Because of compu-
tational difficulties, we only considered a limited set of frequen-
cies spanning 0-16 Hz. An oscillatory frequency of 0 Hz means
no attentional oscillation at all; that is, the prime or mask induces
exponentially decreasing or increasing attentional gains. For all
the experiments, the best fit occurred at 3.3 or 4 Hz, which out-
performed lower or higher frequencies, including 0 Hz (Fig. 9).
On one hand, this justifies our presumption of the 3.3 Hz atten-
tional oscillation as well as our introduction of attentional
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(0Hz).

oscillation as one of the OTEM assumptions. On the other hand,
it provides further evidence for the 3-5 Hz oscillated priming.

Summary

We developed OTEM as a computational model that combines
attentional oscillation and temporal expectation to explain visual
priming effects in RT and tested it in four human behavioral
experiments. OTEM accurately reproduces all three kinds of pri-
ming effects (positive priming, negative priming, and oscillated
priming), whereas the alternative models fail to do so. It correctly
predicts temporal expectation and attentional oscillation would
influence visual priming effects. It explains not only the averaged
priming effects, but also trial-by-trial variations in RT. Most sur-
prisingly, OTEM shows that the classic, sustained positive and
negative priming effects can be emergent properties of atten-
tional oscillation and temporal expectation, a prediction that
qualitatively holds for a wide range of parameter values.

By explaining the classic priming effects as emergent proper-
ties of OTEM, we are not at any position doubting the ecological
significance of positive or negative priming. Emergent properties
of a system can be important by themselves, just like conscious-
ness is believed to be an emergent property of the brain (Minsky,
1986).

Our findings raise a general concern that the results of pri-
ming experiments should be interpreted in their temporal con-
texts other than by individual SOAs. Some of the previously
found differences between priming experiments at the same
SOAs might be explained away by temporal contexts. A similar
concern is raised for the interval between the prime and the
mask, which is not necessarily related to whether the perception
of the prime is conscious.

Discussion

Relation to previous theories of visual priming effects

What causes visual priming effects? Theories with incremental
assumptions about a perceptual or motor bias have been pro-
posed to explain the increasingly richer phenomena. Positive pri-
ming had been assumed to be triggered by the prime to favor the
congruent (Neumann and Klotz, 1994; Eimer and Schlaghecken,
1998; Eimer, 1999; Damian, 2001; Vorberg et al., 2003). When
negative priming was later found in masked priming tasks, self-
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inhibition of the prime (Eimer and Schlaghecken, 2002; Bowman
et al,, 2006; Schlaghecken and Eimer, 2006; Schlaghecken et al.,
2007) or bias reversed by the mask (Lleras and Enns, 2004;
Verleger et al., 2004) was introduced to explain the transition
from positive to negative priming with increasing SOA. Efforts
were also made to reproduce positive and negative priming in
computational models (Vorberg et al., 2003), neural network
models (Bowman et al., 2006; Sohrabi and West, 2009), or com-
putational models with biologically plausible neural implementa-
tions (Huber and O’Reilly, 2003).

The model we propose here does not necessarily conflict with
previous theories. Neither is OTEM intended to be an exclusive
explanation for priming effects that rules out alternative accounts,
such as perceptual aftereffect (Klauer and Dittrich, 2010; Fritsche
et al, 2017).

Almost all previous theories considered the visual priming
effects as passively determined by the stimuli. Instead, OTEM
implements the idea of active sensing (Lakatos et al., 2008, 2009,
2013; Schroeder et al., 2010; Zion Golumbic et al., 2013) and
assumes that the perceptual system (1) rhythmically samples the
congruent and incongruent, and (2) adaptively prepares for the
prospective targets. This novel combination of attentional oscil-
lation with temporal expectation enables OTEM to accommo-
date the recent empirical finding of oscillated priming as well as
the classic effects.

Before OTEM, temporal expectation was hardly considered
in the literature of priming effects, although it has received grow-
ing attention in perception and memory (Nobre and van Ede,
2018). Consequently, previous priming theories might explain
the decrease of RTs with increasing SOA (e.g., the nROUSE
model of Huber and O’Reilly, 2003) but not the RT “jumps” with
increasing SOA (Fig. 3A). In contrast, with the introduction of
temporal expectation that distinguishes SOA and temporal
uncertainty, OTEM predicts both the observations.

OTEM also predicts that the classic priming effects may
change with temporal context, since temporal expectations are
learned from recent experience. As found in the temporal con-
text experiment, the magnitudes of positive and negative priming
effects differed across the four temporal expectation conditions:
higher temporal uncertainty led to smaller priming effects (Fig.
3B,C). Similarly, Naccache et al. (2002) found that the classic pri-
ming effects would vanish when the arrival time of the target was
barely predictable.

With all three priming effects arising from a common pro-
cess, OTEM also naturally predicts that positive and negative pri-
ming are closely related. In agreement with this prediction, Boy
and Sumner (2010) showed that both positive and negative pri-
ming effects are proportional to the strength of stimulus-
response associations: When a novel stimulus-response mapping
is used, it takes time to build associations, during which positive
and negative priming grow with time at the same pace.

Neurobiological motivations for OTEM
OTEM is intended to capture the computational heuristics of the
neural computations underlying visual priming effects. The neu-
robiological motivations for some of its key assumptions, such as
attentional oscillation (VanRullen, 2013, 2016) and temporal ex-
pectation (de Lange et al., 2013; McGuire and Kable, 2013), have
been specified in the Introduction. We describe the others below.
There have been elegant models (Huber and O’Reilly, 2003)
on how positive priming may spontaneously transition into neg-
ative priming with increased exposure to the prime. For the vis-
ual (arrow) priming tasks we treated here, however, negative
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priming can hardly be explained solely as an effect of the prime,
because negative priming effect has seldom been observed in
unmasked priming tasks (Klotz and Wolft, 1995; Vorberg et al.,
2003; Jaskowski et al., 2008; Huang et al., 2015; but for an excep-
tion, see Klauer and Dittrich, 2010). Moreover, it has been found
that negative priming would be weaker (Schlaghecken and
Eimer, 2006) or even be absent (Verleger et al., 2004; Jaskowski
and Przekoracka-Krawczyk, 2005; Lleras and Enns, 2006) unless
the mask shares visual features with the prime (for an example,
see Fig. 1E, arrow-shaped mask). In other words, masks are not
passive stimuli that simply render the prime invisible but play an
active role in the priming effects.

A mask that contains features of the prime, according to
Huber (2008), will induce neural habituation to the prime and
highlight the opposite features. Similar ideas have been expressed
by Lleras and Enns (2004) in the object updating theory and are
analogous to perceptual aftereffect (Webster, 2015). We therefore
assume that the mask, like the prime, resets the attentional oscil-
lation but to a different phase that favors more of the opposite
features. To capture potential individual differences, the exact
phase reset by the mask is left to be a free parameter in OTEM,
which turned out to be highly consistent in all our masked pri-
ming experiments and was antiphased to that of the prime. That
the prime and the mask induce antiphased attentional oscilla-
tions predicts the vanish of priming effects for minimum prime-
mask interval.

Temporal discounting has been found in human perception
and action (Shadmehr et al., 2010) as well as in economic deci-
sion-making (Frederick et al., 2002; Kable and Glimcher, 2007).
In OTEM, we introduced temporal discounting to characterize
the tendency to prepare more intensely for a near-future target
compared with a far-future target that is equally likely to occur.
When the discounting rate is zero, any future event would be
treated as urgent as the present event and temporal expectation
would thus be meaningless. On the other extreme, when the dis-
counting rate is infinity, only the present matters, which is effec-
tively the assumption adopted by many previous models,
including but not limited to the hazard rate model of temporal
expectation (Niemi and Naitinen, 1981; Luce, 1986; Los and
Van Den Heuvel, 2001; Nobre et al., 2007; Los et al., 2014).

In the presence of temporal uncertainty, the probability of a
future event can leak into the present such that the participant
would appear to prepare for the future, even if she only cares
about the hazard rate at the current moment. At first sight, tem-
poral uncertainty seems to play a role interchangeable with
temporal discounting, which renders the latter redundant.
However, a model with the former alone would predict an
increase of RT with increasing temporal uncertainty, other
things being the same (Tsunoda and Kakei, 2011), which is
opposite to our empirical finding that, in the 20-, 10-, or 4-
SOA condition, blocks with longer SOAs tend to have shorter
RTs (Fig. 3A), although longer SOAs correspond to larger
temporal uncertainty due to Weber’s law (Gibbon, 1977;
Allan, 2001). Therefore, for both theoretical and practical rea-
sons, we chose to include both temporal uncertainty and tem-
poral discounting in OTEM.

OTEM assumes that two threads of perceptual or motor prep-
arations develop in parallel before target onset. Simultaneous
preparation for multiple potential actions has been reported in
neuronal activities (Cisek, 2005, 2007; Cisek and Kalaska, 2010).
Such pretarget preparing activities are largely driven by temporal
expectation and can bias the subsequent actions (Donner et al.,
2009; de Lange et al., 2013). According to OTEM, visual priming
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effects in RT arise from pretarget preparation instead of post-tar-
get decision (but also see the extended OTEM). It echoes the
findings that attentional status (Nunez et al., 2017) or temporal
expectation (Jepma et al., 2012) mostly influences the nondeci-
sion time instead of decision time in RT.

Limitations and future directions

We do not intend to explain all important aspects of visual pri-
ming effects, such as how the strength of priming effects is influ-
enced by the features of the prime and target (Huber and
O’Reilly, 2003; Kruijne and Meeter, 2017). Neither do we claim
that our model provides an implementation-level explanation for
visual priming effects. Our work, in Marr’s (1982) term, is
between the computational and algorithm levels based on neuro-
biologically motivated assumptions.

There is evidence that attention can switch rhythmically
among more than two targets (VanRullen et al., 2007). Although
motivated by laboratory tasks with only two potential primes
and targets, OTEM can be readily applied to situations where the
primes or targets have more than two potential states, by assum-
ing that a prime will trigger attentional oscillations among multi-
ple potential targets. Similarly, OTEM predicts that temporal
expectations would modulate the priming effects for multiple
primes or targets, a prediction that can be tested in the future.

A coexistence of sustained and oscillated effects has also been
found in spatial cueing tasks. More generally, OTEM offers a
new perspective that may unify the attention-related classic find-
ings with the increasing evidence for attentional oscillations in
visual perception. One future question is as follows: may other
attention-related classic phenomena be explained in a similar
framework?
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