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A multiparametric activity profiling platform for 
neuron disease phenotyping and drug screening

ABSTRACT  Patient stem cell–derived models enable imaging of complex disease pheno-
types and the development of scalable drug discovery platforms. Current preclinical methods 
for assessing cellular activity do not, however, capture the full intricacies of disease-induced 
disturbances and instead typically focus on a single parameter, which impairs both the under-
standing of disease and the discovery of effective therapeutics. Here, we describe a cloud-
based image processing and analysis platform that captures the intricate activity profile re-
vealed by GCaMP fluorescence recordings of intracellular calcium changes and enables the 
discovery of molecules that correct 153 parameters that define the amyotrophic lateral scle-
rosis motor neuron disease phenotype. In a high-throughput screen, we identified com-
pounds that revert the multiparametric disease profile to that found in healthy cells, a novel 
and robust measure of therapeutic potential quite distinct from unidimensional screening. 
This platform can guide the development of therapeutics that counteract the multifaceted 
pathological features of diseased cellular activity.

INTRODUCTION
Neurodegenerative diseases are among the most difficult to treat. 
One such disease, amyotrophic lateral sclerosis (ALS), is associated 
with a progressive loss of upper and lower motor neurons, leading 
to a gradual loss of control over the muscles vital for walking, talk-

ing, swallowing, and breathing, a debilitating and typically rapidly 
fatal outcome for patients. ALS remains a clinical challenge with only 
two US Food and Drug Administration (FDA)-approved drugs, both 
though, with minimal life-prolonging effects. The prognosis for pa-
tients diagnosed with ALS is poor, with most patients succumbing to 
the disease within 3–5 years. The lack of effective treatments stems 
from an incomplete understanding of the biological basis of the dis-
ease as well as the use of preclinical drug screening approaches that 
are not predictive of efficacy in patients.

In its familial form, ALS is caused by mutations in the SOD1, 
C9orf72, FUS, and TARBP1 genes, among many others (Renton 
et  al., 2014), and motor neuron electrical activity is severely im-
pacted, as detected in both patients and patient-derived motor 
neurons (Wainger et al., 2014; Iwai et al., 2016). Mouse models as 
well as patient iPSC-derived motor neurons reveal alterations in the 
excitability phenotype across multiple parameters, including mem-
brane potential, sodium and potassium peak currents, action poten-
tial firing, and synaptic activity (Kuo et al., 2005; van Zundert et al., 
2008; Kiskinis et al., 2014). The development of therapies targeting 
aberrant electrophysiological properties usually focuses only on a 
single electrophysiological property, the action potential firing rate 
(Catterall, 2018). A recent study from our group successfully applied 
the approach of using a reduction in ALS human motor neuron firing 
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rate to validate two known ALS activity modulators (Kv7.2/3 ion 
channels and AMPA receptors) and identify D2 dopamine receptors 
as a novel target (Huang et al., 2021). However, the excitability phe-
notype in ALS motor neurons is closely linked to multiple changes in 
cell health, such as endoplasmic reticulum stress and unfolded pro-
tein response (Kiskinis et al., 2014), and to changes in ion channel 
composition, molecular architecture and posttranslational state, 
membrane trafficking, intra- and extracellular ion concentrations, 
and synapse strength, which impact diverse aspects of neuronal ac-
tivity, especially in neurodegenerative disorders (Kiskinis et  al., 
2014). We hypothesized that a multifaceted disease etiology re-
quires a multiparameter analysis method and that simultaneous 
measurements of distinct cellular activity parameters such as peak 
amplitude, frequency, rise and fall time, and other kinetics might 
provide a more comprehensive, and therefore superior, basis for de-
fining complex disease phenotypes. In turn, multiparameter com-
pound screening may also better detect disease-modifying actions 
of drugs than traditional single parameter–based assays. Molecules 
that counteract the disease pathology across multiple dimensions 
may provide superior rescue from a disease state and have a greater 
impact on disease progression than simply focusing on the restora-
tion of a single feature, opening the possibility for novel and more 
precise therapeutics targeting the complexity of the disease state.

Here, we describe the development and application of a high-
throughput cloud-based image processing and unbiased multipara-
metric activity profiling analytic platform. We call it CELLXPEDITE 
for its ability to process large volumes of cellular imaging data, 
thereby accelerating drug screening, and make it open source for 
use by the neuroscience community. By analyzing 153 parameters 
simultaneously we can automatically capture the complex activity 
profiles produced by diseased cells (ALS patient–derived carrying 
the SOD1(A4V) mutation) and the effects of candidate compounds 
on such cells and from this identify compounds that convert the 
complex disease profile to one similar to that present in healthy 
cells. We show that such a platform can identify subtle perturbances 
in the activity of motor neurons and enables a robust selection of 
compounds that reverse the complex disease phenotype.

Most drugs for neurodegenerative diseases fail in clinical trials 
due to poor efficacy or unforeseen side effects, which is costly for 
the pharmaceutical industry and a health risk for the patients. Here 
we combine advances in human stem cell–derived neuronal mod-
els, fluorescent reporters, high-throughput live-cell imaging sys-
tems, and cloud analysis platforms to enable the discovery of mole-
cules that can transform a complex disease phenotype to a healthy 
phenotype.

RESULTS
Extraction of cellular activity
During action potential firing, voltage-dependent calcium channels 
are activated and deactivated, leading to changes in intracellular 
calcium that allow the measurement of neuronal activity through the 
genetically encoded calcium reporter GCaMP6 (Chen et al., 2013). 
We developed a robust high-throughput 384-well single-cell 
GCaMP6-based activity assay to record the spontaneous firing of 
iPSC-derived human motor neurons with and without the highly 
penetrant SOD1(A4V) mutation (Figure 1A). To capture a multipara-
metric representation of GCaMP activity in each individual cell, we 
developed a scalable cloud-based live-cell image processing pipe-
line that automatically compensates for imaging artifacts, performs 
photobleaching corrections, identifies individual neurons, and ex-
tracts and denoises calcium transients (Figure 1, B and C). In con-
trast to existing commercial or open-source software packages 

(Mukamel et  al., 2009; Pnevmatikakis et  al., 2016; Moein et  al., 
2018; Giovannucci et al., 2019), our workflow is seamless, extracts 
multiple complex parameters, and is suitable for large-scale drug 
screening. Our aim was to better capture the intricacies of cellular 
activity for disease modeling and enable high-throughput disease 
phenotype correction screening.

High-throughput plate readers generally have an uneven spatial 
distribution of light across the field of view, which impacts both im-
age segmentation and fluorescence quantification. We therefore 
incorporated into our pipeline modules from the open-source soft-
ware CellProfiler (McQuin et al., 2018) to perform illumination cor-
rection and enhance the visibility of neurons expressing GCaMP6 
(Supplemental Figure 1). Our approach spatially resolved all cells, 
regardless of temporal activity, allowing us to determine the propor-
tion of active cells and assess well contamination and compound 
toxicity. Calcium traces were automatically extracted for each neu-
ron and compensated for background luminescence and photo-
bleaching effects (Supplemental Figure 2). To validate that the re-
sidual signals were reflective of spiking activity, we extracted 
fluorescence traces in the presence and absence of tetrodotoxin 
(TTX), a sodium channel blocker that inhibits the firing of action po-
tentials in neurons (Narahashi et al., 1967). TTX eliminated the spon-
taneous calcium wave fluctuations observed in control cells (di-
methyl sulfoxide [DMSO] vehicle) (Figure 1D). Baseline fluorescence 
was also lower in the presence of TTX, suggesting that the measure-
ments are sensitive to both absolute and relative differences in cal-
cium levels.

Multiparametric GCaMP phenotypes
The comparison of GCaMP calcium transients between neurons, as 
well as changes due to drug action, has traditionally relied on count-
ing the total number of peaks in fluorescence as the sole parameter 
(Figure 2A), an extension of spike counting by electrophysiological 
recordings. However, because GCaMP6 fluorescence fluctuations 
are heterogeneous and unevenly dispersed in time (Figure 1, C and 
D), simple metrics such as peak count or amplitude convey an in-
complete picture (Figure 2A). The disparity between the complex 
nature of the cellular activity and its historical unidimensional char-
acterization raises concerns over the accuracy of such measure-
ments for reflecting the disease state of the neuron and its response 
to drug treatment.

To provide a more comprehensive readout of excitability in dis-
eased and healthy motor neurons, we set out to parameterize 
spontaneous fluctuations of the calcium reporter signal. We identi-
fied peaks in activity using a differential approach with high sensi-
tivity to rapid fluctuations as well as continuous wavelet transforms 
(Du et al., 2006) to account for multiscale peaks (Figure 2B). Peaks 
were then individually parsed to quantify subtle kinetic differences 
and fluorescence shifts (Figure 2C). Relative and absolute changes 
were detected by establishing three baselines for the measure-
ments, namely the well background intensity, the cell minimum in-
tensity, and the intensity at peak onset (Figure 2D). To complement 
the individual peak dissection with signal-wide features, statistical 
dispersion metrics were computed along with the area under each 
signal (Figure 2D). Finally, the power spectrum of the calcium 
traces, that is, the distribution of power into frequency components 
composing the signals, was obtained by computing their discrete 
Fourier transform. A total of 153 parameters spanning both time 
and frequency domains were acquired to describe the activity of 
each cell (Figure 2E), providing a comprehensive breakdown of ac-
tivity and widening the scope of the activity phenotype across mul-
tiple axes.
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Healthy and disease activity profiles
To characterize the complex ALS disease phenotype, we utilized the 
image processing and analysis platform to generate and study all 
the parameters derived from the spontaneous activity of two cell 
lines derived from a human ALS patient (39b: ALS disease model 
and 39b-cor: isogenic corrected healthy control). In addition to the 
expected increased peak counts in the disease cell line, we discov-
ered changes in activity parameters reflective of slower kinetics and 
higher peak amplitudes (Figure 2F). With the demonstration that 
cellular activity is best captured using multiple parameters, we then 
conducted a full multiparametric analysis of the disease (39b) and 
control (39b-cor) motor neuron activity phenotypes. These pheno-
types were generated by averaging the multiparametric activity pro-
files across eight replicates for each cell line. From these profiles, we 
calculated the absolute difference across all parameters between 
the two cell lines, which resulted in a disease profile consisting of 
153 activity parameters (top 25 distinguishing features presented in 
Figure 3B). Surprisingly, the largest differences were found in fea-
tures related to peak amplitude as opposed to peak count, though 
the latter remained in the top five distinguishing features. We found 
properties from the frequency domain to be of lesser importance. 
The multiparametric disease profile was then used to identify phe-

notypic rescue of all the disease-distinguishing cellular activity pa-
rameters back to those in the healthy control.

ALS multiparametric drug screen
Given the rich multiparametric readout of the ALS hyperexcitability 
phenotype, we sought to identify disease-correcting drug candi-
dates based on their specific effects on disease activity profiles. We 
screened 1902 compounds from the Selleck bioactive compound 
library, which includes FDA-approved compounds, active pharma-
ceutical agents, chemotherapeutic agents, and natural products. 
Compounds were mapped to points in the multidimensional space 
defined by the 153 features in their activity profiles (Figure 2E), with 
distances between them reflecting the degree of similarity between 
the phenotypes they produced. We discovered a cluster of com-
pounds that caused the disease-allele–containing cells to change 
and resemble control healthy cells, providing a pool of promising 
disease-correcting candidates (Figure 3C). Among these were phos-
phodiesterase inhibitors and inhibitors of the mTOR pathway, both 
previously associated with neuroprotection (Nakamizo et al., 2003; 
Mandrioli et al., 2018). Because our pilot screen suggested that dif-
ferent activity profiles between the disease and control states reflect 
the modulation of activity, as opposed to a complete blockade of 

FIGURE 1:  Cellular activity extraction pipeline. (A) Schematic overview of the differentiation, plating, maturation, and 
imaging (whole field, 5×) of GCaMP6-positive human ALS patient–derived motor neurons. (B) Analysis of the 
fluorescence imaging data at a single time point does not allow for the identification of inactive cells (“original” & 
“pre”). Temporal projection of the calcium imaging data over 45 s, combined with spatial filtering, enables the 
identification of all cells regardless of activity (“post” & “cells”). (C) Fluorescence traces of cells identified in B. 
(D) Spontaneous neuronal activity in DMSO-treated cells is eliminated by TTX treatment.
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activity, we also investigated the effects produced by calcium-chan-
nel blockers that abolish the GCaMP signals triggered by action po-
tentials. While these blockers clustered together, they were sepa-
rated from the control phenotype and were not disease correcting, 
highlighting the sensitivity of the multiparametric approach to dis-
criminate distinct activity states. Multiple morphological features (46 
total) extracted for each cell revealed additional phenotypic differ-
ences between the hits identified here and also for calcium-channel 
blockers and identified differences across groups of compounds 
with distinct mechanisms of action (Supplemental Figure 4). Mea-

surement of these morphological features can help identify which 
cell types are most sensitive to a particular compound and will also 
enable disease-based changes in morphology and its recovery to 
be determined.

After excluding compounds that resulted in potent inhibition of 
neuronal activity (including, for example, 5 µM TTX; see Supple-
mental Table 1), we selected the 65 compounds with the shortest 
distance (strongest similarity) to the control profile and tested an 
additional six replicates for each candidate over two independent 
recording sessions. We advanced the 80% most consistent 

FIGURE 2:  Parameterization of cellular activity. (A) Traditional peak counting does not identify temporal (e.g., uneven 
interspike intervals) or amplitude differences in calcium transients. (B) A combination of differential and continuous 
wavelet transforms accurately identifies peaks in activity. (C) Automated peak deconvolution quantifies the rise, apex, 
fall, amplitude, and full width at half maximum of an individual peak. (D) Cellular peak parameters are quantified relative 
to three baselines: well background intensity, cell minimum intensity, and intensity at the peak onset (left). Signal-wide 
features of activity, including dispersion metrics (minimum, maximum, mean) and the area under the curve (AUC), are 
automatically captured (right). (E) Breakdown of the 153 activity parameters computed for each cell. A single node 
under the differential and wavelet methods is expanded for clarity; the other nodes share the same parameter subtree. 
(F) Spontaneous GCaMP activity analysis of SOD1A4V human motor neurons compared with isogenic corrected motor 
neurons (39b-cor) reveals variable differences across five example parameters. Features are normalized to the average 
of the 39b group and presented as mean ± SEM using Welch’s t test.
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compounds (Supplemental Figure 3C) for further analysis. After or-
dering these compounds by their ability to normalize the disease 
state back to a healthy phenotype, as measured by the distance 
between the multiparametric profiles, the three compounds that 

most strongly and reproducibly normalized activity in the disease 
motor neurons were apremilast CC-10004 (phosphodiesterase in-
hibitor), halcinonide (glucocorticoid receptor agonist), and PU-H71 
(a heat shock protein inhibitor).

FIGURE 3:  Multiparametric drug screening strategy. (A) Schematic illustrating that both genetic mutation correction 
and drug action can restore a healthy activity phenotype in a diseased cell line. (B) Ranking of the top 25 individual 
parameter differences between the disease (39b) and corrected cell line (39b-cor) reveals the relative importance of 
features. (C) Hierarchically clustered heatmap of 1902 compounds from the Selleck bioactive library 6 and 24 h after 
treatment; each compound is represented using the 153 activity features normalized to the control phenotype. 
Compound name, mechanism of action, and molecular targets of the four hits that resulted in cellular activity closest to 
the healthy phenotype at each time point are shown. (D) Comparison of the multiparametric activity signatures for the 
disease phenotype (39b), the healthy phenotype (39b-corrected), a hit compound (apremilast), and a non–hit compound 
(obatoclax mesylate) on 39b motor neurons (MN) distinguishes activity patterns. Features are ordered based on 
preassigned positions in the grid and normalized to fit on the same intensity scale. (E) Comparison of the negative 
control (DMSO) and three hits (apremilast, halcinonide, PU-H71) that replicated in a validation screen on 39b MN reveals 
similar activity profiles and distinct molecular structures across the hits. (F) Depiction of phenotypic signatures capturing 
complex activity phenotypes in control and disease neuronal populations (first two rows). The action of an effective drug 
on diseased cells restores the control (healthy) phenotype (third row). No phenotypic signatures are produced for 
inactive cells (fourth row). The comparison of signatures provides a basis for measuring drug efficacy.
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Next, we wanted to confirm the benefits of using a multipara-
metric method over the traditional unidimensional approach. In ad-
dition to the 48 compounds that abolished neuronal activity (Sup-
plemental Table 1), that is, compounds that resulted in complete 
activity suppression as opposed to a normalization of the disease 
activity profile, we also identified hits that reduced only the total 
number of calcium transient peaks, the top three of which included 
dexmedetomidine (adrenergic receptor agonist), bimatoprost (pros-
tanoid receptor agonist), and tianeptine (atypical antidepressant). 
The hit compounds obtained using the multiparametric approach 
were approximately 20% closer to the targeted healthy control than 
those obtained from a one-dimensional peak count metric. These 
results demonstrate that utilization of multiparametric selection cri-
teria offers superior specificity by imposing strict constraints, reduc-
ing the number of hits to only those that reverse the disease pheno-
type across all 153 dimensions. Therefore, screening against 
multiple disease-related parameters, as opposed to a single one, is 
likely to lead to the identification of completely different sets of 
compounds with distinct mechanisms of action and molecular tar-
gets and which are therefore likely to have quite different efficacy 
profiles for the disease in patients.

Activity fingerprints
Next, we compared the hit compounds by converting their activity 
profiles into quantifiable visual representations (phenotypic signa-
tures), negating the need to perform dimensionality reduction by 
providing a lens into the multidimensional activity space. We found 
the activity signatures of the ALS disease phenotype and the healthy 
phenotype to be quite different, while the signatures from com-
pounds that closely matched the control phenotype were similar to 
each other and to the healthy profile (Figure 3D). Compounds that 
introduced changes distinct from the disease or healthy state (po-
tential undesired effects) had very different signatures (Figure 3D). 
Interestingly, while the activity signatures of the disease-phenotype–
correcting hits were comparable, their molecular structures and tar-
gets were different (Figure 3E). These results suggest either that 
multiple different molecular mechanisms can be utilized to normal-
ize pathological excitability profiles in SOD1A4V motor neurons or 
that the off-target effects of these quite distinct compounds might 
be similar, although the latter is statistically most unlikely.

DISCUSSION
We have designed a computational approach that combines the 
temporal and spatial resolution of high-content microscopy imaging 
and automated high-throughput screening with the scalability of 
cloud computing to accelerate the search for new molecules capable 
of rescuing an ALS motor neuron disease phenotype. The pipeline 
processes imaging data from individual wells in parallel to maximize 
throughput. Imaging artifacts are removed by a multilayered correc-
tion algorithm, and objects are identified by CellProfiler modules 
combined with a temporal profile analysis. While we collect informa-
tion about the morphology, eccentricity, and surface area of cells, our 
analytic approach focuses on the dissection of temporal dynamics of 
GCaMP activity. The calcium dynamics encoded in each time series 
are parameterized into 153 features that are normalized and com-
bined to form an overall representation of cellular activity (an activity 
fingerprint or profile). The generation of a multiparametric disease 
profile combined with unbiased hierarchical clustering of drug effi-
cacy over 153 parameters simultaneously allowed us to identify 
drugs that can convert a disease profile into a healthy profile and also 
identify potential undesired side effects from the perspective of a 
distortion in the multidimensional representation of healthy activity.

Through our large-scale bioactive compound drug-disease phe-
notype correcting screen, we identified apremilast, halcinonide, and 
PU-H71 as compounds that normalize the multifaceted GCaMP-
based disease activity phenotype back to a healthy phenotype, pro-
viding a proof-of-principle for a new drug screening paradigm for 
ALS and other diseases, though a future study is needed to identify 
the molecular targets underlying the action of these three com-
pounds. Although there are similarities in the chemical structures of 
apremilast, halcinonide, and PU-H71, they are not members of the 
same class of molecules and have different annotated molecular tar-
gets, specifically phosphodiesterase 4, corticosteroid hormone re-
ceptor, and heat shock protein 90, respectively. It is, therefore, pos-
sible or even likely that the observed drug effects are the result of 
interactions with different targets; thus any structure–activity rela-
tionship (SAR) campaign following this kind of multidimensional 
phenotypic screen will have to embrace the complexity of the dis-
ease and include a multitarget deconvolution process. This strategy 
may be a necessity for the development of successful therapeutics 
for complex neurological disorders such as ALS and represents a 
move from single-target identification.

The ability to generate complex stem cell–derived neuronal 
models for diseases such as ALS has provided a powerful tool for 
understanding the known genetic forms of the disease. However, 
for most ALS patients the cause of their disease is unknown and 
classified as sporadic. The development and execution of an auto-
mated and unbiased high-throughput multiparameter activity profil-
ing platform provides an unprecedented opportunity to interrogate 
neurons derived from many sporadic patient stem cell lines. Such an 
interrogation could lead to the identification of patients with a 
shared abnormal activity profile, and in this way, aid our understand-
ing of common complex changes in neuronal activity in disease con-
ditions, as well as the discovery of compounds that can rescue a 
comprehensive disease phenotype to a healthy one.

We evaluated the performance of our computational approach 
in terms of its usability, speed, and accuracy. In comparison to previ-
ous approaches, the automated measurement of 153 features of 
activity for each cell removes the inherent bias associated with man-
ual selection of a subset of features and provides a highly sensitive 
framework for identifying activity disturbances. From a usability 
standpoint, this negates the need for user-specified parameters that 
are often arbitrarily chosen and biased. Additionally, our cloud-
based design can theoretically scale to any number of wells pro-
vided that sufficient computing resources are available. Because 
wells are processed in parallel and the results combined in constant 
time, increasing the number of compounds in a drug screen only 
marginally increases total processing time. Prior assays that include 
manual interventions are time-consuming, error-prone, and often 
not reproducible. Once adjusted for the type of cells being studied 
and the recording frequency, our approach does not require human 
intervention and can be applied to any number of recordings, pro-
vides comprehensive activity profiles, and is entirely reproducible. 
This is particularly useful when studying complex genetic diseases 
such as ALS, because it allows for comparison of the activity profiles 
of different mutations under the same treatment. Therefore, we ar-
gue that this computationally efficient and deterministic approach, 
one that can be launched by the push of a button, is superior to 
previous methods in many regards.

In principle, our approach can be used at any imaging frequency 
with any cell for any cellular functional activity that can be fluores-
cently tagged and for which dynamics is a biologically relevant 
property. Because it is readily deployable on cloud infrastructures, it 
provides a seamless way to interrogate disease activity and the 



Volume 33  May 15, 2022	 Multiparametric profiling platform  |  7 

corrections in this phenotype introduced by drug actions. However, 
the reliance on dynamic data alone excludes morphological changes 
such as cell size and dendritic arbor changes, which may be impor-
tant for disease progression. Previous studies, as well as our own 
observations, indicate that the soma size of motor neurons carrying 
the SOD1A4V mutation is altered as the disease progresses (Iwai 
et al., 2016; Dukkipati et al., 2018). Researchers interested in look-
ing at broader phenotypes beyond electrophysiological properties, 
such as image-based features (Chandrasekaran et al., 2021), could 
readily incorporate these into the pipeline, as a route to uncovering 
unexpected and diverse phenotypes in an unbiased way.

We anticipate that sophisticated phenotypic screens that em-
brace the complexity of cellular function and delineate multiple fac-
ets of drug action will accelerate the discovery of successful and 
novel therapeutic interventions. Our findings demonstrate the exis-
tence of multiple complex and previously unexploited facets of the 
ALS excitability phenotype and the discovery of compounds that 
robustly correct many parameters of this phenotype simultaneously. 
This discovery, coupled with the sensitive cloud-based high-
throughput multiparametric framework for capturing and analyzing 
subtle changes in cellular activity, represents a substantial leap for-
ward for comprehensive disease profiling and drug screening in the 
pursuit of novel treatments for ALS and other diseases. Improve-
ments to the earliest phases of the translational process, which are 
inextricably linked to the success of clinical trials, have the potential 
to both significantly reduce costs and health risks for patients as well 
as improve efficacy. Ultimately, the combination of human stem cell 
models and novel multiparametric screening approaches have, we 
argue, the promise to lead to safer and more effective therapeutics 
for ALS.

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Single-cell GCaMP6 screen
iPSC’s were expanded and differentiated into motor neurons using 
an embryonic body–based (EB) protocol as previously described 
(Kiskinis et al., 2014). At day 24, EBs were dissociated to single cells 
with accutase, frozen, and stored in liquid nitrogen until fluores-
cence-activated cell sorting (FACS) purification of motor neurons 
that were NCAM (BD Biosciences; #561903) positive and EpCAM 
(BD Biosciences; #347198) negative. Motor neurons were cocul-
tured in Greiner Bio-one 384-well cell culture plates at a density of 
7500 cells per well with 10,000 glial cells obtained from P0–P2 
C57BL/6 pups (Jackson Laboratory) as described in Di Giorgio et al. 
(2008). Mouse procedures were approved by Boston Children’s 
Hospital Institutional Animal Care and Use Committee (IACUC).

Cells were plated in the presence of 10 µM ROCK inhibitor 
Y-27632 (Tocris) and 1 µM EDU (Thermo) in motor neuron media 
(Neurobasal media) (NB; Invitrogen, Carlsbad, CA), supplemented 
with B27, N2 supplement, glutamax, and nonessential amino acids 
(GIBCO, Thermo Fisher), 10 ng/ml each of BDNF, GDNF, and CNTF 
(R&D Systems, Minneapolis, MN), and 0.2 mg/ml ascorbic acid 
(Sigma). After incubation for 2 d, media was replaced every 3 or 4 d 
by NB. LV-synapsin-GCaMP6 viral infections were performed in 
weeks 2 and 3 at a multiplicity of infection (MOI) of 5. After 3–4 wk, 
synaptic blockers were added to each well at the following concen-
trations: bicuculline 25 µM, strychnine 10 µM, AP-5 100 µM, CNQX 
10 µM. Synaptic blockers are used to prevent cross-talk and network 
activity between adjacent cells, allowing us to study single-cell excit-
ability. After 2 h, chemogenomic library compounds from the Sell-
eck Bioactive Compound Library (plates 3651–3656; ICCB Long-

wood Screening Facility) were added at a final concentration of 
3 µM. DMSO was used as a negative control at 0.03%. TTX 5 µM in 
0.03% DMSO was used as a positive control. After 6 and 24 h, the 
plates were recorded for 4–5h in the Arrayscan XTI (Thermo Fisher) 
with excitation at 485 nm and emission at 521 nm. Recordings were 
acquired at 1 Hz for 45 s over two independent sessions. We found 
1 Hz to be sufficient to capture major calcium transients in motor 
neurons, but the platform is not specific to this imaging rate and can 
work with any acquisition frequency.

Illumination correction
Uneven illumination was corrected across the field of view using a 
CellProfiler (McQuin et al., 2018) pipeline that sequentially applies 
two built-in modules. The module CorrectIllumCalculate was first 
included to calculate the illumination function from all images across 
cycles. The smoothing method was set to Median Filter with default 
settings to capture global illumination disparities rather than cell-
specific variations in brightness. The other parameters of the mod-
ule were left unchanged. The SaveImages module was then added 
to save the output upon the last cycle as a 32-bit floating-point tiff 
image.

Maximum projection
The maximum value of each pixel across all frames in the recording 
was computed and saved as an 8-bit frame representing the maxi-
mum projection of the recording using version 3.7 of the Python 
programming language (Python Software Foundation, 2018).

Cellular fragment identification
Cells were first identified and morphologically characterized from 
the maximum projection image by applying a CellProfiler (McQuin 
et al., 2018) pipeline that combines 13 sequential modules. A sam-
ple maximum projection subimage is followed through each mod-
ule in Supplemental Figure 1B. Starting with the original image (b1), 
a median filter is applied to blur away small artifacts, with the typical 
artifact parameter set to 3 (b2). Neurites are then computationally 
enhanced to become more visible and identifiable using the Enhan-
ceOrSuppressFeatures module, with the tubeness enhancement 
method and smoothing scale set to 2 (b3). The ImageMath module 
is used to average the enhanced features with the blurred image, 
generating a cleaner delineation of the contours of interest (b4). 
Clustering-based image thresholding is performed using the Otsu 
method to separate foreground from background pixels using the 
IdentifyPrimaryObjects module (b5). Simultaneously, objects with 
diameters ranging from 5 to 35 pixels are identified and their con-
tours outlined (b6). The IdentifySecondaryObjects module is used 
to identify secondary objects such as neurites using the propagation 
method, which helps find dividing lines between clumped objects 
and refine cell segregation (b7). The brightness, morphology, and 
texture of individual fragments are characterized using a combina-
tion of modules, specifically MeasureImageIntensity, MeasureOb-
jectIntensity, MeasureObjectSizeShape, and MeasureTexture. Con-
solidation of the location of all pixels belonging to cellular fragments 
generates a numerical mask saved as a 16-bit tiff image that can be 
used to identify all or specific subsets of cells (b8). Background pix-
els are assigned a value of 0 while other pixels are assigned a unique 
fragment-specific integer identifier between 1 and K, where K is the 
total number of fragments identified in the well.

Spatial proximity assessment
Pairwise spatial proximity of fragments is assessed by measuring 
the Euclidean distance between their centroids. Centroids are 

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e21-10-0481
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calculated using Python’s SciPy library. This generates an N×N matrix, 
where N is the number of fragments and each entry in the matrix the 
distance in pixels between two fragments.

Activity similarity assessment
Pairwise time series similarity is assessed using the standard imple-
mentation of the dynamic time warping algorithm included in ver-
sion 3.5 of the mlpy Python library (Albanese et al., 2012) with de-
fault parameters. An unnormalized minimum-distance warp path is 
computed for each pair of signals. An N×N matrix is thus con-
structed, where N is the number of fragments and each entry in the 
matrix the cost associated to the warping path between the signals 
of two fragments.

Cellular fragment consolidation
The matrices described in Supplemental Figure 1D are first normal-
ized to their respective means through division. The geometric 
mean of their normalized forms is then computed from the Python 
implementation included in the scipy.stats package included in 
SciPy version 1.2.1 (Jones et al., 2001), yielding a matrix with each 
entry being a unified distance between each pair of fragments. The 
resulting matrix is fed into an agglomerative hierarchical clustering 
algorithm (Müllner, 2011) that utilizes complete linkage to merge 
the subtrees. More specifically, the scipy.cluster.hierarchy library is 
used to compute the linkage matrix and to retrieve flat clusters 
from it, with a threshold of 0.1. The threshold corresponds to the 
height at which the dendrogram resulting from the hierarchical 
clustering is cut. Branches below the cut threshold are pruned, 
yielding consolidated fragments. Branches above the threshold are 
deemed part of distinct cells. The cell mask previously generated is 
updated so that pixels belonging to the same cell are assigned the 
same unique integer identifier. The identifiers assigned range from 
1 to N, where N is the total number of cells after the fragments have 
been recombined.

Extraction of cellular activity
From the whole-cell mask obtained by combining cellular fragments, 
a mapping from unique cell identifiers to their respective set of pix-
els is constructed. The activity of individual cells is extracted by aver-
aging at each time point the brightness of their respective pixels.

Decay correction
The decay in fluorescence is estimated by averaging the decay of 
randomly selected pixels from each well. Specifically, 100 pixels from 
each well were randomly selected and grouped. A first-degree ex-
ponential decay function was fitted to the aggregated data using the 
scipy curve fitting module, with the model function y = ae–bx +c, the 
bounds constricted to the positive range, and an initial guess of the 
parameters of a = 2000, b = 0.01, and c = 200. The resulting fit curve 
is normalized through division by its maximum value. The activity of 
each cell over time is then divided by this normalized decay curve.

Background subtraction
Using the cell mask to identify background pixels, a sample of 
10,000 background pixels are randomly selected and their intensity 
averaged at each time point. This generates a time series that esti-
mates background intensity over time. This curve is then subtracted 
from the activity of each cell.

Peak identification
Peaks in cellular activity were identified using code derived from the 
find_peak function of the scipy package. Peaks were labeled on 

their rising edge, with a minimum interpeak distance of 1. Troughs 
were identified by applying the same approach onto the inverse of 
the time series. Peaks were also identified using the continuous 
wavelet transform method provided in the scipy package. Wavelets 
of width up to 4 (W4) and up to 8 (W8) were used separately to 
identify distinct sets of peaks, each time with a gap threshold of 3 
and a maximum distance of half the maximum width. The W4 ap-
proach used a minimum ridge line length of 3, a minimum signal-to-
noise ratio (SNR) of 1, and a noise percentile of 10. The W8 ap-
proach used a minimum ridge line length of 5, a minimum SNR of 2, 
and a noise percentile of 10.

Baselines
Three baselines were established to compute individual peak char-
acteristics. Because background intensity was subtracted from 
each signal, measurements relative to the y = 0 line were used to 
obtain features relative to the background intensity. The respective 
minimum fluorescence value of each cell across the 45-s recording 
was used a second baseline. The third baseline was determined 
for each peak by taking the fluorescence value at the onset of the 
peak.

Peak threshold
For each baseline, a peak threshold was computed to distinguish 
noise from actual peaks. The noise level was established by taking 
the amplitude distribution of all peaks in the positive control 
wells, here those treated with TTX. The spontaneous peak level 
was established by taking the amplitude distribution of all peaks 
in the negative control wells, here those treated with DMSO. The 
peak threshold was then calculated using the Otsu method from 
the combined distribution of peak heights using the SciPy Python 
package.

Peak features
Under the differential method, for each peak and each baseline, 
amplitude was measured relative to the baseline. Peaks whose 
height fell below the minimum peak threshold were discarded. 
Peak count was computed as the remaining number of peaks. 
Rise time was calculated as the time between the peak apex 
and the previous trough. Fall time was calculated as the time 
between the peak apex and the following trough. Peak width 
was measured as the time between the onset of the rise and the 
end of the fall. The area under a given peak was computed us-
ing the trapezoidal rule along the width of the peak. The aver-
age and variance of the time interval between peaks was also 
calculated.

Under the wavelet methods, the full width at half maximum was 
used as a reference point for computing the peak features. Rise time 
was calculated as the time between the half-maximum point along 
the rise and the peak apex. Fall time was calculated as the time be-
tween the peak apex and the half-maximum point along the fall. The 
other peak features were obtained using the same logic used under 
the differential method. 

Signal features
Statistical metrics including the minimum, maximum, mean, and 
variance of each trace were computed using the Python numpy 
package version 1.18 (van der Walt et al., 2011). The area under the 
entire signal was approximated using the trapezoidal rule provided 
in the same package. The power spectral density of each trace was 
obtained using the periodogram module of the scipy.signal 
package.



Volume 33  May 15, 2022	 Multiparametric profiling platform  |  9 

Multidimensional activity clustering
Individual cell activity is described by the set of 153 features. Indi-
vidual well activity is computed as the mean of each feature across 
all cells in the well. The control phenotype is obtained by averaging 
the features from the control wells, here the healthy control line 
(39b-cor). The disease activity phenotype is obtained by averaging 
the features from the disease wells, here ALS (39b). For each well, 
the features were normalized to the control phenotype features us-
ing Cytominer version 0.1.0 (Singh et al., 2020), which normally dis-
tributes the data around the control phenotype. Pairwise compari-
son of well activity phenotypes is evaluated by measuring the 
Euclidean distance between the wells in the multidimensional fea-
ture space using the SciPy spatial module. The resulting matrix is 
plotted as a hierarchically clustered heatmap using seaborn version 
0.9.0 (Waskom, 2021). Compounds that result in similar activity phe-
notypes are observed as clusters in the heatmap. From the pairwise 
distance matrix, wells with activity phenotypes most similar to the 
control phenotype are extracted and ranked.

Activity signatures
For each well, each feature is normalized to the [0;1] range based on 
all observed values. The normalized feature vector representing 
each well is converted into a matrix of size 13 × 13 using the Python 
package numpy. The first 153 entries in the matrix correspond to the 
normalized features; the remaining entries are set to 0. The resulting 
matrix is used as the well activity signature and visualized in the form 
of a color-coded grid generated using the Python package matplot-
lib (Hunter, 2007). Grid squares are colored based on a grayscale 
gradient where 0 is black and 1 is white. The position of each feature 
in the grid is preassigned to allow direct comparison of signatures.

Extraction of morphological features
A total of 46 features characterizing individual cell shape were ex-
tracted using the CellProfiler module MeasureObjectSizeShape. 
The Euler number and Zernike polynomial coefficients were not in-
cluded for further analysis. The 15 morphological features depicted 
in Supplemental Figure 4 were standardized and averaged over two 
runs for each well. Compounds were grouped by mechanism of ac-
tion, providing a distribution of values for each morphological fea-
ture and each group. The probability density function of each vari-
able was estimated using kernel density estimation and plotted so 
that each distribution density is normalized independently using the 
seaborn package. The description of each measurement collected 
is available in the CellProfiler manual at http://cellprofiler-manual.
s3.amazonaws.com/CellProfiler-3.0.0/modules/measurement.
html#measureobjectsizeshape

Incorporating additional parameters into the analysis 
pipeline
The computational pipeline presented in this article supports the 
addition of new features beyond the provided electrophysiological 
properties. Image-based features could be extracted for each cel-
lular footprint by modifying the provided CellProfiler cell segmenta-
tion pipeline. By including modules that characterize the morphol-
ogy of cells, researchers interested in morphological aberrations 
could incorporate measurements such as cell size and shape-related 
metrics. The script responsible for extracting cell and well features is 
located in the analysis package of the CELLXPEDITE codebase. A 
mapping from features to values is defined for each cell, providing 
a complete dictionary of features. By adding key-value pairs to the 
dictionary, new features could be combined with activity features to 
define broader phenotypes.

CELLXPEDITE platform
We have released our implementation of the cloud-based process-
ing and analysis platform as an open-source software (https://
github.com/brunoboivin/cellxpedite). It is currently designed for 
deployment on Amazon Web Services, but it is also compatible with 
local clusters and other cloud computing service providers with 
minimal changes to the deployment scripts.
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