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Abstract: Magnolia officinalis Rehd. et Wils. and Magnolia officinalis Rehd. et Wils. var. biloba Rehd.
et Wils, as the legal botanical origins of Magnoliae Officinalis Cortex, are almost impossible to
distinguish according to their appearance traits with respect to medicinal bark. The application of
AFLP molecular markers for differentiating the two origins has not yet been successful. In this study,
a combination of e-nose measurements, e-tongue measurements, and chemical analyses coupled with
multiple-source data fusion was used to differentiate the two origins. Linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA) were applied to compare the discrimination results.
It was shown that the e-nose system presented a good discriminant ability with a low classification
error for both LDA and QDA compared with e-tongue measurements and chemical analyses. In
addition, the discriminating capacity of LDA for low-level fusion with original data, similar to a
combined system, was superior or equal to that acquired individually with the three approaches. For
mid-level fusion, the combination of different principals extracted by PCA and variables obtained on
the basis of PLS-VIP exhibited an analogous discrimination ability for LDA (classification error 0.0%)
and was significantly superior to QDA (classification error 1.67–3.33%). As a result, the combined
e-nose, e-tongue, and chemical analysis approach proved to be a powerful tool for differentiating the
two origins of Magnoliae Officinalis Cortex.

Keywords: Magnoliae Officinalis Cortex; multiple-source data fusion; origin; e-tongue; e-nose;
chemical analysis; feature selection; multivariate statistical analysis; discriminative model

1. Introduction

An increasing amount of attention is being given to traditional Chinese medicines
(TCMs) by people from around the world due to their long history and excellent curative
effects. TCMs are influenced by their natural environment, geographical region, time of
harvest, and other factors that contribute to their unique qualities. Multiple botanical
origins are a major feature of TCMs and demonstrate their diversity. However, the multiple
botanical origins of medicinal materials also create differences in their appearance traits
and odor characteristics, as well as quality discrepancies. The quality and efficacy of pre-
scriptions composed of medicinal materials with various origins are attracting increasing
amounts of attention. Therefore, determining ways in which the various sources of medici-
nal materials can be distinguished and their quality discerned is of great importance. The
origin of TCMs is conventionally characterized by their appearance, color, and odor, and
can be subjectively evaluated on the basis of morphology and human experience. However,
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a particular challenge regarding origin discrimination is presented owing to the similarity
of both species and their chemical composition.

The electronic nose (e-nose) is an intelligent electronic instrument designed to simulate
the process and mechanisms of human olfactory recognition. It is suitable for measuring
one or more odoriferous substances in complex systems. The intelligent taste analysis
system, the electronic tongue (e-tongue), uses artificial lipid film sensor technology similar
to the mechanism of gustatory cells on the human tongue. It can objectively and digitally
evaluate the basic flavors of bitterness, astringency, sourness, saltiness, sweetness, and
umami for food or medicinal samples. The e-nose and e-tongue fusion system, with the
significant advantage of obtaining comprehensive taste and olfactory information, could
provide an opportunity to progress from subjective to objective evaluation. Although
e-tongue and e-nose systems were initially and predominantly implemented in food flavor
examination [1–5], more attention has been paid to their exploration in respect of the design
and development of medicines [6–10], food quality classification [11–14], and disease
diagnosis [15]. Moreover, a novel nanowire device S3, similar to a portable electronic nose,
was successfully designed and served as an effective means to determine the authenticity
of the grated Parmigiano Reggiano cheese [16]. At the same time, e-noses and e-tongues
are gradually being employed in TCM research for both odor or taste determination [17]
and quality evaluation [18,19]. Multi-sensor data fusion based on e-tongues and e-noses
has the advantages of being simple and fast, and has been applied to food shelf-life
assessment [20], beer flavor classification [21], qualitative and quantitative assessment of
tea quality [22], etc., but few reports have been published about their application for TCMs.
Hong Men [21] established three classification models based on extreme learning machine
(ELM), random forest (RF), and support vector machine (SVM), to evaluate the efficiency
of the feature-mining method. Comparable prediction accuracies of 94.44–98.33% were
achieved, indicating an excellent classification performance of the three models. Cole [23]
reported the combination of an e-nose and e-tongue for the flavor analysis of liquids. Only
a combination of the two systems was able to achieve 100% discrimination among all the
different liquids. Similarly, Banerjeeroy [24] combined measured data from an individual
e-nose and e-tongue for improving the estimation of black tea quality. When compared
to separate systems, combined systems improved both clustering and classification rates.
Tian [25] studied the integration of an e-nose and e-tongue for adulteration detection of
minced mutton, and low classification error (0–1.67%) evaluated by canonical discriminant
analysis (CDA) and Bayesian discriminant analysis (BAD) was obtained by the combined
system, suggesting a superior discrimination capability to that obtained by the e-nose
(0.83–10.83%) and e-tongue (0–2.5%) separately. It was demonstrated that multi-sensor data
fusion in food classification and quality assessment was much closer to human perception
and significantly improved the accuracy of recognition. However, data fusion also results in
redundant information, which could lead to unfavorable final classification and prediction
or increase the complexity of the model prediction. Many pattern recognition methods
such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and
partial least-squares discriminant analysis (PLS-DA) have been conveniently applied for
data processing and simplification. In this paper, a multiple data fusion method based
on e-nose measurements, e-tongue measurements, and chemical analysis coupled with
chemometrics was developed for discrimination of the two botanical origins of Magnoliae
Officinalis Cortex.

Magnoliae Officinalis Cortex (Houpo in Chinese, MOC) is widely distributed in the
Hubei, Sichuan, Hunan, and Guangxi provinces of China and is sporadically distributed
in East Asia. Magnolia officinalis Rehd. et Wils. (JYHP) and its variety M. officinalis Rehd.
et Wils. var. biloba Rehd. et Wils. (AYHP) are included in the Chinese Pharmacopoeia
as genuine herbs. The highly aromatic bark is stripped from their stems, branches, and
roots and is used for the treatment of abdominal distention and pain, dyspepsia, relieving
distension and asthmatic cough, etc. [26]. Phytochemical studies have led to the isola-
tion of several active compounds including lignans [27–30], phenolic glycosides [31,32],
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phenylethanoid glycosides [33,34], and alkaloids [35–37]. Several studies have conducted
useful explorations on the origin division, special processing, and quality evaluation of
MOC using electronic nose, electronic tongue, and chemical composition analysis. Li [38]
developed different discriminant models for differentiating the origins of MOC using
a combination of an electronic nose and colorimeter. It was indicated that the random
forest classifier combined with the tenfold cross-validation exhibited the highest accuracy,
providing a promising method for quantitatively evaluating the quality of MOC. Zhao [39]
reported methods for discriminating sweating and non-sweating processed MOC samples
using HFLC–Qtof/MS and GC–MS/MS. A previous study also reported some differences
in the pharmacological activities of the two origins of magnolia-based medicinal materials
in the gastrointestinal tract [40]. Medicinal materials originating from AYHP were found to
be superior to those from AYHP, which was in agreement with the traditional experience.
JYHP and AYHP are easily distinguished at a botanical level by the tip of the leaf blade;
however, they are extremely difficult to distinguish only by the appearance trait of their
medicinal bark, especially after processing into medicinal materials. He et al. [41] used
AFLP molecular markers to distinguish the two origins, but no significant differences
between the two origins were observed. Thus, there has not been a suitable approach to
effectively differentiate the two origins. Therefore, the overarching objectives of the current
study were to use a combination of e-nose measurements, e-tongue measurements, and
chemical analysis to successfully distinguish the two origins. However, the utilization of
any technology can only reflect one aspect for the sample, which may cause inaccuracy of
the classification. Thus, multiple data fusion coupled with different discriminant models,
which may provide a higher accuracy, are additionally considered.

2. Materials and Methods
2.1. Materials
2.1.1. Experimental Samples

Thirty samples originating from JYHP were collected from Enshi City of HuBei
province and 30 originating from AYHP were from Yongzhou City of HuNan province. All
the samples, derived from the diameter at breast height position to avoid errors caused
by different parts, were authenticated by the authors and subjected to shade drying after
collection. Samples were deposited at the Institute for Control of Chinese Traditional
Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing,
China. Samples used for e-nose, e-tongue, and chemical data acquisition were pulverized
to powder by passing through a no. 50 sieve (300 µm).

2.1.2. Chemicals and Reagents

Methanol used for crude sample preparation was of analytical grade and was supplied
by Beijing Chemical Factory (Beijing, China). HPLC-grade acetonitrile purchased from
Merck KGaA (Darmstadt, Germany) was used to prepare the mobile phase. Water was
purified by a Milli-Q water purification system (Millipore, Milford, MA, USA). All solvents
were degassed by ultrasonication and an online degassing system. Analytical reagents
including potassium chloride, potassium hydroxide, tartaric acid, absolute alcohol, and
hydrochloric acid (35–37%, v/v) were all acquired from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China).

2.2. Method
2.2.1. Preparation of Standard and Sample Solutions

Eight reference compounds of syringin, magnocurarine, magnoflorine, magnoloside
B, magnoloside A, honokiol, magnolol, and β-eudesmol with batch Nos. Y28M9H57297,
M29J8S40878, R21M9F61834, X16S8L44141, KS0912CB14, T28O6B5149, and P24O8F46474,
respectively, were purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai,
China). Piperitylmagnolol with a purity of more than 98.0% by normalization of the peak
areas was isolated from the stem bark. Standard stock solutions of eight references were
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prepared with methanol at 37.40, 29.24, 30.72, 61.92, 88.32, 49.16, 45.60, and 29.16 mg/L
concentrations and stored at 4 ◦C. The sample used for UHPLC and GC analysis was
pulverized to powder with 50 mesh, and 0.3 g of powder was accurately weighed into
50 flasks with 25 mL of methanol. Following cold soaking for 24 h at room temperature,
the sample mixture was weighed again, and any mass lost was made up with methanol.
Subsequently, the sample solution was filtered through a 0.22 µm microporous membrane,
and 1.0 µL of filtrate was subjected to chemical analysis.

A reference solution of 30 mM potassium chloride in 0.3 mM tartaric acid was used
to simulate artificial salivain in the e-tongue assessment. A 30% ethanol aqueous solution
containing 100 mM potassium chloride and 10 mM potassium hydroxide was employed as
the cleaning solution for positively charged artificial lipid membrane sensor probes, while a
30% ethanol aqueous solution containing 100 mM hydrochloric acid was used for negative
sensor probes.

2.2.2. Data Acquisition for E-Nose Measurements, E-Tongue Measurements, and
Chemical Analysis
E-Nose Data Acquisition

Characteristic odors of all the samples were provided with a portable electronic nose
system PEN3 (Schwerin, Germany). The system consists of a gas collection unit, an air
purification system, and a gas detection system, coupled with 10 metal oxide semiconductor
(MOS) sensors. Different responses in the sensors provide a signal pattern characteristic of
different volatile components as listed in Table 1 [42].

Table 1. Sensor description of e-nose.

No Sensor Name Performance Description Sensitive Substances and Threshold Values (mL·m−3)

1 W1C Aromatic Toluene, 10
2 W5S Hydrocarbon Nitrogen dioxide, 1
3 W3C Aromatic Benzene, 10
4 W6S Hydrogen Hydrogen, 100
5 W5C Aromatic and aliphatic Propane, 1
6 W1S Broad range and methane Methane, 100
7 W1W Sulfur organic Hydrogen sulfide, 1
8 W2S Broad range alcohol Nitric oxide, 100
9 W2W Sulfur and chlorinate Hydrogen sulfide, 1

10 W3S Methane and aliphatic Methane, 10

A sensor check was carried out to ensure that the sensors were working in the correct
voltage range before measurement. An amount of 1 g of sample powder was placed in a
50 mL sampling chamber and capped with a PTFE septum. The headspace equilibrium
of each sample was achieved by incubating at 30 ◦C for 60 min. To normalize the sensor
signal, the gas chamber was first cleaned with gas filtered by active charcoal. Meanwhile,
after each injection and data collection, the sensor self-cleaning time was at least 120 s
to re-establish a stable instrument baseline. Sampling time was set at 1 s/group with
a constant flow rate of 400 mL/min and a time of 120 s. Three duplicated cases were
measured, and the data of 90 s were selected for the statistical analysis to ensure that the
electronic nose reached the adsorption equilibrium.

E-Tongue Data Acquisition

E-tongue data acquisition was performed using the taste sensing system SA402B
(Insent Inc., Atsugi-shi, Japan). Six sensors with differently composed lipid membranes
and three corresponding reference electrodes were used. In the beginning, a sensor check
was necessarily accomplished to ensure all the sensors were working in the correct voltage
range before every measurement. Every sample measurement started with a cleaning
procedure: the positive and negative cleaning solutions were applied for cleaning the
sensors for 90 s, and then the sensors were cleaned with a standard solution for 120 s. The
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stability of the lipid membrane potential was monitored after cleaning by measuring the
potential of the reference solution (Vr). The sample solution was tested for 30 s when the
sensor response was steady (deviation less than 0.5 mV) during the measurement (Vs). The
differential between Vr and Vs produced the sensor output for taste (R). A brief cleaning
operation was performed to evaluate the samples’ aftertaste, which was referred to as CPA
(change in membrane potential due to adsorption), by measuring the membrane potential
again in standard solution [18]. Taste signals for each sample were measured four times,
and the last three results were commonly used to ensure data stability.

Five taste sensors including AAE (umami), CT0 (saltiness), CA0 (sourness), C00
(bitterness), and AE1 (astringency) were performed to obtain the taste information. Three
aftertastes of umami, bitterness, and astringency were also recorded. All recorded data
were based on the absolute output value of artificial saliva (reference solution) as the
standard. As a result of the limited amount of acid and salt in the reference solution, the
tasteless points of sourness and saltiness were −13 and −6, respectively, while the output
value of other indicators′ tasteless points was 0. In other words, when the taste value
of the sample was lower than the tasteless point, it meant that the sample had no such
taste. In our study, the taste items greater than the tasteless point were selected as the
evaluation objects.

Multi-Component Quantitative Analysis

Quantitative analysis of eight active components comprising syringin, magnocurarine,
magnoloside A, magnoflorine, magnoloside B, honokiol, magnolol, and piperitylmag-
nolol was performed using an ultrahigh-performance liquid chromatography (UHPLC)
system. According to our previous study [43], chromatographic analysis was conducted
on a suitable guard column (Waters Acquity UPLC BEH-Cl8 50 mm × 2.1 mm, 1.7 µm),
and separation was performed using gradient elution. All nonvolatile ingredients were
identified by comparison with the ultraviolet spectrum or retention time of the reference
compounds. The contents of β-eudesmol were separately determined by a GC system
equipped with an FID. An Agilent HP-5 quartz capillary column of 30 m length, 0.25 mm
internal diameter, and 0.25 µm film thickness (J&W Scientific Inc., Folsom, CA, USA) was
used for chromatographic separation. The FID temperature was set at 250 ◦C, and nitrogen
was chosen as the carrier gas with a constant flow of 1 mL·min−1. The injection volume was
1.0 µL, and the split ratio was 15:1. The oven time–temperature program was as follows:
initial temperature of 80 ◦C held for 2 min, increased to 250 ◦C at 8 ◦C/min, held for 7 min.

2.2.3. Chemometric Analysis and Data Fusion

Chemometric analysis including PCA, HCA, PLS-DA, LDA, and QDA was con-
ducted using OriginPro 2021b software (OriginLab Corporation, One Roundhouse Plaza,
Northampton, USA). As an unsupervised pattern identification method, PCA can convert
the data into a new coordinate system and produce numerous new synthetic variables.
It displays linear combinations of them while also capturing the majority of the original
data’s properties. The score value plots for the first two or three PCs (PC1, PC2, and PC3)
are frequently used to visualize the sample characteristics. The quality of the fitting model
may be explained by the modeling parameters, R2X and Q2 values in PCA. In contrast to
PCA analysis, which introduces a lot of unnecessary noise into the regression modeling
process, partial least-squares discrimination analysis (PLS-DA) is a supervised discriminant
analysis statistical method that employs information synthesis and screening techniques in
the regression modeling process. More importantly, the variable importance for projection
(VIP) can be employed to screen the potentially important variables with the principle
of value >1.0. According to the VIP plot, crucial variables are primarily selected and are
significantly responsible for the discrimination.

Classification models including LDA and QDA were explored in this study. Three
validation approaches comprising resubstitution, cross-validation, and a sample dichotomy
strategy were adopted to help evaluate model reliability. For resubstitution, all of the
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data were used for establishing the model, which then classified this same dataset. For
cross-validation, the leave-one-out technique was applied; that is, the models were trained
using all of the data minus one sample, which was then brought into the model for
classification [44]. This procedure was repeated for each sample, and the number of
correctly classified samples was presented at the end. For the sample dichotomy strat-
egy, two-part samples were randomly separated into training sets to generate a predic-
tive model, and the remaining samples were selected for the prediction set to gauge
classification performance.

For the fusion of e-nose or e-tongue data, Di Rosa reported three methods of abstrac-
tion [45]. Simply concatenating the original data from the multiple sources for model
construction is considered low-level fusion. Mid-level fusion involves the fusion of ex-
tracted features. Feature extraction with the advantage of eliminating the redundant
information and multiple collinearity problem is performed for each data source. Separate
models built from each data source are combined to give high-level fusion. In this paper,
low-level and mid-level fusion methods were preliminary investigated for the fusion of
e-nose, e-tongue, and chemical analysis data.

3. Results and Discussion
3.1. Results of E-Nose Measurements, E-Tongue Measurements, and Chemical Analysis

Odor information for 30 samples originating from JYHP and 30 from AYHP was
collected at the adsorption equilibrium point time (90 s). Each sample was measured three
times to ensure the stability of the odor data. The e-nose detection data for all the samples
containing characteristic values of 10 sensors are shown in Supplementary Table S1. As
shown in Figure 1a, among the 10 odor sensors, W1W, W2W, and W5S sensors presented the
strongest responses; the responses of W1W, W2W, W5S, W1S, and W2S of the JYHP group
were significantly higher than those of the AYHP group. Conversely, the responses of W1C,
W3C, and W5C presented the opposite trend. For the e-nose sensor response, we performed
Pearson correlation with the content of the volatile β-eudesmol, but no correlation was
found. It can be inferred that the e-nose sensor response represents the overall performance
of multiple volatile components. Jing et al. [46] realized the comparative analysis of volatiles
in the seeds of AYHP and JYHP, and the results revealed that the volatile profiles were
different between AYHP and JYHP. The study provides evidence that volatiles traits in
the seeds of AYHP and JYHP, in accordance with the morphological properties of their
leaves, are controlled by genetic and environmental factors. According to this finding,
the response values of e-nose sensors, connected to the volatile component composition,
should be different between the two origins.

The measurement results of bitterness, astringency, umami and richness, aftertaste
B, and aftertaste A are concluded in Supplementary Table S2. Figure 1b provides results
showing that samples from different origin groups may present different taste information.
All samples displayed the highest response values for bitterness, which agreed well with
the taste description of the MOC features in the ChP. The experimental data generated
for astringency, umami, aftertaste B, and aftertaste A were subjected to one-way analysis
of variance (ANOVA); differences were considered significant at p < 0.05 between the
two origin groups. When the bitterness and richness data were used for Welch’s t-test due
to heterogeneity of variance, the same significant difference (p < 0.05) was also observed,
indicating that the taste information between the two origins was inconsistent.

The acquired results of the chemical analysis, as illustrated in Supplementary Table S3,
revealed that the nine analyzed compounds included in the different origin types varied
significantly. Total contents of honokiol and magnolol (THM), as the quality control markers
of MOC, with a minimum of 2.0% of the total amount in ChP, were most abundant. These
were in line with a previous phytochemical study showing that honokiol and magnolol
are considered the major bioactive constituents in these herbs [28]. Welch’s t-test showed
that THM between the AYHP and JYHP groups was obviously different, with p < 0.05. The
JYHP group had a higher THM content level compared with AYHP, suggesting its superior
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quality to AYHP. This was confirmed by previous findings, showing that the effect of
improving gastrointestinal motility of JYHP is superior to that of AYHP. Another phenolic
component, named piperitylmagnolol, was simultaneously detected, and the JYHP group
presented considerably higher contents compared with the AYHP group. Hence, these
three phenolic components seem to play an important role in the identification of AYHP.
Phenylethanoid glycosides, widely distributed in MOC, have aroused great interest in
the last 10 years due to their pharmacological activity [33]. Magnolosides A and B, as
the typical phenylethanoid glycosides, are commonly used as markers for evaluating
the quality of commercial samples [47]. Quantitative profiles of magnolosides have also
been designed for the discrimination of MOC from different geographical regions [48].
The distributions of magnolosides A and B in this study, as clearly shown in Figure 1c,
exhibited a cross-current between the two groups. All of these characteristics are possibly
essential considerations in differentiating the two origins. The proportionate features
among homologous substances for determining the source, origin, and quality of Chinese
herbs were previously investigated [49]. Thus, the proportionate features of honokiol
and magnolol (PHM), along with magnolosides B and A (PBA), were included in the
multivariate dataset to discriminate the two origins.
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3.2. Comparison Results of E-Nose Measurements, E-Tongue Measurements, and Chemical Anylsis
on Discrimination of the Two Origins

As an unsupervised data dimensionality reduction approach, principal component
analysis (PCA) does not consider sample group information but is frequently beneficial for
data exploration, occasionally showing visual grouping. Figure 2a shows the PCA biplot for
the e-nose; the variance explained by the first component (PC1) was 71.7%, while the second
component (PC2) explained 14.4%, accounting for a total 86.1% of the variability. W2S,
W1S, W5S, W1C, W3C, and W5C were sensitive to the variables significantly contributing
to PC1 and exhibiting similar behavior. W2S, W1S, and W5S, which were sensitive to
broad range alcohols, short-chain alkanes, and hydrocarbons, respectively, were negatively
related to W1C, W3C, and W5C. The score plot shows a moderate separation between the
two origins. With respect to the PCA results for the e-tongue measurements, aftertastes
A and B and richness were the variables crucially contributing to PC1, which explained
58.8% of the variance of the results. PC2, including the variables other than aftertaste A
and richness, explained approximately 20.5% of the data variance. In addition, only the
bitterness exhibited an eigenvalue with 0.577 > 0.5, revealing a significant contribution
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to PC2. It was implied that a poor correlation between the taste sensors’ responses and
moderate predictive ability of the PCA model may be presented.
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The biplot of the chemical analysis shows that PHM and PBA mainly contributed to
PC1, which explained approximately 53.4% of the data variance (i.e., 53.4% and 14.3% for
PC1 and PC2, respectively). Two PCs could explain 67.7% of the variability, suggesting that
the extracted PCs had general explanatory power for the original variables. The score plot
seemed to afford good separation of the samples except in the two misclassified cases. The
variables syringin, magnocurarine, magnoflorine, and magnoloside A were grouped into
the same quadrant due to their high content distribution in AYHP compared with JYHP.
PC1 comprised PHM, PBA, piperitylmagnolol, THM, honokiol, magnolol, and magnoloside
B. This seems to be related to their high score in JYHP in contrast with AYHP.

Hierarchical cluster analysis (HCA) was exercised for better visualization of the differ-
ences between the two botanical origins. The Euclidean distance was applied to explore
the similarity. Figure 3a shows that the overwhelming majority of those samples from dif-
ferent origins could be correctly classified according to the e-nose data. However, samples
including S2, S5, S10, S4, and S8 belonging to JYHP were clustered together and grouped
into adjacent clusters of the AYHP. This could be attributed to the W5S sensor response
of these samples being significantly lower than that of samples belonging to JYHP. The
HCA dendrogram for the e-tongue (Figure 3b) demonstrated a mediocre separation of
the two origins, where seven samples from JYHP were misclassified to the AYHP cluster.
No obvious abnormality was found in the electronic tongue measurement values of these
samples. The HCA dendrogram (Figure 3c) from the chemical analysis shows that samples
from different origins were employed to respective clusters except S17, S27, and S60. The
misclassification of S17 and S27 may be due to their low magnoloside B contents. S60,
belonging to AYHP, was clustered to JYHP and associated with its high honokiol content
compared with the other cases of JYHP. Overall, all three approaches could discriminate the
two origins with a percentage of misclassified samples. The HCA for the chemical analysis
appeared to perform somewhat better than that for the e-nose and e-tongue. PCA and HCA
were classified according to the similarity of sample features and affinity relationship, and
it was inevitable that there would be misclassification. Therefore, supervised discriminant
analysis may provide a more effective classification.
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Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) were
investigated in this pattern classification with up to three evaluation strategies considered.
The results of classification modeling and evaluation approaches with numbers and per-
centages of misclassifications are summarized in Table 2. The data indicate that the e-nose
technique affords good classification rates with a percentage of misclassifications in the
range 0–1.67%, and better discrimination results were obtained by QDA. In particular, no
misclassified cases were observed with sample dichotomy strategy validation, demonstrat-
ing an excellent dependability of LDA and QDA based on the e-nose. For the e-tongue, the
percentage of misclassifications was in the range 0–3.33%, and the QDA displayed the best
discrimination results with resubstitution validation. However, the chemical analysis with
respect to both LDA and QDA exhibited poor success rates. This deserves our attention,
as errors in the classification of the QDA model with cross-validations were as high as
10.0%. On the basis of these results, we guardedly consider that an unknown sample from
a different origin would in fact be classified correctly by such a model. To sum up, the
result for the e-nose with the LDA model seems to be suitable for the discrimination of the
two origins. However, the e-nose and e-tongue detection, and the chemical analysis show
only one aspect of sample information. The evaluation of traditional Chinese medicine has
always involved a combination of odor, taste, and appearance, or chemical properties. Thus,
the interaction between each sensor’s response and the combination of all the detected
information should be given careful consideration to obtain better identification results.

Table 2. Comparison results of LDA and QDA based on e-nose, e-tongue, and chemical analysis
using different validation methods.

Model Data Source
Resubstitution Cross-Validation Sample Dichotomy Strategy

NM 1 PM 2 NM PM NM PM

LDA
E-nose 1 1.67% 1 1.67% 0 0

E-tongue 1 1.67% 2 3.33% 1 1.67%
Chemical analysis 2 3.33% 3 5.00% T:2 5.00%

QDA
E-nose 0 0 0 0 0 0

E-tongue 0 0 1 1.67% 1 1.67%

Chemical analysis 2 3.33% 6 10.00% T 3:1
P 4:2

2.50%
5.00%

1 NM, number of misclassified cases; 2 PM, percentage of misclassified cases; 3 T, training set; 4 P, prediction set.
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3.3. Extraction of Feature Variables Based on PCA and PLS-VIP

Feature extraction by PCA from the three respective data sources was developed as
described in Section 2.2. In order to retain the most information from the original data,
95.0% cumulative calibrated variance was acquired. Thus, the first four PCs from the e-
nose, four PCs from the e-tongue, and seven PCs from the chemical profiles, accounting for
97.54%, 95.96%, and 96.93% cumulative variance, respectively, were employed to create a
new combined dataset. The new dataset with midlevel fusion, comprising a total of 15 PCs,
was used to obtain a better discrimination result. Furthermore, the eigenvalue represents
the contribution of the corresponding eigenvector after the matrix was orthogonalized.
Eigenvalues greater than 1.0 are frequently used as the basic principal component extraction
criterion. Thus, two PCs from the e-nose, two PCs from the e-tongue, and three PCs from
the chemical profiles were eventually selected, explaining 86.14%, 79.30%, and 78.57% of
the total cumulative variance, respectively. A new dataset was also established with these
obtained PCs for mild data fusion, and comparison results were finally obtained.

A PLS-VIP method for detecting crucial variables contributing significantly to the
origin classification was simultaneously proposed. The obtained data were pretreated by
mean centering and scaling to unit variance. The classification ability and prediction effect
of the PLS model were described as variations in the response Y (class) R2Y and Q2. The
results of R2Y and Q2 were all greater than 0.5, indicating that the PLS model established
from the three original data sources presented a satisfactory classification capacity. In
addition, a chance permutation test (n = 200) was carried out to validate the goodness
of fit and the predictability of the model. The intercept values of R2 and Q2 were less
than 0.3 and 0.05, respectively, suggesting a desirable significance and no overfitting, with
high predictive value of the three models. Potential markers for the separation of different
origins were obtained by filtering VIP values exceeding 1.0.

As illustrated in Figure 4, W1C, W2W, W3C, W5C, W1S, and W2S from the e-nose
possessed VIP scores greater than 1.0, suggesting that these variables play a key role in
origin discrimination. As to the e-tongue, the sensors for umami and astringency presented
a VIP value >1.0, suggesting their importance for distinguishing the two origins. Astrin-
gency is a complicated phenomenon in which some food (unripe fruits, wines, and teas) or
medication substances (polyphenols) induce the mouth epithelium to pucker or dry [50]. A
previous report showed that the amount of galloyl rings present in the polyphenol chains
affects the degree of astringency [51]. However, up to now, studies regarding astringency
have faced challenges. Astringency may be associated with stimulation, which leads to
enzymes, mucins, and PRPs being precipitated and results in the perception of astringency.
According to the traditional medicine experience, MOC contains a certain irritant to the
throat and is difficult to process, which could explain its astringency. It was observed
that the astringency taste value of AYHP was lower than that of JYHP; conversely, the
AYHP types showed greater intensity of the umami taste. These findings indicate that each
origin type has distinct taste characteristics. Thus, the umami and astringency responses
were selected as the crucial variables for the e-tongue. Five markers comprising honokiol,
piperitylmagnolol, PHM, PBA, and THM were obtained from the chemical analysis of the
PLS-DA model. Figure 1c shows that the selected markers were mainly at greater levels in
the JYHP group than in the AYHP group. This might be explained by the fact that JYHP
samples have always been recognized as the traditional authentic medicinal material with
better quality.
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3.4. Multi-Source Data Fusion and Establishment of Discriminative Model

Although the e-nose, e-tongue, and chemical profiles could partly discriminate sam-
ples from the two origins, there were still a few misclassified cases according to the HCA
dendrograms (Figure 3). With the exception of the LDA from the e-nose data, none of
the discriminant analyses achieved 100% discrimination. Consequently, the data from
the three sources were combined using low-level and mid-level fusion methods. Firstly,
the original data from the three sources including both useful and redundant information
were combined directly to form a new dataset; the LDA and QDA were obtained after
the data normalization process. The results show that 100% of the original grouped cases
were correctly classified by LDA, but there was a 56.67% misclassified rate generated by
QDA with cross-validation (Table 3). We further tried to process the combined original
data using PCA. The first 11 principal components, totally explaining 95.10% cumulative
variance, were selected. The calculated PC scores were used as independent metrics to
replace the original variable for the LDA and QDA. The LDA result was in agreement with
that acquired using raw data, and the error probability of QDA significantly decreased
after data dimensionality reduction for cross-validation. In order to present more infor-
mation, 11 principal components were selected as statistical variables, which resulted in
successful classifications. However, if the PCs were selected according to the principle
of eigenvalues >1.0, seven PCs were obtained, explaining 87.43% of the total varieties.
Therefore, these seven PCs, as variables that did not reduce the discriminant rate, perhaps
yielded a more realistic classification, but the contribution of such reduced PCs to the model
is still uncertain.
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Table 3. Percentage of samples misclassified by LDA and QDA using different data fusion methods
and validations.

Fusion Data Source Model
Resubstitution Cross-Validation Sample Dichotomy Strategy

NM 1 PM 2 NM PM NM PM

Low-level fusion

Original data
with normalization

LDA 0 0 0 0 NA 3 NA
QDA 0 0 34 56.67% NA NA

Original data with PCA
LDA 0 0 0 0 0 0
QDA 0 0 1 1.67% 0 0

Mid-level fusion

Combination of 15
extracted PCs

LDA 0 0 0 0 0 0
QDA 0 0 2 3.33% 0 0

Combination of 7
extracted PCs

LDA 0 0 0 0 0 0
QDA 0 0 1 1.67% 0 0

Combination of
extracted variables

LDA 0 0 0 0 0 0
QDA 0 0 1 1.67% 0 0

1 NM, number of misclassified cases; 2 PM, percentage of misclassified cases; 3 NA, not applicable.

For the mid-level fusion, the PCs extracted from the three original datasets and
the extracted variables based on PLS-VIP were combined and explored with respect of
LDA and QDA. As a result, LDA seemed to work consistently better with no misclas-
sified cases as validated by the different methods. QDA presented a classification er-
ror of 1.67–3.33% for cross-validation due to its possible overfitting. It can be seen that
the data fusion processes showed good results with regard to the classification of the
two origins by resubstitution and sample dichotomy strategy validation. The 15 PCs ex-
tracted from the three subsets were obtained according to the principle of containing more
than 95.0% of the total cumulative variance. However, the quantity of the extracted PCs
was decreased to seven according to the principle of an eigenvalue greater than 1.0. The
LDA result was unaffected by the reduction in these PCs, but QDA showed a decrease
in the misclassification rate from 3.33% to 1.67% for cross-validation. Similarly, 1.67% of
misclassification rates also appeared in combination with extracted variables based on a
VIP >1.0. Therefore, according to the results of the three mid-level fusion methods, the
LDA delivered the optimal results with 100% discrimination for all validations, indicating
that this model has a high prediction accuracy.

The discrimination capability of the LDA model was significant according to the
eigenvalue and the Wilks lambda test. The corresponding eigenvalue of the discriminant
function explained all of the sample information with a l00% variance ratio. The p-value
of the correlation coefficient was less than 0.05. All of these results reveal that the LDA
model built from the three mid-level fusion methods exhibited excellent performance
and was suitable for distinguishing the two origins through significance testing. PLS is
a supervised method that incorporates the ideas of principal component analysis and
canonical correlation analysis. The purpose of using PLS to reduce dimensionality is to
make the extracted feature variables not only summarize the information from the original
variables well, but also have strong explanatory power for the dependent variables. Hence,
a combination of extracted variables from PLS-VIP can be observed more intuitively and
may be convenient for practical use. In short, the e-nose and e-tongue sensor arrays and
chemical analysis, coupled with mid-level data fusion, could successfully be applied in the
discrimination of the two botanical origins of MOC.

4. Conclusions

In this study, we initially reported the discrimination of MOC from two botanical
origins (Magnolia officinalis Rehd. et Wils. and Magnolia officinalis Rehd. et Wils. var. biloba
Rehd. et Wils) based on the multiple-source fusion of e-nose, e-tongue, and chemical
analysis data. Feature mining was conducted using PCA; 15 PCs with the principle of the
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total cumulative variance contribution rate exceeding 95.0% and seven PCs with the prin-
ciple of eigenvalues >1.0 were extracted. In addition, 13 variables were mined according
to the principle of PLS-VIP scores >1.0. Multiple-source data fusion based on low-level
and mid-level data was subsequently conducted. The LDA and QDA models, with up
to three evaluation strategies, were investigated to acquire the efficiency of the feature-
mining method. As a result, successful predictability and validation of the LDA model
with 100% correct classification were observed, indicating that the combination of these
three techniques could effectively enhance the discriminate performance. As our results
revealed, mid-level data fusion, especially for a combination of extracted variables based
on PLS-VIP, was concise and feasible. However, it is worth noting that MOC also contains
volatile components other than β-eudesmol; hence, the relationship between their contents
and the response values of the e-tongue and e-nose is ambiguous. Their contribution to
this origin discrimination is still unknown and worthy of a deep investigation. Other clas-
sification models including logistic regression analysis, backpropagation neural network
(BPNN), random forest (RF), and support vector machine (SVM) can also be applied upon
increasing the number of samples. Thus, we explored a completely simple and practicable
approach to identify the origin of MOC on the basis of e-nose, e-tongue, and chemical
analysis, as well as data fusion technology. This study could pave a way for its application
in further quality evaluations.
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