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Abstract: Graphene-based nanocomposites possess excellent mechanical, electrical, thermal, optical,
and chemical properties. These materials have potential applications in high-performance transistors,
biomedical systems, sensors, and solar cells. This paper presents a critical review of the recent
developments in graphene-based nanocomposite research, exploring synthesis methods, character-
izations, mechanical properties, and thermal properties. Emphasis is placed on characterization
techniques and mechanical properties with detailed examples from recent literature. The impor-
tance of characterization techniques including Raman spectroscopy, X-ray diffraction (XRD), atomic
force microscopy (AFM), scanning electron microscopy (SEM), and high-resolution transmission
electron microscopy (HRTEM) for the characterization of graphene flakes and their composites were
thoroughly discussed. Finally, the effect of graphene even at very low loadings on the mechanical
properties of the composite matrix was extensively reviewed.

Keywords: graphene; graphene nanocomposites; graphene characterizations; polymer nanocompos-
ites; mechanical properties of graphene nanocomposites

1. Introduction

This paper provides a critical review of the synthesis, properties and characterizations
perspectives of recent advances in graphene-based nanocomposites. Section 2 presents
an overview of the importance of the graphene properties and prospect applications in
smart phones, ultra-thin flexible displays, hydrogen storage, transparent touchscreens,
chemical sensors, biosensors, and super-fast transistors. Sections 3 and 4 summarize the
most frequent graphene synthesis techniques including mechanical exfoliation, liquid-
phase exfoliation and chemical synthesis technique. They also highlight the polymer
nanocomposite processing methods and the morphological states for graphene-based
polymer nanocomposites.

A critical review of the characterization of graphene and graphene nanocomposites
was presented in Section 5. Detailed research results of graphene characterization from
recent literature are thoroughly discussed. Different types of microscopic and spectro-
scopic characterization methods to obtain structural and morphological data are presented.
Mechanical properties of graphene-based nanocomposites are thoroughly discussed in
Section 6. In addition, a summary from recent research that exemplifies the effect of
graphene’s filler on the improvement of mechanical properties of graphene-based polymer
nanocomposites is also thoroughly discussed. Two major tables summarizing the reinforc-
ing effect of graphene-based materials on mechanical properties and thermal conductivity
have been constructed. The thermal properties of graphene and graphite nanocomposites
are subsequently discussed in Section 7. The variation in thermal conductivity with differ-
ent forms of graphene and graphite nanocomposites from recent research are summarized.
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2. Graphene

Carbon has several allotropes, which can be classified according to the type of chem-
ical bond related with hybridization (sp, sp2, sp3): zero-dimensional sp2 fullerenes, the
two-dimensional sp2 honeycomb lattice of graphene, or three-dimensional sp3 crystals—
diamond [1–4]. Each allotrope has different electronic and mechanical properties. Graphene,
fullerenes, and carbon nanotubes (CNTs) are emerging new materials with superior proper-
ties (Figure 1). The great versatility of carbon materials arises from the strong dependence
of their physical properties on the ratio of sp2 ~graphitelike to sp3 ~diamondlike bonds [4].
There are many forms of sp2-bonded carbons with various degrees of graphitic ordering,
ranging from microcrystalline graphite to glassy carbon. Accordingly, these materials have
been greatly investigated because of the exceptional mechanical and electronic properties.

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged
in a two-dimensional honeycomb lattice [1]. Carbon atoms are bonded with a covalent
sp2 bond with a single free electron, which accounts for the conductivity of graphene.
Graphene is attracting great interests from the physical, chemical, and biomedical fields
as a novel nanomaterial with exceptional physical properties, including extremely high
thermal conductivity, excellent electrical conductivity [1–5], high surface-to-volume ra-
tio, remarkable mechanical strength, and biocompatibility [6–11]. Graphene possesses
unique electronic properties and is recognized as the most thermally conductive known
material [12–17]. Experimental results show that graphene has a remarkably high electron
mobility at room temperature [12,18], and has been considered as an alternative in tran-
sistor circuitry. The electron mobility in graphene is almost 200 times higher than Si and
4 times larger than III–V semiconductors [15]. This would make graphene a very attractive
material for high-speed transistors.

Since its discovery in 2004, graphene has become the center of many research activi-
ties [1,9,19–30]. It is a unique type of carbon where every atom is accessible for chemical
reaction because of its 2D structure. With a Young’s modulus (stiffness) of 1 TPa, it is the
strongest material ever tested [8]. Graphene possesses other remarkable characteristics:
electron mobility is 100× faster than silicon; its electrical conductivity is 13× better than
copper; it conducts heat 2× better than diamond; and it has a high surface area of about
2630 m2/gram. Over the past decade research on graphene increased dramatically because
of new methods to produce and study it. Graphene and functionalized graphene (FG) have
been successfully used in many applications including in smart phones, ultra-thin flexi-
ble displays [31], hydrogen storage [32], transparent touch-screens [33], chemical sensors
effective at detecting explosives [34,35], biosensors, super-fast transistors [36–38], and so
on. Graphene has been investigated for tissue engineering [39]. It has also been utilized
as a reinforcing agent to enhance the mechanical properties of biodegradable polymeric
nanocomposites for bone tissue applications.

Graphene reveals remarkable optical properties, which makes it very promising for
photonic and optoelectronic applications [31,40,41]. It is nearly transparent to visible light
as well as to UV and IR. Graphene can be used to conduct electricity away from the solar
panel as part of a light and flexible solar panel. However, the proportion of the defects in
the structure of graphene has a great influence on the physical and mechanical properties.
Graphene nanocomposites (GNP) possess a high aspect ratio, which makes them ideal for
reinforcement [42–49]. The set of remarkable properties of graphene-based systems has
expanded into new fields of investigation. Graphene is truly a multi-disciplinary material,
being researched in many different fields for various potential applications. The optical of
graphene represents potential fields of significant research and application.
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Figure 1. Crystal structures of different allotropes of carbon: graphite (3D); graphene (2D); nanotubes
(1D); and fullerene (buckyballs) (0D).

3. Methods of Graphene Preparation

Graphene has great prospects for industrial applications, such as polymer composites,
conductive coatings, fuel cells batteries, and ultracapacitors due to its distinctive properties
of high strength and exemplary electrical and thermal conductivity [2,3]. These applications
demand large quantities of graphene in the form of nanoparticles or nanoplatelets at a
reasonable price. Several approaches have been used to prepare graphene. Mass production
of high-quality graphene (single or few layers graphene) is a major challenge. Structural
disorders, defects, and wrinkles within the graphene may have a detrimental impact on its
electronic properties [50].

There are several approaches available to produce graphene (Figure 2). These tech-
niques are: mechanical exfoliation, liquid-phase exfoliation, and chemical vapor deposition
(CVD). These techniques could be grouped into two categories, i.e., bottom-up (CVD)
and top-down (exfoliation methods) processes. Each technique has distinct advantages
as well as limitations depending on its intended application. A brief description of these
techniques follows.

3.1. Exfoliation

Most of the graphene produced for research over the past decade was fabricated by
mechanical exfoliation (scotch tape method) [51–53]. In this method, samples of graphite
are placed on the sticky area of an adhesive tape pressed on a desired substrate and then
peeled away (Figure 2a). Flakes of graphene (only a few microns wide) are left on the
substrate [9]. The graphene developed by the scotch tape process is of very high quality
and enables researchers to measure its physical and mechanical properties. However, this
method is not practical for producing graphene on a large scale for industrial applications.
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To be effective for a solar cell application, for example, graphene must cover the entire
surface of the cell, not just a partial area.
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3.2. Liquid-Phase Exfoliation

Liquid-phase exfoliation (LPE) (Figure 2b) is one of the most feasible production
methods because of its scalability for commercial manufacturing of graphene at low cost.
This method is very versatile and applicable to different environments and on various
substrate types. Liquid-phase exfoliation of graphite requires wet chemical dispersion
then sonication in appropriate solvents [54]. It involves three different steps: (1) disper-
sion in a solvent, (2) exfoliation, and (3) purification in order to separate the exfoliated
material. The mechanism of exfoliation is attributed to the force induced by ultrasound
and the interaction with the solvent molecules. The principle of LPE lies in assisting the
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separation between graphene layers. In graphite, they are held together by strong elec-
trostatic attractions that require a large amount of mechanical force to separate. One way
to reduce this energy input is to disrupt the attractive forces holding layers of graphene
together. This is achieved by first immersing the bulk material in a special liquid, followed
by exfoliation. Nuvoli et al. obtained a high concentration of few-layer graphene sheets
by liquid-phase exfoliation of graphite in ionic liquid [55]. Phase exfoliation of graphene
from bulk graphite is a versatile top-down approach for producing high-quality graphene
samples. LPE techniques have several advantages, including a relatively low cost for high
yield and the ease of scaling up. High-quality graphene production methods are crucial
for harnessing graphene’s properties for future applications as a material with various
applications [55].

3.3. Chemical Vapor Deposition (CVD)

The CVD method is widely used for the synthesis of carbon nanostructures (CNTs)
for composite materials with outstanding mechanical properties [56–58]. Figure 2c shows
how graphene can be created by thermocatalytic decomposition of gaseous hydrocarbons
onto a metal surface. CVD is a relatively new technique for producing films of large area
of continuous, 2D graphene. During the CVD process, a metal substrate such as copper
is placed into a furnace and heated under low vacuum. Gases (methane and hydrogen)
run through the furnace. The hydrogen then catalyzes a response between the methane
and the area of the metal substrate, producing carbon atoms in the methane to be settled
onto the outer lining of the metal. The resulting product is a deposit of layers of graphene
on the substrate [59]. Copper is not the only substrate that may be utilized in graphene
CVD—quite few other transition metals can be used as well. For example, graphene CVD
on nickel and cobalt have also been performed. [60]. The CVD technique allows for precise
control of the number of layers grown.

4. Graphene-Based Nanocomposites

Research on polymer nanocomposites (PNC) has been growing over the past decade
due to their remarkable material properties, yield strength, toughness, electrical conduc-
tivity, thermal conductivity, and optical properties, and their applications are growing
substantially [2,61–80]. Traditional composite structures contain a significant amount
(~50 vol%) of filler bound in a polymer matrix—PNC typically—containing a small amount
of inorganic particles (usually 1 to 3 wt%) and size less than 100 nm, with a very large
surface area dispersed in the polymer matrix [79]. However, it has been shown that a
graphene of micron-size could be made scalable to mass production [81]. This makes
graphene-based composite materials appealing to a great number of applications [81].

Graphene possesses many desirable properties such as high strength and elastic
modulus, high electrical and thermal conductivity, high aspect ratio, high thermal stability,
high gas impermeability, and good dimensional stability [6–12]. Polymer properties can be
dramatically improved by the addition of graphene at a low volume fraction. Moreover,
graphene has a higher surface-to-volume ratio than CNT and can be used at a lower
volume fraction than CNT. It is potentially more promising for improving many properties
of polymer matrices.

Graphene can be produced in large quantities from graphite precursor by oxidation.
Hence, graphene-based polymer nanocomposites have attracted considerable research
interest around the globe. Various polymers, such as epoxy [82–88], PMMA [89–95],
HDPE [96], polystyrene [96–101], and nylon [91,102–107] have been used as matrices to
fabricate graphene polymer nanocomposites. Malucelli et al. (2016) provide an excellent
summary of the preparation of graphene-based nanocomposites [82]. It is worth noting
that the quality of graphene dispersion in the polymer matrix directly correlates to its
effectiveness in improving the nanocomposites’ properties [108,109]. The properties of a
composite are also closely related to the aspect ratio of the graphene filler.
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Graphene-based nanocomposites are increasingly being used for the development
of new materials for alternative energy sources, for example, (a) in lithium-ion batteries,
graphene-based nanocomposites show better performance as they have high power density
and energy density and a fast charging speed in hydrogen fuel cells; (b) graphene is used as
an electrode material to enhance electrocatalytic activity; (c) in solar cells, graphene-based
composites are used in photovoltaic devices because of their unique characteristics of high
carrier mobility and low resistivity; and (d) in thermoelectric materials.

Characterization of nanocomposites is crucial to understand the basic physical and
chemical properties of the nanocomposites. Graphene materials available in the market
are made by different companies through different techniques. It is expected that these
graphenes are quite different from each other in flake width, thickness, and defect concen-
tration. All the different techniques to modify the filler surface as well as to synthesize the
polymer nanocomposites need to be supplemented with robust characterization of these
processes as well as resulting composite properties to gain insight into the various factors
affecting the nanocomposite microstructure. Several techniques have been used in the char-
acterization of nanocomposites, dispersion, distribution, and orientation within polymer
matrix. These techniques include optical microscopy, scanning electron microscopy, high
transmission electron microscopy, Raman spectroscopy, atomic force microscopy and X-ray
diffraction; these have been shown to be very useful for quantification of nanocomposites.
It is also, in many instances, necessary to employ more than one characterization technique
in order to accurately characterize the nanocomposite material.

4.1. Polymer Nanocomposite Synthesis

Nanocomposites contain matrices of diverse materials such as polymer, metal or
ceramic, and also include different nanoparticle fillers (graphene, nanotubes, clays). These
fillers enhance the mechanical, thermal and electrical properties of the material [110–112].
The polymeric type nanocomposites are by far the most versatile and their application is
widespread in many diverse industrial fields such as energy, electronics, biomedical, etc.

Depending upon the degree of dispersion of the nano-sized layer structure, polymer
composites can be divided into three main categories: microcomposites, intercalated
nanocomposites, and exfoliated nanocomposites [109,113,114]. In the microcomposites’
structure (Figure 3a), graphene sheets are dispersed inside the polymer matrix in the
form of particles and the graphene platelets remain intact. When individual polymer
chains are introduced between graphene layers, intercalated constructions are obtained
(Figure 3b). In the exfoliated hybrids (Figure 3c), graphene layers are homogenously
dispersed in the polymer matrix. The exfoliation configuration is the preferred morphology
for nanocomposites as it maximizes the area of contact between the polymer and the filler
and results in stronger bonding, and remarkable mechanical properties [108].

The properties of graphene nanocomposites are dependent on chemical compatibility
between the filler and the matrix, the volume fraction of the filler and the processing condi-
tions such as dispersion and exfoliation of filler. To achieve optimal results, appropriate
fabrication methods must be employed [59,60]. Moreover, the performance quality of
nanocomposites is strongly associated with the degree of dispersion [107,114–118]. Meth-
ods of polymer nanocomposite synthesis can be divided into three main categories: in situ
polymerization, melt intercalation, and exfoliation adsorption (Figure 4).
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4.1.1. In Situ Polymerization

In situ polymerization is an effective technique for the formulation of highly dispersed
graphene in a polymer matrix. This process involves the polymerization of monomer
in the presence of the layered materials (Figure 4a). During in situ polymerization, the
filler is placed into a monomer solution. The filler swells, allowing the monomer to seep
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in between its layers. The solution is stirred and sonicated. When even distribution is
achieved, polymerization is initiated using heat, radiation, initiator diffusion, or by the
addition of catalyst. As polymer chains are created in between and around layers of the
filler, they force the layers apart, leading to improved exfoliation. In situ polymerization
provides excellent dispersion and greater compatibility between graphene and the polymer
through the introduction of added functional groups. Unlike other synthesis methods,
this process allows for the use of thermoset polymers [114]. The key advantage of this
technique is the potential for formation of strong covalent bonds between the nanofiller
and matrix during polymerization [113,114].

4.1.2. Melt Blending

Melt blending is the preferred method for the synthesis of various polymer hybrids
with inorganic nanoparticles [15]. It is found to be cost-effective and environmentally
friendly. One of the main advantages of this method is that it does not require any type of
solvent, and the graphene or treated graphene can be directly mixed in the molten polymer
matrix. This method is the conventional method for the mixing of the thermoplastic
polymer with the graphene or modified graphene. Examples of such methods are extrusion
and injection molding. The main disadvantage of this method is the poor dispersion of
the graphene in the polymer matrix, specifically in higher filler loadings. This happens
because of the increased viscosity of composites.

The most common method of synthesizing polymer nanocomposites is melt interca-
lation or melt blending [109,117,119]. Melt blending encompasses melting of polymer to
create a viscous liquid. The nanofillers are dispersed into the polymer matrix using a high
shear mixer along with a high temperature [119–121]. In this process, shown in Figure 4b,
the polymer matrix is heated to its glass transition temperature, the filler is added, and
the mixture is kneaded until uniform distribution is achieved. The degree of intercalation
is dependent on processing conditions such as mixing speeds and times, temperature,
compatibility of the polymer matrix and the fillers, the filler’s interlayer forces, and filler
surface preparation [105]. Melt intercalation is free from solvents and can be incorporated
into plastic manufacturing processes such as injection molding and extrusion, making it
convenient and economical. Fillers with a high degree of thermal stability are required
to prevent filler degradation due to high temperatures required for manufacturing and
processing [105]. Bao et al. [122] produced graphene/polylactic acid (PLA) nanocompos-
ites with outstanding properties. The PLA nanocomposites demonstrated well-dispersed
graphene and significant improvement in crystallinity, mechanical properties, and electrical
conductivity. The major drawbacks to this method are increased viscosity at high filler
fractions, and a lesser degree of intercalation than with other methods [112]. Although
melt blending is a convenient method for generating composites with enhanced quality, it
is less effective in dispersing nanofillers compared to solution blending.

4.1.3. Exfoliation Adsorption

A more effective way to achieve interfacial adhesion between the filler and matrix is
exfoliation adsorption (Figure 4c) [114,122–124]. Exfoliation adsorption, also called polymer
intercalation from solution, or solution mixing, requires solvent compatibility between
the filler and matrix [113]. Both the filler and matrix are dissolved then mixed together.
The solvent causes the filler to swell, increasing interlayer space and allowing the polymer
chains to intercalate in between the layers of the filler. The mixture is stirred and sonicated
to obtain an even distribution and the solvent is removed by evaporation or precipitation.
After solvent removal, polymer chains become entrapped between layers of the filler,
forming a multilayer structure. This process is used for creating nanocomposites from
polymers with low polarity but is not ideal for industrial use due to the large quantities of
solvent required [104]. The solution mixing can be used to obtain polymer nanocomposites
with a range of polymers, such as poly(methylmethacrylate) (PMMA) [125], polyurethane
(PU) [126], and poly(vinyl alcohol) (PVA) [49].
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5. Characterization of Graphene and Graphene Nanoplatelets (XGnPs)

Graphene is a material with outstanding properties, such as high specific surface
area 2600 m2/g, high mobility (15000 cm2/V·s) [10,15], superior thermal conductivity
(3000 W/m·K) [127], and extremely low permeability. Topological defects exist in large-
area polycrystalline graphene [127–130], and are thought to play crucial roles in tailoring
mechanical and physical properties of graphene [127,131–134]. Thus, characterization
of graphene is an important step for understanding graphene’s properties. The overall
electronic properties and the purity of a graphene sample are determined by the number of
layers present. Characterizations of graphene encompass different types of microscopic
and spectroscopic methods to obtain structural and morphological data of the synthesized
graphene. Similarly, the characterization process is also related to determining of the
purity and defects of graphene. Synthesis processes and/or processing parameters have
a great effect on graphene’s purity. HRTEM and AFM are commonly used to determine
number of layers of graphene. On the other hand, Raman spectroscopy is commonly
employed to characterize the purity of graphene and to measure the number of its layers
by detecting various crystal structures and bonding information. Furthermore, XPS and
Raman spectroscopy are the fundamental methods for the measurement of graphene’s
chemical purity and detection of functional groups attached to the graphene.

5.1. Raman Spectroscopy

Raman spectroscopy is a standard nondestructive tool for the characterization of
crystalline, nanocrystalline, and amorphous carbons [135–151]. It is a high-resolution tool
for the characterization of the lattice structure and the electronic, optical, and phonon
properties of carbon materials, including three-dimensional (3d) diamond and graphite,
2d graphene, 1d carbon nanotubes, and 0d fullerenes. Raman spectroscopy is a powerful
and reliable tool for the characterization of graphene family materials due to its sensitivity
to the vibration of C–C bonds [135–137]. It is a highly sensitive method to determine and
quantify the density of defects in graphene [135]. As the process of making graphene is
very diverse, including mechanical exfoliation, chemical vapor deposition, and chemical
exfoliation, several types of carbon can exist as byproducts. Raman is a very powerful
technique that can be of great benefit for characterization of carbon nanomaterials.

Zhiliang et al. [140] demonstrated a simple method based on hydrodynamic mech-
anisms for production of high-quality graphene flakes. A simple needle valve was used
as an exfoliation device. The results indicated that ~71% of the prepared graphene flakes
were less than five layers, while the average thickness and length of the flakes were 2.3 nm.
Figure 5 shows a typical Raman spectrum of the prepared graphene along with the bulk
graphite as a reference. Three typical characteristic peaks, i.e., D band (~1350 cm−1), G
band (~1580 cm−1), and 2D band (~2700 cm−1), were observed for these two graphitic
materials. The intensity ratio of D/G (ID/IG) for the prepared graphene was 0.10, lower
than that of ultrasonication exfoliated graphene (0.29) [152].

Zhang et al. [152] carried out an investigation to enhance the thermoelectric properties
of organic composites. Functionalized graphene was combined with a semiconductive
fullerene, and then the fullerene-coated graphene was integrated into a conjugated poly-
mer. Graphene helps enhance electrical conductivity, while fullerene hinders thermal
conductivity, resulting in a synergistic effect to enhance thermoelectric properties. Electri-
cal conductivity increased by seven-fold and thermal conductivity increased by ten-fold.
The reduced graphene oxide (rGO) and C60/rGO samples were characterized by Raman
spectra. Figure 6 shows Raman spectra of the graphene, pristine C60, and C60 graphene.
The two intense peaks in rGO are designated to the D and G band. The G band and D band
are a result of the presence of defects that have been introduced throughout the oxidization
and reduction technique. The G band has moved to 1582 cm−1 in the C60/graphene hybrid,
indicating the effect of graphene on C60.
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Chemical functionalization of graphene (CFG) enables graphene to be processed by
solvent assisted techniques, such as layer-by-layer assembly, spin-coating, and filtration. It
also prevents the agglomeration of single-layer graphene during reduction and maintains
the inherent properties of graphene [153–158]. CFG is of great importance for many
applications include electronics and conductive graphene films for touch screen. Gao
et al. [159] developed a heat-initiated chemical reaction to functionalize CVD-grown graphene.
Figure 7 shows the time evolution of the Raman spectra for functionalized graphene heated
at 80 ◦C in nitrogen atmosphere. As the reaction time increased, the characteristic disorder-
induced D band (1330 cm−1) emerged as the most important feature of the Raman spectra.
In addition, the double 2D band considerably weakened, while the G band around was
broadened due to the presence of a defect.
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5.2. Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is one of the most powerful microscopy techniques
for studying samples at nanoscale. AFM is a type of scanning probe microscopy (SPM),
with a resolution on the order of fractions of a nanometer [160]. For example, AFM provides
3D images of the graphene film, its thickness, and the number of layers present. Modern
AFM imaging provides the most consistent, highest resolution AFM imaging. Hence, an
AFM can be employed to verify the thickness of graphene films. Graphene fillers usually
exhibit various morphologies (e.g., folded, crumpled, and distorted sheets). AFM, similar
to the SEM and TEM methods, can also be used for studying the shape, size, structure,
absorption/dispersion, and aggregation of nanomaterials. There are several scanning
modes employed in AFM studies, i.e., static mode (noncontact mode), contact mode,
dynamic mode, and tapping mode.

Reduced graphene oxides (rGO) are single-layered sheets derived from the chemical
reduction of graphene oxide (GO). The rGO possess electrical and mechanical properties
similar to those of graphene; thus, this makes them versatile for a number of applications.
Various synthetic routes have been reported for the synthesis of reduced graphene ox-
ide [142,161–168]. Lu et al., developed a facile method to synthesize sulfonic acid-grafted
graphene oxide, S-rGO, as an effective catalyst to prepare Pt/S-rGO electrocatalysts via a
self-assembly route [161]. The morphologies of the GO and S-rGO were examined in detail
by AFM. The AFM images confirm that the GO and S-rGO are comprised of isolated and
well dispersed GO sheets, as shown in Figure 8. Moreover, The GO sheets have lateral
dimensions of several micrometers and a thickness of 0.8 nm, which is characteristic of a
fully exfoliated GO sheet.

Gurunathan et al., demonstrated the synthesis of water-soluble graphene through
reduction of GO using bacterial biomass [163]. The proposed approach confers that bac-
terially reduced graphene oxide (B-rGO) has great potential for various biological and
biomedical applications. AFM images were used to characterize the surface morphology
and thickness of the GO and B-rGO nanosheets. Figure 9 shows images of graphene
oxide (A) and bacterially reduced graphene oxide (B). These images clearly indicate that
GO exhibits flat sheets and an average thickness of about 0.43 nm, indicating the for-
mation of single-layered GO nanosheets. On the other hand, the B-rGO was thicker at
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~4.23 nm, demonstrating that the biomass adhered and reduced the GO surface successfully
(Figure 10b).
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5.3. Scanning Electron Microscopy (SEM)

Graphene fabricated by different techniques contains many defects depends on the
process. Defects in graphene have negative impacts on the high mobility and other phys-
ical and mechanical properties of graphene. Accordingly, it is essential to characterize
these defects using SEM or other advanced microscopy techniques. SEM is an advanced
microscopy instrument in characterization of micro- and nanostructured materials. Along
with its high power to offer a 2D analysis of substantial aspects of the sample, SEM can
also provide information and varied qualitative data on several physical properties such
as roughness, morphology, surface consistency, size, and chemical structure of materials.
Nano scale features of graphene including wrinkles, grain shapes, and folding lines can be
specifically characterized utilizing the SEM [161,162].

Figure 10 shows high-quality SEM images of graphene nanosheets produced for future
application as a cathode material for sodium-ion batteries [162]. In this study, graphene
oxide was synthesized by a modified Hummers’ method and reduced using a solid-state
microwave irradiation method. The SEM images revealed a wrinkled stack of ultra-thin
graphene oxide nanosheet with a porous morphology. A high-magnification SEM image
(Figure 10b) shows a large number of nanopores between the nanosheets that are formed
by gas evolution. Nanoporous carbon materials have attracted considerable technological
interest due to their numerous applications, including improving the tensile strength
of composites, as catalyst and sensor supports, as hydrogen-storage materials, and in
electronic and electrochemical devices [1].

Many studies demonstrated that the state of dispersion of graphene sheets in the
matrix has a strong effect on the mechanical properties of the composite [161,164–169].
Yang et al. [164] demonstrated that graphene strengthening could be improved by the excellent
dispersion from the hydrogen passivation (HP) and ultrasonication technique. Figure 11 shows
the SEM images of the fracture surfaces of a pure epoxy, graphene composites produced
by ultrasonication, and by the HP and ultrasonication [161]. The fracture surface of pure
epoxy is relatively smooth (Figure 11a). Compared to the fracture surface of the pure epoxy,
the fracture surfaces of graphene/epoxy (Figure 11b) composites are rough and consist
of many small facets, an indication that the graphene inhibits fracture of the composites
and thus results in a rougher fracture surface. The graphene sheets dispersed by the HP
and ultrasonication technique (Figure 11c) attained much better dispersion in the epoxy
matrix compared to the graphene reinforced composites fabricated by ultrasonication
alone (Figure 11b). Figure 11d shows a high magnification image of graphene layers
(Figure 11b) that were separated during the three-point bending test, which may have
resulted from a weak adhesion between layers. Such morphology usually has a neg-
ative effect on the mechanical strength of composites. In contrast, the graphene dis-
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persed by the HP and ultrasonication was thickly coated with an adsorbed epoxy layer
(Figure 11e). In addition, graphene linking was often observed on the fracture surface
(Figure 11f), indicating strong epoxy–graphene interaction.

Graphene is quite a robust material in hydrogen sensors due to a possible improve-
ment of its surface area and susceptibility of its electronic properties to the changes caused
by adsorbing atoms and molecules including hydrogen. However, the pristine graphene
sensitiveness to hydrogen is limited [34]. Sharma et al., developed a dual FET hydrogen gas
sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection [165]. Figure 12 shows
the SEM image of the graphene–Ag–Pd nanocomposites on the sensing area of the sensor platform.
The integration between graphene, Pd and Ag can be visualized from the SEM image. Ag
nanoparticles with the size of Ca. 17 nm and Pd nanoparticles at the size of Ca. 100 nm are
uniformly and compactly embedded on the graphene layer. The morphology and nature
of the Pd–Ag films grown on the graphene substrate are clearly shown in Figure 12.
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Figure 11. Mechanical characterization and morphology of 1.0 wt.% graphene–epoxy composites.
(a–c) SEM images of fracture surfaces of epoxy resin, ultrasonic treated nanocomposites, and the
(HP and ultrasonic) treated nanocomposites, respectively. (d) High magnification image of graphene
block in (b) The big gap between the graphene sheets, as indicated by the arrow in (d), implies that
the graphene sheets slide over each other during the bending test. (e,f) High magnification images
of wrinkled and bridging graphene in (c). Reproduced with permission from Nature Publishing
group [164] (CC BY).
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5.4. High Resolution Transmission Electron Microscopy (HRTEM)

HRTEM is a very powerful structure characterization technique for graphene. It is a
unique tool for characterizing the atomic structures and interfaces of graphene [170,171].
It has been exploited to reveal the fine chemical structure of graphene oxide and observe
graphene flakes in a fraction of micron. It is a very high-resolution TEM with advanced
imaging features that are superior to conventional TEM. HRTEM can be employed in
graphene-based catalyst characterization to determine the number of graphene layers,
which directly determines the surface area of the catalyst and further affects their catalytic
performance dramatically [171]. HRTEM can also be used to estimate thickness of a
graphene sample. Accordingly, the number of layers can be calculated. The other direct
method is the observation of the edges by HRTEM, which provides an accurate way to
count the number of layers at multiple locations on the layer-structure catalyst. HRTEM
elemental mapping is also a powerful tool to detect the element distribution of graphene-
based catalysts.

Due to strong interactions and van der Waals forces, exfoliated graphene sheets
have a strong tendency to irreversibly aggregate or even restack, reverting to multilayer
structures such as graphite [172]. Therefore, functionalization must be performed to reduce
hydrophobicity, and to increase dispersion in organic and aqueous solutions. Covalent
functionalization is the addition of molecules to graphene that results in the rehybridization
of the sp2 carbon atoms of the π network into a sp3 configuration, resulting in adjustments
of the innate physical and chemical properties of graphene [172].

The lithium-ion battery is considered to be one of the best power sources to maximize
the efficiency of energy use. Graphite has been widely used as an anode material for
commercial Li-ion batteries because of its good electrochemical properties. Kan et al. [173]
prepared a new Fe2O3–graphene structure, namely sheet-on-sheet nanostructure by a
solvothermal method. Fe2O3 nanoparticles were also prepared on graphene nanosheets.
The Fe2O3–graphene sheet-on-sheet nanostructure was fabricated as an anode for Li-
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ion batteries. It was confirmed that Fe2O3 nanosheets were uniformly dispersed among
graphene nanosheets, forming a unique sheet-on-sheet nanostructure. HRTEM of the
morphological analysis of Fe2O3–graphene nanocomposites is shown in Figure 13. A
large number of pristine Fe2O3 nanoparticles are shown in this figure. Their particle sizes
are 30–50 nm size. The particle-on-sheet and sheet-on-sheet nanostructures can be easily
confirmed by the HRTEM images of Figures 13a–d, respectively. These nanoparticles and
nanosheets are clearly uniformly distributed on graphene nanosheets.
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Figure 13. The morphological analysis of Fe2O3–graphene nanocomposites by TEM. TEM images of
(a) Fe2O3–graphene particle-on-sheet composite, and (b–d) Fe2O3–graphene sheet-on-sheet compos-
ite with stepwise increased magnifications [173] (CC BY).

Figure 14 [162] shows a HRTEM image of a reduced graphene oxide (RGO) produced
for future application as a cathode material for sodium-ion batteries. The RGO morphol-
ogy reveals an interesting doughnut-like morphology. Figure 14b,c show that the EDS
profile clearly demonstrates the existence of a functional group on the RGO. The relative
contents of C and O were detected and plotted against distance (Figure 14c). The EDS
results indicated that the RGO was greatly functionalized to perform more effectively for
charge storage.

5.5. X-ray Diffraction (XRD)

XRD is an important analytical tool for the characterization of the intercalated and
exfoliated nanocomposites [172–176]. XRD can measure accurately the interlayer or basal
plane d-spacing, for example, of GO and monitor intercalation of any species in the gallery
of the GO lattice. Whereas the interlayer spacing of graphite is 3.35 Å, conversion to GO
results in an increase in this basal plane spacing due to functionalization of graphite with
oxygen-containing groups. X-ray diffraction (XRD) has been used widely in the structural
characterization of sp2 carbon materials [176]. XRD patterns of graphite and graphene have
distinct peaks and can be used to differentiate between graphite and graphene structures.
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For example, the intense peak at 2θ = 26.3◦ graphite shifts to 14.1◦–14.9◦ in graphite oxide.
However, XRD peaks disappear as the sheets of GO exfoliate into single sheets [149,150].
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The application of X-ray diffraction (XRD) for phase determination and confirming
the reduction of GO to graphene is a very useful tool. Of course, it is not as powerful as
the other approaches (Raman spectroscopy, FTIR, AFM) due to the limited information
collected. Therefore, its application is always accompanied by other methods such as
Raman, XPS, and FTIR to provide more information about the catalyst structure.

Polymer-based thermoelectric materials have been the focus of many studies for the
past 10 years [177–181]. Zhang et al. [152] prepared thermoelectric polymer composite by
functionalized graphene with fullerene (C60), and then dispersed fullerene in the polymer.
The XRD of graphite and C60/rGO are shown in Figure 15. The XRD pattern of graphite
shows a characteristic peak at 2θ = 27◦. After oxidation, the graphitic peak shifts to 14.6◦,
demonstrating that the interlayer spacing increased. After chemical reduction, the graphite
oxide peak disappeared. It was suggested that the sharp peak is attributed to the exfoliation
of layered structures of graphite oxide [182]. The XRD pattern also clearly indicates that
fullerenes (C60) had been effectively integrated into the surface of graphene.
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Chieng et al. [183] prepared nanocomposite by blending poly(lactic acid) (PLA)/epoxidized
palm oil (EPO) with graphene nanoplatelet (xGnP). The PLA/EPO/xGnP green nanocom-
posites were characterized by XRD. Figure 16 displays the XRD spectra of xGnP, PLA/EPO
and PLA/EPO composite with different xGnP loading. The xGnP displays a strong peak
at 2θ = 26.4◦. The XRD spectra of PLA/5EPO blend and PLA/5EPO with different xGnP
loadings display a broad characteristic peak of PLA matrix at 2θ = ~16◦. PLA/5EPO
nanocomposites with 0.3 wt.% xGnP loading display a small peak around 26.5◦, which
corresponds to the characteristic peak of xGnP.
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6. Mechanical Properties of Graphene-Based Nanocomposites

Graphene-based nanocomposite materials exhibit significant improvement in mechan-
ical properties compared to the standard composites [2,46,184–187]. Graphene has been
commonly used to strengthen mechanical properties of several nanocomposites [185,186].
For example, the tensile strength of the baseline epoxy was enhanced by ~40% with
graphene platelets with addition of a very small weight % of graphene (~0.1 wt.%) [46].
The inclusion of nanoparticles within the matrix enhances linking of polymer chains
(crosslinking density) of the nanocomposites and resulted in a remarkable improvement
in the mechanical properties. These properties are mainly correlated to the number of
graphene layers and the interior defects of the graphene structure. For example, mono-
layer graphene sheets exhibit excellent mechanical properties (E ~ 1 TPa and strength ~
130 GPa) [8].

Table 1 demonstrates the percentage enhancement in the mechanical properties, elastic
modulus, and tensile strength of graphene polymer nanocomposites compared to the
polymer matrix [187–203]. Table 1 is constructed based on the type of graphene (GNP, GO,
rGO) and then categorized based on the polymer matrix that has been used in each case.
Mechanical properties of the nanocomposites have been investigated by several techniques
including nanoindentations [204–208].

Most of the properties of the nanocomposites were superior compared to the polymer
matrix [209–211]. This is often attributed to the graphene filler’s very high aspect ratio. In a
comprehensive study [4], it was demonstrated that the addition of 1.0 wt.% of graphene to
PMMA leads to an increase of 80% in the elastic modulus and 20% in increase in ultimate
tensile strength. The same study reported that the single-layer functionalized graphene
(FGS) gives the best results compared to other nanofillers (SWNT, EG).

Pinto et al. [187] investigated the effect of incorporating graphene oxide and graphene
nanoplatelets on mechanical properties of poly(lactic acid) (PLA) films. The results indi-
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cated that incorporation of very small loadings of GO or GNP (0.2 to 0.6 wt.%) in PLA
films significantly improves mechanical properties. This confirms the reported potential
of graphene-related materials in providing relevant performance gains at low loadings,
because of the high specific area available for interaction with the polymer matrix. An
optimum loading was identified for mechanical performance, corresponding to about
0.4 wt.% for both materials.

King et al. [193] fabricated epoxy nanocomposites by incorporating 1–6 wt.% GNP in
the epoxy. These composites were tested for tensile properties using typical macroscopic
measurements. Nanoindentation was also used to determine modulus and creep compli-
ance. These macroscopic results showed that the tensile modulus increased from 2.72 GPa
for the neat epoxy to 3.36 GPa for 6 wt.% GNP in epoxy composite. The modulus results
from nanoindentation followed this same trend.

Li et al. [197] prepared polyvinyl alcohol (PVA) composite fibers reinforced with
graphene reduced from graphene oxide (GO). After reduction, most of the oxygen-containing
groups were removed from the GO and reduced graphene oxide (rGO) was prepared. The
PVA/rGO composite fibers exhibited a significant enhancement of mechanical properties
at low rGO loadings; in particular the tensile strength and Young’s modulus of the 2.0 wt.%
rGO and PVA composite fiber increased to 244% and 294%, respectively, relative to neat
PVA fibers.

Gao et al. [212] combined Nano-58S bioactive glass with graphene to enhance its me-
chanical and biological performance for bone tissue engineering applications. Figure 17 shows the
compressive strength and fracture toughness of nanocomposite scaffolds of graphene/nano-
58S. Analysis of the data in Figure 17 shows that the fracture toughness was ~1.95 MPa · m1/2

with a graphene loading of 0.5 wt.%, suggesting major improvements due to graphene. The
microhardness indentations and radial cracks on the polished surface of 58S-0.5 were
characterized by SEM to identify the mechanism responsible for the enhanced mechanical
properties (Figure 18). Figure 18b shows the presence of graphene crack bridging on
the fracture line. EDS analysis shows a strong peak of carbon element confirming the
toughening effect of graphene. Figure 18b–e) show the mechanism of crack bridging in
graphene/nano-58S. Based on this investigation, it was concluded that graphene was
extremely effective in slowing crack propagation in the matrix.

Thermally reduced graphene oxide (TRG) can be produced via the rapid heating of
GO under inert gas and high temperature (1000 ◦C) [213]. TRG is a top-down method for
bulk production of graphene. TRG sheets contained from a single layer to a few layers
of graphene with the average size of 500 nm [214]. Outstanding properties of graphene
make it an excellent filler for polymer nanocomposite applications. Naebe et al. [214]
mixed TRG with epoxy resin after being functionalized to produce epoxy nanocomposites.
The mechanical properties and morphology of the nanocomposites were investigated to
assess the effect of the functionalization on the dispersion in the produced composites. The
modulus of elasticity and the flexural stress–strain were determined by the three-point
bending test. The test was carried out to investigate the effect of addition of FG on the
mechanical properties of the epoxy matrix. Figure 19 shows stress–strain diagram for the
composites of TRG/FG. The addition of TRG and FG results in an increase in the flexural
strength of the epoxy matrix by 15% and 22%, respectively.

Table 1. Mechanical properties of graphene polymer nanocomposites.

Graphene Matrix Process Filler Loading (wt.%) Matrix
Modulus (GPa)

Tensile
Modulus

Increase (%)

Graphene
Modulus E

(GPa)
Ref

GNP PLA Solution blending 0.4 wt.% 0.038 156 250 [187]
GNP PP Melt mixing 10 wt.% 1.3 41 13 [188]
GNP PP Melt mixing 1.7 vol% 1.3 54 14 [189]
GNP Epoxy Solution blending 5 wt.% 2.5 28 30.5 [190]
GNP Epoxy Solution blending 1 wt.% 2.9 24 143 [191]
GNP Epoxy Solution blending 5 wt.% 2.7 49 55 [192]
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Table 1. Cont.

Graphene Matrix Process Filler Loading (wt.%) Matrix
Modulus (GPa)

Tensile
Modulus

Increase (%)

Graphene
Modulus E

(GPa)
Ref

GNP Epoxy Shear mixing 6 wt.% 2.72 23.5 20 [193]
GNP Epoxy Shear mixing 4 wt.% 2.7 8 11 [194]
GNP PE Melt mixing 4 wt.% 1.3 35 25 [195]
rGO PE polymerization 5.2 wt.% 0.23 170 15 [196]
rGO PVA Wet spinning 2 wt.% 5.4 294 1036 [197]
rGO Epoxy polymerization 2 wt.% 0.48 70 34 [198]
rGO Epoxy Three roll mill 8 wt% 2.8 22 14 [199]
fGr Epoxy Solution blending 0.2 wt.% 2.9 8 243 [200]
fGr Epoxy Solution blending 0.3 wt% 1.5 32 321 [201]
GO PVA Solution blending 0.3 wt.% 2.3 150 2335 [202]
GO PVA Solution blending 5 wt.% 2 190 162 [203]
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Figure 18. Crack propagation by graphene in the sintered samples. SEM images of (a) microhardness
in dentation, (b–e) crack deflection, crack bridging and graphene pull-out, (f) closure of crack growth
at the crack tip. Reproduced from [212] (CC BY).
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Nanoindentation is a widely used technique for measuring the nano and microscale
mechanical properties in nanomaterials and nanocomposites. This technique has been
commonly used in determining the mechanical properties of polymers [204–208]. Recently,
it has been used to measure mechanical properties of nanocomposites. Shokrieh et al. [206]
used nanoindentation to evaluate the mechanical properties of graphene nanocompos-
ites. According to this investigation, the mechanical properties of a pure polymer matrix
are remarkably improved by the addition of small amounts (0.05 wt.%) of graphene
nanoplatelets (GNP).

Shen et al. [207] used nanoindentation to study mechanical properties of clay nanocom-
posites with different polymer matrices. Aldousiri et al. [208] used nanoindentation to
measure the modulus and the hardness of polyamide-layered silicate nanocomposites. Lee
et al. [8] evaluated the elastic properties and fracture strength of monolayer graphene by
nanoindentation. The force displacement behavior yields elastic stiffness, E, of 340 N m−1.
The fracture strength that signifies the intrinsic strength (σint) of the sheet was ~42 N m−1.
The corresponding values for the bulk graphite were E = 1.0 TPa and σint = 130 GPa.

7. Thermal Properties of Graphene and Graphene Nanoplatelets (xGnPs)

All electronic units produce excessive heat and thus demand thermal management to
prevent premature failure [215–220]. Thermal management is crucial for the efficiency of the
advanced integrated circuits (ICs) and high-frequency high-power density communication
devices. Recently, use of high-conductivity materials is suggested for electronic cooling
and for improving the heat dissipated from chips. The cost of high conductivity materials
is of major concern. Therefore, there is a real need for low cost high thermal conductivity
materials and efficient design to integrate these materials in electronic devices.

Graphene has drawn tremendous attention for heat dissipation due to its extraor-
dinarily high in-plane thermal conductivity (2000~4000 Wm−1K−1) compared to copper
(400 Wm−1K−1). The thermal properties of graphene have become an important research
topic and are attracting tremendous interest in the area of thermoelectric waste heat re-
covery. Thermal properties of graphene are related to its low mass and the strong bond
of carbon atoms. Thermal properties of graphene and its use in electronics and thermal
management applications have been the subject of many scientific studies [220–229].

Shahil et al. [220] synthesized graphene−MLG nanocomposite polymer TIMs and
demonstrated the extremely high TCE factors at low filler loadings. They demonstrated a
great improvement in thermal conductivity of thermal interface materials (TIMs). They
achieved that by optimizing a mixture of graphene and multilayer graphene (MLG). The
thermal conductivity of the epoxy matrix material was increased by a factor of 23 at the 10%
volume of graphene loading (Figure 20). Moreover, the epoxy–graphene nanocomposite
conserved all the properties of TIM needed for industrial applications.

Yu et al. prepared graphite nanoplatelets (GNPs) by thermally exfoliating graphite [222].
Results of thermal conductivity showed that a small quantity of graphene (n = 4) was a
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very effective nanofiller for epoxy composites. They reported a remarkable increase in
thermal conductivity (3000%) at 25 vol% loading. They attributed the remarkable increase
in thermal properties of this composite to the optimum combination of the high aspect
ratio, stiffness, and low thermal interface resistance of the GNPs.

Zhang et al. [226] fabricated a novel composite for a high performance thermal inter-
face system. They arranged graphene sheets vertically in a liquid polydimethylsiloxane
(PDMS). They reported a remarkable increase (3329%) in the thermal conductivity of the
graphene/PDMS composite. They postulated that this enhancement is due to the vertical
alignment of graphene films with high in-plane thermal conductivity, which forms a rapid
and effective heat-transfer path.

The variation in thermal conductivity with different forms of graphene and graphite
nanocomposites is reviewed in Table 2 [230–240]. The remarkable improvement in thermal
conductivity was noted in the case of XGnP compared to other fillers. Graphene-based
polymer nanocomposites showed tremendous improvement in electrical conductivity.
The remarkable improvement in electrical conductivity resulted from the creation of a
conductive network by the graphene in the polymer matrix. In addition to filler type,
enhancement in thermal conductivity depends on other factors including the processing
method and the polymer matrix. For example, Zhou et al. prepared a composite by adding
2 wt.% multi-layer graphene oxide (MGO) to an epoxy resin, and the thermal conductivity
of the composite reached a maximum 2.03 times that of the epoxy [230]. The presence
of 2 wt.% MGO percolating chains leads to a sharp rise in the energy barrier. Renteria
et al. reported that functionalization of LPE graphene and few-layer-graphene flakes with
Fe3O4 nanoparticles allowed them to align the fillers in an external magnetic field during
dispersion of the thermal paste to the connecting surfaces [240]. The filler alignment results
in a strong increase in the apparent thermal conductivity and thermal diffusivity.

Table 2. Thermal conductivity values of graphene polymer nanocomposites.

Matrix Filler Type Filler Loading
(wt.%)

% Increase in Thermal
Conductivity Reference

Epoxy MGO 2 104 [230]
Epoxy GO 1 4.8 [231]
Epoxy GNP 8 627 [232]
Epoxy GNP 25 780 [233]
Epoxy GO 3 90 [234]
Epoxy GNP 5 240 [235]
Epoxy GNP 4 700 [236]
Epoxy GNP 1.9 9 [237]
Epoxy RGO 1 44 [238]
Epoxy NG 1 24 [239]
Epoxy MGO 2 95 [240]
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8. Conclusions

This article reviewed the recent progress in graphene-based polymer nanocomposites,
focusing on two areas: properties and characterization. Emphasis was placed on the unique
roles and advantages of advanced graphene characterization techniques, such as Raman
spectroscopy, XRD, AFM, and HRTEM. Characterization of 2D graphene involves different
types of microscopic and spectroscopic techniques to obtain the structural, morphological,
and chemical information of as-synthesized graphene. Raman spectroscopy is a remark-
able analytical tool that can detect small changes in the structural morphology of carbon
nanomaterials. It is used to determine the number of layers, defects, strain, and chemi-
cal modifications. HRTEM is one of the most powerful characterization techniques for
graphene’s structural characterizations. Several examples of graphene polymer composite
characterizations using Raman, SEN, TEM, AFM, XRD, and HRTEM were discussed.

Most common graphene synthesis techniques have been discussed. The mechanical
exfoliation of graphene is a simple technique for graphene fabrication. The process has the
ability to fabricate a single crystal of graphene with various numbers of layers. However,
control over the wafer scale synthesis and reproducibility is very difficult. Liquid-phase
exfoliation is one of the most practical methods for commercial manufacturing of graphene
because of its low cost and potential scalability. Graphene prepared by this technique
exhibited a low percentage of defects and oxygen functional groups.

Chemical synthesis techniques are suitable for low volume production of graphene at
low temperature. Furthermore, the process can yield graphene film or graphene coatings on
several substrate materials. Graphene synthesized using chemical processes exhibits a high
surface area and easy functionalization. CVD is widely used for the synthesis of carbon
nanostructures. This method has been effectively used for producing carbon filaments
which are the basis for composite materials with outstanding mechanical properties.

Graphene–polymer nanocomposites display remarkable mechanical properties com-
pared to the pure polymer. Table 1 shows the percentage enhancement in the mechanical
properties, elastic modulus and bending strength of nanocomposites. Most of the proper-
ties of nanocomposites were significantly higher than the polymer matrix. This remarkable
improvement was related to the filler’s very large aspect ratio.

Graphene and xGnP have attracted tremendous attention for heat removal due to
their extraordinarily high in-plane thermal conductivity (2000~4000 Wm−1K−1). Graphene
and MLG, produced by the liquid-phase exfoliation technique, were successfully used to
fabricate novel nanocomposites to be used as TIM in electronic applications. Remarkable
enhancement of thermal conductivity of the epoxy matrix (increase by 23×) was achieved
at the 10% volume of graphene loading. Graphene and xGnP are potential key materials for
the next generations of ICs and 3D electronics. Graphene chemical functionalization caused
outstanding improvement in the thermal conductivity of the polymer composites. Thermal
conductivity is affected by several factors, such as the graphene loading, dispersion, and
the thermal resistance of the interface.
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Abbreviations

CVD Chemical vapor deposition
FGr Functionalized Reduced Graphene Oxide
GO Graphene oxide
RGO Reduced graphene oxide
TRGO Thermally reduced graphene oxide
GIC Graphite intercalation compounds
CNT Carbon nanotube
SWCNT Single-walled carbon nanotube
MWCNT Multi-walled carbon nanotube
EG Expanded graphite
GNP Graphite nanoplatelets
HDPE High density polyethylene
PET Poly(ethylene terephthalate)
PMMA Poly(methyl methacrylate)
PP Polypropylene
XGnP Graphene nanoplatelets
FG Functionalized graphene
PVA Poly(vinyl alcohol);EVA, ethylene vinyl acetate
PS Polystyrene
PU Polyurethane
PLA poly(lactic acid)
MGO Multi-layer graphene oxide
NG Natural graphite
GF Graphite flakes
MLG Multilayer graphene
IM Thermal interface materials
LPE Liquid-phase exfoliation
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