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A B S T R A C T

Human and livestock mobility are key factors in the transmission of several high-burden zoonoses such as rift valley fever and trypanosomiasis, yet our knowledge of
this mobility is relatively poor due to difficulty in quantifying population-level movement patterns. Significant variation in the movement patterns of individual hosts
means it is necessary to capture their fine-scale mobility in order to gain useful knowledge that can be extrapolated to a population level. Here we explore how the
movements of people and their ruminants, and their exposure to various types of land cover, correlate with ruminant ownership and other demographic factors which
could affect individual exposure to zoonoses. The study was conducted in Busia County, western Kenya, where the population are mostly subsistence farmers
operating a mixed crop/livestock farming system. We used GPS trackers to collect movement data from 26 people and their ruminants for 1 week per individual in
July/August 2016, and the study was repeated at the end of the same year to compare movement patterns between the short rainy and dry seasons respectively. We
found that during the dry season, people and their ruminants travelled further on trips outside of the household, and that people spent less time on swampland
compared to the short rainy season. Our findings also showed that ruminant owners spent longer and travelled further on trips outside the household than non-
ruminant owners, and that people and ruminants from poorer households travelled further than people from relatively wealthier households. These results indicate
that some individual-level mobility may be predicted by season and by household characteristics such as ruminant ownership and household wealth, which could
have practical uses for assessing individual risk of exposure to some zoonoses and for future modelling studies of zoonosis transmission in similar rural areas.

1. Background

Zoonoses cause substantial morbidity and mortality in human and
animal populations across the world, threatening less economically
developed countries due to the lack of resources needed to efficiently
detect and respond to disease events. Because a significant proportion
of people are dependent on livestock for their livelihoods in the rural
areas where many of the world's poorest communities reside, these
diseases are a major factor in perpetuating poverty [1–3]. Zoonotic
transmission is ultimately dependent on contact between hosts, whe-
ther direct human-to-animal contact or indirect contact through, for
example, environmental contamination or vector-borne transmission
[4,5]. Zoonoses that are spread directly from host to host include
zoonotic influenza and rabies, others like taeniasis/cysticercosis and
brucellosis are primarily spread through contact with infected animal
products; and vector-borne zoonoses such as trypanosomiasis and Rift
Valley Fever (RVF) can be spread though the bite of infected insects. All
these types of contact are driven by the movements of human and an-
imal hosts, since contact (and therefore, pathogen movement) is in-
trinsically dependent on host movement [6].

We know that environmental factors are important in the

emergence and maintenance of many zoonotic diseases [4,7,8]. How-
ever, suitable environmental conditions are important but not sufficient
for zoonotic disease spread, as dynamic host populations must also
interact through movement and behaviour to facilitate transmission.
Host movements across landscapes can lead to the emergence of pa-
thogens in new hosts and environments and contribute to maintenance
of endemicity in old ones [9,10]. Thus, many studies have examined
host movement between environments in relation to zoonotic disease
spread. For example, vector-borne disease transmission is highly het-
erogeneous amongst both individual hosts and the landscapes that they
move in [10–12] and outbreaks of vector-borne diseases such as RVF
are known to be sensitive to both host movement and landscape char-
acteristics, with factors such as host densities and movement patterns
contributing to disease maintenance [10,13].

Understanding the movements of people and their livestock, how
they interact with their environments and how these correlate with
population characteristics could provide crucial information to aid the
control of zoonoses, yet few studies have measured these movements
simultaneously. Human mobility is important to zoonotic disease risk
because it informs where people may spend time with livestock or wild
animal populations, and animal mobility is important because it
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informs where animals may be a risk of exposure from other animals or
the environment, but transmission ultimately occurs when hosts meet,
whether directly or indirectly. By measuring mobility simultaneously, it
is possible to map when, where, and during what kinds of mobility
animal-human interactions occur for both populations. For example,
knowledge of how people and their livestock move together could help
quantify the amount of contact between them, which is a risk factor for
transmission of zoonoses such as Cryptosporidium spp. [14] and zoonotic
Escherichia coli [15]. Moreover, the land utilisation of hosts is also re-
lated to exposure to some zoonoses: for example, the time spent on
different types of land has been shown to affect individual risk of in-
fection of Crimean-Congo haemorrhagic fever (CCHF) [12], and the
home ranges of individual hosts have been used to predict threshold
host density for the control of foot and mouth disease in Australia [16].
Knowledge of host movement patterns therefore could aid the design of
more targeted interventions and behavioural modifications that take
into account high risk activities for zoonosis transmission.

Here we present an exploratory study with the aim of measuring the
movement patterns of humans and ruminants in a region of western
Kenya where several important zoonoses including trypanosomiasis,
cysticercosis and Q fever have been previously shown to be endemic
[17-19]. We collected GPS data (satellite-informed locations taken at
regular intervals) from humans and their ruminants. From these, we
calculated measures including the home ranges of individuals, the time
they spent on different types of land, and the time spent, distance tra-
velled and frequency of trips outside of the household. By exploring
how mobility varies between populations with different demographic
characteristics, the study shows how GPS data can provide useful in-
formation on their movement patterns. Further studies using similar
methods could verify the results shown here and thus help inform how
future zoonotic disease interventions are targeted.

2. Methods

2.1. Study area and sampling procedure

The study was conducted in Busia County (Fig. 1) in the Lake Vic-
toria basin region of western Kenya. The human population is just over
800,000 people [20] mainly composed of subsistence farmers operating
mixed crop-livestock farming systems [21]. According to the latest DHS
survey, 89% of people in Busia live in a rural area (as defined by the
national census) and 83% of rural households own livestock [22]. Of
these, 60% own cattle [22] usually kept on a mixture of tethered and
free grazing systems on common grazing lands [23].

We used clustered random sampling to select 55 households within
Busia County. Of the 181 smallest administrative units within the
county (known as sublocations), 11 were selected at random to obtain
data from a broad geographical range. Within these we visited five
households for participation in the study to optimise the use of the
limited number of GPS trackers. In the absence of adequate household
density data, we used random generation of geographical coordinates
within each sublocation followed by identification of the household
closest to the coordinates within 200m to choose the households, using
protocol established by other studies in this area [21]. This method will
necessarily result in bias toward selection of rural households, which
we deemed acceptable given the high proportion of rural households in
Busia County. We conducted the survey at all study households and the
GPS tracking at 26 randomly chosen of the 55 originally selected
households (all of whom agreed to participate), in 6 of the 11 sub-
locations. The adult who spent the most time tending to the ruminants
was asked to wear the tracker, or, if there were no ruminants, the
household head. See the supplementary information for details.

2.2. Data collection

The survey (see Supplementary information) was administered to

the consenting adults in each household individually. The questions
addressed the following: (a) basic demographic and household in-
formation, (b) an individual's movements and (c) their activities in-
volving livestock. The survey allowed estimation of the relative wealth
of households by scoring the answers to 10 standardized questions
using the 2011 Poverty Probability Index for Kenya [24].

For the GPS data collection, participants were given a GPS tracker
(i-gotU GT-600, accuracy of 25m [25]) fitted to a lanyard for 1 week,
and asked to wear it during the daytime. Simultaneously, if the
household kept ruminants then one of these (preferably a cow or bull)
was chosen through random number generation to wear an identical
waterproofed GPS tracker on an adjustable collar. If the household kept
no ruminants, only the participant was given a tracker to allow for
comparison of movement patterns between people with and without
ruminants. At the end of the week, the researchers returned to the
household to collect the trackers and download the data.The household
survey and GPS tracking were conducted in short rainy season (July/
August 2016) and the GPS tracking was repeated during the dry season
(November/December 2016) with the same participants where pos-
sible, to capture potential differences in movement patterns during
different seasons. These seasons are named in accordance with climate
classifications for this region of Kenya [26].

2.3. Data analysis

Data were mapped in QGIS (v2.18 [27]) for inspection, then cleaned
and analysed in R software (v3.4.2 [28]) using the trip [29], lme4 [30]
and glmmTMB [31] packages. A linear interpolation algorithm was used
to clean the data and calculate one point per minute over the collection
period. From these data, we calculated five movement measurements
for each subject: the time spent, maximum distance travelled and fre-
quency of trips outside of the household, the home range of the subject
and the time spent on different types of landcover. A trip was defined as
the time when the location of a subject was recorded 100m or farther
from their household for> 15min. Home ranges were calculated using
the minimum convex polygon method. Land cover data for the region
were obtained from Wardrop et al. [32] and used to calculate the time
spent by people and ruminants on each of 5 types of land cover in the
classification: artificial/bare land (defined in the classification as non-
vegetated land), crops/grassland, woodland/shrubs, rice paddies and
swampland.

We first conducted univariable analyses using linear regression for
the four movement measures (time spent, maximum distance travelled
and frequency of trips outside of the household), and beta regression for
the proportion of time spent in different types of land cover. The cov-
ariates used, given in Table 1, were selected from covariates used in a
previous study of a zoonosis in this region [19] and had a priori plau-
sibility. We log transformed the data for time spent on trips, maximum
distance travelled and home range to ensure an approximately normal
distribution and used linear models to examine their relationships with
the covariates. We then combined the statistically significant factors
(p < .05) from the univariable analyses into a multivariable model to
quantify their impact in context of each other. We also tested for in-
teractions between season and statistically significant covariates. Be-
cause of the hierarchical nature of the data (individuals nested in
clusters, with repeat measurements per individual), we used linear
mixed models (LMMs) and generalized LMMs (GLMMs) for the multi-
variable analyses. All mixed models had the individual household
nested within the sublocation as a random effect, to account for var-
iation between individuals from different households and within dif-
ferent sublocations. When analysing time spent on different types of
land as the measured outcome, we calculated the number of minutes
spent on and off each of the land types, and then used a beta family in a
GLMM to obtain odds ratios for the different effects (see Supplementary
information).
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3. Results

GPS data were successfully collected from 26 humans and 20 ru-
minants from 26 households in the first season, and from 25 humans
and 15 ruminants in the second season (87% of the original tracked
individuals), for a total of 86 unique GPS readings. Three of the rumi-
nant GPS units were damaged on retrieval and the data could not be
extracted, two suffered battery issues and one was irretrievable. Table 1
provides some characteristics of participating households.

3.1. Movements beyond the household

Humans spent a mean of 2.4 h per trip outside of the household
while their ruminants spent 4.7 h. Humans travelled significantly fur-
ther than their ruminants on these trips, with a mean maximum dis-
tance of 1060m travelled compared to 362m for ruminants. They also
had larger home ranges, with a mean area of 7.5 km2 compared to
0.1 km2 for ruminants. Finally, humans took more frequent trips away
from the household, with a mean of 18 trips per week compared to 9 for
ruminants (Fig. 2).

Exploratory analyses using univariable linear regression with
random effects showed that some demographic covariates had statisti-
cally significant (p < .05) effects on the movement response variables
(Table 2). Ruminant owners spent longer and travelled further on trips
outside of the household than non-owners. We also observed a link
between household wealth and distance travelled on trips, with people
travelling 0.9 times farther per 10-point increase in their household
wealth. For ruminants, a similar pattern was found: the wealth of the
household was associated with both the time spent and frequency of
trips taken by ruminants on trips outside of the household, with animals
from poorer households spending more time outside of the household

Fig. 1. Map showing study location. Left: Kenya with Busia County highlighted in red. Right: Busia County with the sublocations selected for the study in yellow.

Table 1
Individual and household characteristics used in analyses.

Demographic covariates Number of
participants: Survey &
GPS

Number of
participants: GPS
only

Gender
Male 33 (43.4%) 18 (69.2%)
Female 43 (56.6%) 8 (30.8%)
Age
18–29 22 7
30–49 26 8
50–69 23 7
70+ 5 4
Main occupation
Farming/agriculture 45 18
Hunting 2 2
Trading 3 1
Other 18 4
Unemployed 8 1
Relative wealth score (PPI

Kenyaa) of participant's
household

< 30 16 9
30 to 50 24 9
51 or more 12 8
Ruminant ownership of

participant's household
No ruminants 12 6
Ruminants 40 20

a PPI Kenya=Poverty Probability Index for Kenya 2011, see Supplementary
information for details.
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and taking more frequent trips. Differences in trip frequency were not
associated with any of the covariates tested for humans.

We found significant differences between the two seasons in the
distances participants travelled on trips and their overall home ranges
(Fig. 3). Humans spent 1.21 times longer on trips outside of the
household (p= .008), travelled 1.32 times further (p < .001) and had
home ranges that were 3.28 times larger (p= .004) in the dry season
compared to the short rainy season. No link was found between season
and trip frequency. The movement measures did not vary significantly
by sublocation in either season, and ruminant movement measures
showed no significant differences between the seasons.

Using only the significant covariates from the univariable analyses,
we then carried out a multivariable linear regression (see
Supplementary information). In these analyses, only season remained a
significant covariate, confirming the finding that in the dry season
people took longer trips, travelled further on them and had larger home
ranges compared to the short rainy season.

We tested for interactions between season and the significant

covariates from the univariable analyses, and found that season vari-
able interacted significantly with both ruminant ownership and number
of ruminants owned for the time spent and distance travelled outside of
the household. Our most relevant finding was that in the short rainy
season, ruminant owners spent almost twice as long and travelled 1.67
times further on trips outside of the household (p= .002 and .049,
respectively) compared to non-owners. Full results are presented in the
Supplementary information.

3.2. Movements and landcover

In univariable beta regression analyses we found that some of the
demographic covariates were associated with time spent on different
types of land, including ruminant ownership: ruminant owners spent
more time on wood/shrubland compared to non-ruminant owners (OR
2.79). Moreover, the odds of a participant spending time on wood/
shrubland were 1.38 times higher for each extra ruminant owned. The
full univariable results are presented in the Supplementary information.

Fig. 2. Summary of the human (A,C,E,G) and ruminant (B,D,F,H) GPS data. A,B Lengths of trips outside the household (n=934, n=306). C,D Maximum distance
travelled on trips outside the household (n=934, n=306). E,F Home ranges (n=51, n=36). G,H Frequency of trips outside the household (n=51, n=29).
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The time spent by humans and their ruminants on two types of land
cover varied significantly with season. During the dry season, people
spent less time on swampland compared to the short rainy season, and
their ruminants spent more time on artificial/bare land. The time spent
on other types of landcover did not vary significantly by season
(Table 3). We tested for the interaction of season with ruminant own-
ership for time spent on different types of land but found few interac-
tions that were significant and relevant to the focus of this paper.

4. Discussion

Host movements are critical to the propagation of some of the
highest burden zoonoses. The movement patterns that contribute to
zoonosis risk are relatively unknown, and there is little understanding
of how movements vary between different seasons and population
groups for both humans and livestock in the context of zoonotic disease.
Although this was an exploratory study limited by a small sample size
and biased toward rural households, the seasonal and demographic
differences in the movement patterns of people and their ruminants
observed indicate that these patterns are worthy of further study.

In the dry season, we found that people took longer trips, travelled
further on them and had larger home ranges compared to the short

rainy season, yet these measures for their ruminants remained similar
across the two seasons. This suggests the extra distance travelled by
people during the dry season was not done with their ruminants, which
could be because people had to travel further in the dry season to access
resources needed for the household, such as water or forage for their
livestock. We also found that ruminant owners in both seasons travelled
further and for longer than non-owners, supporting this conclusion.
This key difference in movement between seasons has been identified in
previous studies: a study done in Zambia using similar methods also
found that people living in rural areas travelled further during the dry
season [33]. However, few disease transmission models incorporate this
information, likely due to a lack of understanding of how best to ac-
count for these differences in movement.

The link between movement and household wealth indicates that
people and ruminants from relatively poorer households travelled fur-
ther than those from wealthier households in Busia County. This could
support the relevance of resource access - if people from wealthier
households have the option of accessing resources nearer to their
household, they may not make as many long-distance trips as people
from poorer households. We know that people from poorer households
often travel further to access health facilities [34]; our findings suggest
that this may extend to other types of resources, such as water and

Table 2
Univariable linear regression for movement response variables. The time spent, maximum distance and home ranges were log transformed before modelling, thus
these estimates are factor increases and decreases, while estimates for trip frequency are absolute. For ruminants, only the relevant covariates were tested.

Response variable Explanatory variable Estimate p-value

Time spent on trips outside of the household (humans) Ruminant ownership: yes [Ref= no] 1.47 [1.24, 1.76] < .001⁎⁎⁎

Number of ruminants 1.12 [1.04, 1.20] .002⁎⁎

Gender: male [Ref= female] 1.07 [0.91, 1.26] .396
Occupation: non-farmer [Ref= farmer] 1.02 [0.86, 1.20] .836
Season: dry [Ref= short rainy] 1.21 [1.05, 1.39] .008⁎⁎

Household wealth 1.00 [1.00, 1.00] .768
Age (years) 1.01 [1.00, 1.01] < .001⁎⁎⁎

Time spent on trips outside of the household (ruminants) Number of ruminants 1.32 [1.04, 1.67] .023⁎

Season: dry [Ref= short rainy] 0.95 [0.72, 1.27] .735
Household wealth 0.99 [0.98, 1.00] .008⁎⁎

Maximum distance travelled outside of the household (humans) Ruminant ownership: yes [Ref= no] 1.50 [1.25, 1.80] < .001⁎⁎⁎

Number of ruminants 1.10 [1.02, 1.18] .015⁎

Gender: male [Ref= female] 1.15 [0.97, 1.37] .107
Occupation: non-farmer [Ref= farmer] 1.21 [1.02, 1.44] .034 ⁎
Season: dry [Ref= short rainy] 1.32 [1.16, 1.51] < .001⁎⁎⁎

Household wealth 0.99 [0.99, 1.00] < .001⁎⁎⁎

Age (years) 1.00 [1.00, 1.01] .158
Maximum distance travelled outside of the household (ruminants) Number of ruminants 1.09 [0.94, 1.26] .246

Season: dry [Ref= short rainy] 0.99 [0.85, 1.15] .848
Household wealth 0.99 [0.99, 1.00] .040⁎

Home range (humans) Ruminant ownership: yes [Ref= no] 3.31 [0.81, 14.43] .111
Number of ruminants 1.20 [0.64, 2.24] .572
Gender: male [Ref= female] 1.60 [0.41, 6.28] .501
Occupation: non-farmer [Ref= farmer] 1.33 [0.36, 5.54] .677
Season: dry [Ref= short rainy] 3.28 [1.58, 7.04] .004⁎⁎

Household wealth 0.99 [0.95, 1.02] .428
Age (years) 1.03 [1.00, 1.07] .049⁎

Home range (ruminants) Number of ruminants 2.09 [1.06, 4.12] .049⁎

Season: dry [Ref= short rainy] 0.77 [0.43, 1.35] .368
Household wealth 1.01 [0.98, 1.04] .623

Trip frequency (total number of trips taken, humans) Ruminant ownership: yes [Ref= no] 1.87 [−5.11, 8.71] .594
Number of ruminants 1.05 [−1.96, 3.94] .486
Gender: male [Ref= female] 4.90 [−2.73, 10.96] .126
Occupation: non-farmer [Ref= farmer] −2.10 [−8.33, 4.14] .517
Season: dry [Ref= short rainy] −1.11 [−4.79, 2.67] .557
Household wealth 0.00 [−0.16, 0.16] .990
Age (years) −0.05 [−0.22, 0.11] .513

Trip frequency (total number of trips taken, ruminants) Number of ruminants 1.82 [−1.19, 5.88] .285
Season: dry [Ref= short rainy] 1.82 [−2.22, 5.60] .360
Household wealth 0.14 [0.00, 0.26] .038⁎

Figures in square brackets are 95% confidence intervals.
⁎⁎⁎ p < .001.
⁎⁎ p < .01.
⁎ p < .05.

J.R. Floyd, et al. One Health 7 (2019) 100081

5



forage, although further work is needed to verify our findings. A pre-
vious study in Busia County has shown that household wealth is linked
to ease of resource access and risk of infection, with poorer households
having more difficulty accessing resources and being at higher risk of
certain zoonoses (unpublished results). Since individual movements are
a key factor in zoonotic transmission, it could be that the wider-ranging
movement patterns of people and ruminants from poorer households
are putting them at additional risk of infection. Further research to
identify the types of places people and their herds travel to could pin-
point ‘hotspots’ of disease transmission.

We show that humans spent more time in swampy areas during the
short rainy season than the dry. People may be spending more time on
swampland in the short rainy season to take advantage of water sources

or grazing areas for their ruminants, or potentially as a water source for
the household. Swampland is prone to flooding, and studies of mosquito
habitats have shown that it tends to have a higher abundance of larval
breeding habitats for zoonotic vectors such as Aedes aegypti and Aedes
albopictus as well as malaria vectors (Anopheles spp.) than other types of
land [35,36]. Therefore, spending more time in swampland in the short
rainy season may be exposing both humans and their ruminants to
mosquito-borne diseases, though further analysis with a larger sample
size is clearly needed to verify this conclusion across these populations.

The use of GPS devices to track people and animals in urban and
rural settings has been previously documented [37,38] and shown to be
a reliable tool for tracking movements, with good portability, weight
and battery life. This exploratory study confirms the feasibility of

Fig. 3. Comparison of movement measures between seasons for humans (A,C,E,G) and ruminants (B,D,F,H). Points are blue where the dry season value is larger than
in the short rainy season, and red otherwise. A,B Lengths of trips outside of the household. C,D Maximum distance travelled on trips outside of the household. E,F
Home ranges. G,H Frequency of trips outside of the household.
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simultaneously tracking human and livestock movements, as this had
not previously been tested. Although the sample size was small, the
data collected from participants yielded some interesting results over
the two seasons studied. In future work, a larger sample size in this area
could provide more detailed conclusions and reveal patterns that are
generalizable to similar rural populations, particularly those with li-
vestock. To overcome the bias in household selection, high-resolution
population density data like those produced by WorldPop [39] could be
used to weight the selection of various points on the map. Nevertheless,
the data obtained by tracking individuals across the two seasons were
especially valuable, and thus a longitudinal cohort design where in-
dividuals are tracked continuously over the year could be an ideal
method to gain data on long-term and long-distance movements, thus
facilitating estimation of zoonotic disease risk on wider spatial and
temporal scales.
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