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ABSTRACT: Gaussian accelerated molecular dynamics
(GaMD) is a recently developed enhanced sampling technique
that provides efficient free energy calculations of biomolecules.
Like the previous accelerated molecular dynamics (aMD),
GaMD allows for “unconstrained” enhanced sampling without
the need to set predefined collective variables and so is useful
for studying complex biomolecular conformational changes
such as protein folding and ligand binding. Furthermore,
because the boost potential is constructed using a harmonic
function that follows Gaussian distribution in GaMD,
cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other
large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together,
GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules.
Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model
systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For
alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD
simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further
GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3
muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways
quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations
of large biomolecules.

■ INTRODUCTION
Accelerated molecular dynamics (aMD) is an enhanced
sampling technique that works by smoothing the potential
energy surface to lower energy barriers and thus accelerate
conformational transitions of biomolecules.1 Without the need
to set predefined collective variables (CVs), aMD allows
“unconstrained” enhanced sampling of many complex bio-
molecules.2 For example, aMD simulations provide significant
speed-up of peptide and protein conformational transitions,1,3

lipid diffusion and mixing,4 protein folding,5 and protein−
ligand binding.6 Hundreds-of-nanosecond aMD simulations are
able to capture millisecond time scale events in both globular
and membrane proteins.7

While aMD is powerful for enhanced conformational
sampling, its accuracy for free energy calculations has attracted
lots of attention.8 In theory, frames of aMD simulations can be
reweighted by the Boltzmann factors of the corresponding
boost potential (i.e., eΔV/kBT) and averaged over each bin of
selected CV(s) to obtain the canonical ensemble. However, the
exponential reweighting is known to suffer from large statistical
noise in practical calculations2,7c,8,9 because the Boltzmann
reweighting factors are often dominated by a very few frames
with high boost potential. The boost potential in aMD
simulations of proteins is typically on the order of tens to

hundreds of kilocalories per mole, which is much greater in
magnitude and wider in distribution than that of CV-biasing
simulations (e.g., several kilocalories per mole in metady-
namics). It has been a long-standing problem to accurately
reweight aMD simulations and recover the original free energy
landscapes, especially for large proteins.6,7c Notably, when the
boost potential follows near-Gaussian distribution, cumulant
expansion to the second order provides improved reweighting
of aMD simulations compared with the previously used
exponential average and Maclaurin series expansion reweighting
methods.10 The reweighted free energy profiles are in good
agreement with the long-time scale conventional molecular
dynamics (cMD) simulations as demonstrated on alanine
dipeptide and fast-folding proteins.5b However, such improve-
ment is limited to rather small systems (e.g., proteins with less
than ∼35 amino acid residues).5b In simulations of larger
systems, the boost potential exhibits significantly wider
distribution and does not allow for accurate reweighting.
In order to achieve both unconstrained enhanced sampling

and accurate energetic reweighting for free energy calculations
of large biomolecules like proteins, Gaussian accelerated
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molecular dynamics (GaMD) has been developed by applying a
harmonic boost potential to smooth the biomolecular potential
energy surface.11 GaMD greatly reduces the energy barriers and
accelerates conformational transitions and ligand binding by
orders of magnitude.11 Moreover, because the boost potential
follows Gaussian distribution, the original free energy profiles of
biomolecules can be recovered through cumulant expansion to
the second order.11 GaMD solves the long-standing energetic
reweighting problem as encountered in the previous aMD
method8 and allows us to characterize complex biomolecular
conformational changes quantitatively.11 Compared with other
enhanced sampling methods such as the metadynamics12 and
adaptive biasing force (ABF),13 GaMD does not require
predefined CVs, which is advantageous for studying “free”
protein folding and ligand binding processes11 and efficient free
energy calculations of large biomolecules.11

Here, we have implemented GaMD in the NAMD package
on top of its existing aMD feature. The potential statistics of
simulated biomolecules are collected from short cMD and used
to construct the harmonic boost potential. The implemented
GaMD in NAMD will be demonstrated on three model systems
that have been extensively studied earlier: alanine dipep-
tide,10,11,14 the chignolin fast-folding protein,5b,11 and the M3
muscarinic G protein-coupled receptor (GPCR) bound by the
acetylcholine (ACh) endogenous agonist.6,15

■ METHODS
Theory. GaMD enhances the conformational sampling of

biomolecules by adding a harmonic boost potential to smooth
the system potential energy surface when the system potential

⃗V r( ) is lower than a reference energy E:11
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where k is the harmonic force constant. The two adjustable
parameters E and k are automatically determined by applying
the following three criteria. First, for any two arbitrary potential
values ⃗V r( )1 and ⃗V r( )2 found on the original energy surface, if

⃗ < ⃗V r V r( ) ( )1 2 , ΔV should be a monotonic function that does
not change the relative order of the biased potential values, i.e.,

* ⃗ < * ⃗V r V r( ) ( )1 2 . Second, if ⃗ < ⃗V r V r( ) ( )1 2 , the potential
difference observed on the smoothed energy surface should
b e sm a l l e r t h a n t h a t o f t h e o r i g i n a l , i . e . ,
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where Vmin and Vmax are the system minimum and maximum
potential energies. To ensure that eq 2 is valid, k has to satisfy:
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Third, the standard deviation of ΔV needs to be small enough
(i.e., narrow distribution) to ensure accurate reweighting using
cumulant expansion to the second order:10 σΔV = k(E − Vavg)σV
≤ σ0, where Vavg and σV are the average and standard deviation
of the system potential energies, σΔV is the standard deviation
of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for

accurate reweighting. When E is set to the lower bound E =
Vmax according to eq 2, k0 can be calculated as
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Alternatively, when the threshold energy E is set to its upper
bound E = Vmin + 1/k, k0 is set to
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if k0″ is found to be between 0 and 1. Otherwise, k0 is calculated
using eq 3.
For energetic reweighting of GaMD simulations, the

probability distribution along a selected reaction coordinate
A(r) is written as p*(A), where r denotes the atomic positions
{r1, ..., rN}.Given the boost potential ΔV(r) of each frame,
p*(A) can be reweighted to recover the canonical ensemble
distribution, p(A), as
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where M is the number of bins, β = 1/kBT and ⟨eβΔV(r)⟩j is the
ensemble-averaged Boltzmann factor of ΔV(r) for simulation
frames found in the jth bin. In order to reduce the energetic
noise, the ensemble-averaged reweighting factor can be
approximated using cumulant expansion:16
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where the first three cumulants are given by
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As shown earlier, when the boost potential follows near-
Gaussian distribution, cumulant expansion to the second order
provides the more accurate reweighting than the exponential
average and Maclaurin series expansion methods.10 Finally, the

reweighted free energy is calculated as = −
β

F A p A( ) ln ( )j j
1 .

Implementation. Similar to the aMD implemented in
NAMD,14 three modes are available for applying boost
potential to biomolecules in GaMD: (1) boosting the dihedral
energetic term only, (2) boosting the total potential energy
only, and (3) boosting both the dihedral and total potential
energetic terms (i.e., “dual-boost”). The major code mod-
ification is to extend the aMD function in NAMD 2.11 to
include the boost potential calculation used in GaMD
(Appendix A). As described in the previous section, GaMD
boost potential is computed based on statistics of the system
potential such as the minimum, maximum, average and
standard deviation. Therefore, three stages of simulation are
needed to collect the potential statistics. They include the (i)
cMD, (ii) equilibration, and (iii) production stages. The
program first collects potential statistics from a short cMD run.
Subsequently, a boost potential is added to the system in the
equilibration stage while update of the potential statistics
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continues. During this stage, the boost potential applied in each
step is computed based on the energetic statistics collected up
to that particular step. After the equilibration stage, the statistics
collected is assumed to be sufficient to represent the potential
energy landscape of interest. Hence, the potential statistics are
fixed to calculate the boost potential for running the production
simulation. Note that in both the cMD and equilibration stages,
there are a small number of steps at the beginning of each stage

during which we do not collect statistics. These steps, named
preparation steps, are performed to allow the system to adapt
to the simulation environment. The program starts collecting
statistics of the potential energies after the preparation steps.

Simulation Protocols and Benchmarks. For alanine
dipeptide and chignolin, the AMBER ff99SB force field was
used and the simulation systems were built using the Xleap
module in the AMBER package17 as described previously.9,11

Figure 1. (A) Schematic representation of backbone dihedrals Φ and Ψ in alanine dipeptide. (B) Distribution of the boost potential ΔV applied in
the GaMD simulations with anharmonicity equal to 7.18 × 10−3. (C−D) Potential of mean force (PMF) profiles of the (C) Φ and (D) Ψ dihedrals
calculated from three 30 ns GaMD simulations combined using cumulant expansion to the second order. (E) 2D PMF profile of backbone dihedrals
(Φ, Ψ). The low energy wells are labeled corresponding to the right-handed α helix (αR), left-handed α helix (αL), β-sheet (β), and polyproline II
(PII) conformations. (F) Distribution anharmonicity of ΔV of frames found in each bin of the PMF profile.
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By solvating the structures in a TIP3P18 water box that extends
8−10 Å from the solute surface, the alanine dipeptide system
contained 630 water molecules and 2211 waters for chignolin.
The total number of atoms in the two systems is 1912 and 6773
for alanine dipeptide and chignolin, respectively. Periodic
boundary conditions were applied for the simulation systems.
Bonds containing hydrogen atoms were restrained with the
SHAKE algorithm19 and a 2 fs time step was used. Weak
coupling to an external temperature and pressure bath was used
to control both temperature and pressure.20 The electrostatic
interactions were calculated using the particle mesh Ewald
(PME) summation21 with a cutoff of 8.0 Å for long-range
interactions. After the initial energy minimization and thermal-
ization as described earlier,11 dual-boost GaMD was applied to
simulate the two systems. The system threshold energy E for
applying the boost potential was set to Vmax. The default
parameter values were used for the GaMD simulations except
stated otherwise. For alanine dipeptide, statistics of the system
potential were first collected from an initial 2 ns cMD run,
followed by a 6 ns equilibration run. Based on the statistics
collected, the threshold energy E and harmonic force constant k
were computed automatically according to eq 3. Finally, three
independent 30 ns production runs were performed with
different randomized initial atomic velocities. For chignolin, the
dual-boost GaMD simulation includes 2 ns cMD, 50 ns
equilibration after adding the boost potential, and then three
independent 300 ns production runs.
For the M3 muscarinic GPCR, the system was set up

following the same protocol as used previously.6,7d The
tiotropium (TTP)-bound X-ray structure (PDB: 4DAJ) of
the M3 receptor22 was used. After removal of TTP, the M3
receptor was inserted into a palmitoyl-oleoyl-phosphatidyl-
choline (POPC) bilayer with all overlapping lipid molecules
removed using the Membrane plugin and solvated in a water
box using the Solvate plugin in VMD.23 Four ACh ligand
molecules were placed at least 40 Å away from the receptor
orthosteric site in the bulk solvent. The system charges were
then neutralized with 18 Cl− ions. The simulation systems of
the M3 receptor initially measured about 80 Å × 87 Å × 97 Å
with 130 lipid molecules, ∼11 200 water molecules and a total
of ∼55 500 atoms. Initial energy minimization and thermal-
ization of the M3 receptor system follow the same protocol as
used in the previous study.6 GaMD simulation was then
performed using the dual-boost scheme with the threshold
energy E set to Vmax. The simulation included 2 ns cMD, 50 ns
equilibration after adding the boost potential and then three
independent production runs with randomized atomic
velocities (one for 400 ns and another two for 300 ns).
The GaMD simulations were carried out using NAMD 2.11

on the Gordon supercomputer at the San Diego Super-
computing Center. Excellent scalability was obtained as shown
in Figure S1. For the M3 muscarinic GPCR system, benchmark
simulations showed that GaMD ran at ∼10 ns/day with 64
CPUs and up to ∼61 ns/day with 640 CPUs, which were ∼8−
11% slower than the corresponding cMD runs. This perform-
ance is very similar to that of the conventional aMD
implemented in NAMD.14 GaMD production frames were
saved every 0.1 ps. The VMD23 and CPPTRAJ24 tools were
used for trajectory analysis. For chignolin, the root-mean square
deviations (RMSD) of the Cα atoms relative to the native NMR
structure (PDB: 1UAO) and the protein radius of gyration, Rg,
were calculated. For the M3 muscarnic receptor, the density
based spatial clustering of applications with noise (DBSCAN)

algorithm25 was applied to cluster the diffusing ligand
molecules for identifying the highly populated binding sites.
Finally, the PyReweighting toolkit10 was applied to compute
the potential of mean force (PMF) profiles of the backbone
dihedrals Φ and Ψ in the alanine dipeptide, the (RMSD, Rg) of
chignolin and structural clusters of the diffusing ACh in the M3
receptor system.

■ RESULTS
Free Energy Profiles of the Alanine Dipeptide. With

the three independent 30 ns GaMD production trajectories of
the alanine dipeptide (Figure 1A), energetic reweighting was
applied to calculate the free energy profiles of the backbone
dihedrals Φ and Ψ. Analysis of the system boost potential
showed that it followed Gaussian distribution with low
anharmonicity (7.18 × 10−3; Figure 1B). The boost potential
average is 6.93 and 1.87 kcal/mol for the standard deviation.
With this, the cumulant expansion to the second order was
applied for the reweighting.
In comparison, the reweighted PMF profiles obtained from

30 ns GaMD trajectories agree quantitatively with the original
profiles from much longer 1000 ns cMD simulation. Although
the GaMD derived PMF profile of Φ exhibits moderate
fluctuations near the energy barrier at 0° and slightly elevated
free energy well centered at ∼50° (Figure 1C), it essentially
overlaps with the original profile in the other regions, similar for
the entire PMF profile of Ψ (Figure 1D). In contrast, three
cMD simulations did not properly sample the energy barriers of
Φ at 0° and Ψ at 120° as shown in Figures S2A and S2B,
respectively. For Φ, the energy well centered at 60° obtained
from the 30 ns cMD simulations was higher than that from
1000 ns cMD simulation. Therefore, while cMD simulations
performed for 30 ns are poorly converged for alanine dipeptide,
GaMD simulations of the same length yielded significantly
improved free energy profiles that agree quantitatively with
those of the 1000 ns cMD simulation.
In addition, we calculated a 2D PMF of (Φ, Ψ) in alanine

dipeptide by reweighting the three 30 ns GaMD trajectories
combined. As shown in Figure 1E, five free energy wells were
identified in the reweighted PMF profile of (Φ, Ψ), which are
centered around (−144°, 0°) and (−72°, −18°) for the right-
handed α helix (αR), (48°, −6°) for the left-handed α helix
(αL), (−150°, 156°) for the β-sheet, and (−72°, 162°) for the
polyproline II (PII) conformation (Figure 1E). Their
corresponding minimum free energies are estimated as 0,
0.47, 1.82, 1.44, and 2.35 kcal/mol, respectively. In addition, the
distribution anharmonicity of ΔV of frames clustered in each
bin of the 2D PMF is smaller than 0.10 in all low-energy
regions (Figure 1F), suggesting that reweighting using second
order cumulant expansion is a reasonable approximation.
Indeed, the reweighted 2D PMF profile obtained from three
30 ns GaMD trajectories (Figure 1E) is very similar to that
obtained from 1000 ns cMD (Figure S2D), but not for the 30
ns cMD simulations (Figure S2C). Therefore, GaMD
accurately samples the free energy profiles of alanine dipeptide
within much shorter simulation time compared with cMD,
demonstrating the efficiency and accuracy of GaMD for the
biomolecular free energy calculations.

Folding of Chignolin. Started from an extended
conformation of chignolin, simulations using GaMD imple-
mented in NAMD 2.11 were able to capture complete folding
of the protein into its native structure within 300 ns. The
RMSD obtained between the simulation-folded chignolin and
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NMR experimental native structure (PDB: 1UAO) reaches a
minimum of 0.2 Å (Figure 2A). The system boost potential
applied in the GaMD simulations followed Gaussian distribu-
tion with the anharmonicity equal to 9.66 × 10−3 (Figure 2B).
The average and standard deviation of the boost potential are
11.2 and 2.8 kcal/mol, respectively. During the three
independent 300 ns GaMD simulations, chignolin folded into

the native conformational state with RMSD < 2 Å and unfolded
repeatedly in two of the simulations. It remained in the folded
state after rapid folding within ∼20 ns in the third simulation
(Figure 2C). Upon folding, the chignolin showed decrease of
the radius of gyration, Rg, to 4.2 Å (Figure 2D). The average
folding time of chignolin obtained from the GaMD simulation
is ∼28 ns, which is significantly shorter than the 600 ns folding

Figure 2. Folding of chignolin captured in the GaMD simulations: (A) comparison of simulation-folded chignolin (blue) with the PDB (1UAO)
native structure (red) that exhibits 0.2 Å RMSD, (B) distribution of the boost potential ΔV with anharmonicity equal to 9.66 × 10−3, (C) the RMSD
of chignolin between simulation snapshots and the PDB native structure, and (D) the radius of gyration, Rg, of chignolin calculated from the three
independent 300 ns GaMD simulations. (E) 2D (RMSD, Rg) PMF calculated by reweighting the three 300 ns GaMD simulations combined. (F)
Distribution anharmonicity of ΔV of frames found in each bin of the PMF profile.
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time obtained from the previous long-time scale cMD
simulations26 (i.e., ∼30 times speedup).
Based on Gaussian distribution of the boost potential,

cumulant expansion to the second order was applied to
reweight the three 300 ns GaMD simulations of chignolin

combined. A 2D PMF profile was calculated for the protein
RMSD relative to the PDB native structure and the radius of
gyration, (RMSD, Rg) as shown in Figure 2E. The reweighted
PMF allowed us to identify the folded (“F”) and intermediate
(“I”) conformational states, which correspond to the global

Figure 3. Binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic G-protein-coupled receptor simulated via GaMD: (A)
Schematic representation of the computational model, in which the receptor is shown in ribbons (orange), lipid in sticks, ions in small spheres, and
four ligand molecules in large spheres. (B) Distribution of the boost potential ΔV with anharmonicity equal to 1.33 × 10−2. (C) Probability
distribution of the ACh (the N atom in blue dots) diffusing in the bulk solvent and bound to the M3 receptor (orange ribbons), in which the Glide
docking pose of ACh is shown in green sticks. (D) RMSD of the diffusing ACh relative to the Glide docking pose calculated from the 400 ns GaMD
simulation. (E) Ten lowest energy structural clusters of ACh that are labeled and colored in a green−white−red (GWR) scale according to the PMF
values obtained from reweighting of the GaMD simulation.
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energy minimum at (1.0 and 4.0 Å) and a low-energy well
centered at (4.5 and 5.5 Å), respectively. Figure 2F plots the
distribution anharmonicity of ΔV for frames found in each bin
of the 2D PMF as shown in Figure 2E. The anharmonicity
exhibits values smaller than 0.05 in the simulation sampled
conformational space, suggesting that the boost potential
follows Gaussian distribution for proper reweighting using
cumulant expansion to the second order. In summary, GaMD
enables efficient enhanced sampling and free energy
calculations of protein folding as demonstrated on the
chignolin.
Ligand Binding to a Muscarinic G Protein-Coupled

Receptor. Finally, the GaMD implemented in NAMD 2.11
was demonstrated on binding of the ACh endogenous agonist
to the M3 muscarinic GPCR (Figure 3A). The M3 muscarinic
receptor is widely expressed in human tissues and a key seven-
transmembrane (TM) GPCR that has been targeted for
treating various human diseases, including cancer,27 diabetes,28

and obesity.29 Three independent GaMD simulations were
performed on the M3 receptor, one for 400 ns and another two
for 300 ns. As shown in Figure 3B, the system boost potential
follows Gaussian distribution with anharmonicity equal to 1.33
× 10−2. The average and standard deviation of the boost
potential are 10.9 and 3.0 kcal/mol, respectively. Such narrow
distribution will ensure accurate reweighting for free energy
calculation using cumulant expansion to the second order.
During the 400 ns GaMD simulation of the M3 muscarinic

receptor, ACh was observed to enter the receptor and then
bind to the receptor endogenous ligand-binding (“orthosteric”)
site (Figure 3C). Highly populated clusters were identified for
the ligand in the extracellular vestibule and orthosteric site of
the receptor, while the ligand diffuses nearly homogeneously in
the bulk solvent. Note that periodic boundary conditions were
applied on the simulation system and thus ACh diffused to the
cytoplasmic side of the lipid membrane, which may not occur
in the real cells. Nonetheless, ACh entered the receptor from
only the extracellular side, recapitulating the first step of GPCR-
mediated cellular signaling machinery. Figure 3D plots the
RMSD of the four diffusing ACh molecules relative to the
ligand binding pose predicted from Glide docking30 in the
orthosteric site. The ACh-3 molecule was observed to bind the
extracellular vestibule with ∼10 Å RMSD, dissociate completely
from the receptor, rebind to the extracellular vestibule at ∼200
ns and then enter the receptor to the orthosteric pocket at
∼270 ns. It finally rearranged its conformation in the
orthosteric pocket, reached a minimum RMSD of 2.0 Å at
∼340 ns, and stayed bound in the orthosteric site until the end
of the 400 ns GaMD simulation. Moreover, during the
dissociation of the ACh-3, another ligand molecule (ACh-2)
bound briefly to the receptor extracellular vestibule during
∼125−180 ns. Similar observations were obtained in the other
300 ns GaMD simulations of the M3 receptor as shown in
Figures S3 and S4, during which different ACh molecules were
able to bind the extracellular vestibule but could not reach the
orthosteric site within the limited simulation time.
In order to obtain a quantitative picture of the ligand binding

pathway, the DBSCAN algorithm25 was applied to cluster
trajectory snapshots of four diffusing ligand molecules from the
400 ns GaMD simulation. Energetic reweighting10,11 was then
applied to each of the ligand structural clusters to recover the
original free energy. Ten structural clusters with the lowest free
energies are shown in Figure 3E. Global free energy minimum
(0.0 kcal/mol) was found for cluster “C1” in the orthosteric

site. The second lowest energy minimum was identified for
cluster “C2” (0.12 kcal/mol) located in the extracellular
vestibule formed between ECL2/ECL3. Moreover, cluster
“C3” that exhibits a different conformation compared with
cluster “C1” and higher free energy (0.33 kcal/mol) was also
identified in the orthosteric pocket. In addition to cluster “C2”,
clusters “C4” with 0.45 kcal/mol, “C6” with 0.51 kcal/mol,
“C8” with 1.23 kcal/mol, and “C10” with 1.96 kcal/mol were
also identified in the extracellular vestibule, in which the
positively charged N atom of the ligand interacts with residue
Trp5257.35 through cation−π interactions. The residue super-
scripts denote the Ballesteros−Weinstein (BW) numbering of
GPCRs.31 Three clusters of higher free energies, “C5” with 0.50
kcal/mol, “C7” with 0.94 kcal/mol, and “C9” with 1.50 kcal/
mol, appear to connect “C1” in the orthosteric pocket and “C2”
in the extracellular vestibule. Therefore, structural clusters “C1”,
“C3” ↔ “C7”, “C5”, “C9” ↔ “C2”, “C4”, “C6”, “C8”, and
“C10” appear to represent an energetically preferred pathway
for the endogenous agonist binding to the M3 muscarinic
receptor.

■ DISCUSSION

By adding a harmonic boost potential to the potential energy
surface, GaMD provides both unconstrained enhanced
sampling and free energy calculation of biomolecules.
Important statistical properties of the system potential, such
as the average, maximum, minimum, and standard deviation
values, are used to calculate the simulation acceleration
parameters, particularly the threshold energy E and force
constant k for applying the boost potential. In this study, we
have implemented GaMD in the NAMD software version 2.11.
GaMD computes the potential boost according to statistics of
the system potential collected during the cMD and
equilibration stages. It is worth noting that the statistics
collection in GaMD-NAMD slightly differs from the previous
version of GaMD implemented in AMBER.11 In the AMBER
version, the average and standard deviation of potential
energies are calculated in every “ntave” steps, a native function
available in the AMBER program.32 In the NAMD version of
GaMD, the average and standard deviation of the potential are
calculated using the potential values collected up to the current
step (see details in Appendix A).33 The two variables are
updated every step until the end of the cMD and equilibration
stages. Moreover, similar to the implementation of conven-
tional aMD in NAMD, the LJ correction term is not included in
the total potential energy calculation in GaMD.
With the implementation of GaMD in NAMD, we have

demonstrated the code on three model systems: the alanine
dipeptide, chignolin (a globular protein) and the M3 muscarinic
GPCR (a membrane protein). For the alanine dipeptide
biomolecular model system, short GaMD simulations per-
formed for only 30 ns were able to reproduce highly accurate
free energy profiles of the backbone dihedrals that may need as
long as 1000 ns cMD simulation to converge. The free energy
errors were almost negligible except the elevated free energy
well of Φ near 50° by ∼0.5 kcal/mol and slight fluctuations in
the energy barriers (particularly Φ at 0° and Ψ at −120°;
Figure 2). In contrast, cMD simulations lasting 30 ns hardly
sample these free energy barriers and exhibit poor convergence.
Therefore, GaMD-NAMD greatly accelerates the conforma-
tional sampling and accurate free energy calculation of the
alanine dipeptide.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00931
J. Chem. Theory Comput. 2017, 13, 9−19

15

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00931/suppl_file/ct6b00931_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00931


For the chignolin, the GaMD-NAMD simulations were able
to fold the protein rapidly. In two of the three 300 ns GaMD
simulations, chignolin undergoes both folding and unfolding
repeatedly (Figure 2C). Compared with the average folding
time obtained from long-time scale cMD simulations (600
ns),26 GaMD folds the protein within ∼28 ns, i.e., ∼30 times
faster. Unlike the previous GaMD-AMBER simulations,11 the
fully unfolded state of chignolin does not appear as a low-
energy well in the reweighted free energy profile obtained from
the present GaMD-NAMD simulations. This behavior will be
subject to further investigation in future GaMD studies.
Nonetheless, in addition to sampling the folded state in the
global free energy minimum, the GaMD-NAMD simulations
also captured the intermediate state during the folding of the
protein. This is consistent with the previous long-time scale
cMD26 and aMD5b simulations.
Finally, we have demonstrated GaMD-NAMD on ligand

binding to the M3 muscarinic GPCR as a model membrane
protein system. While the ACh endogenous agonist binds only
transiently to the receptor extracellular vestibule in two 300 ns
GaMD simulations, the ligand enters the receptor and binds to
the target orthosteric site in a 400 ns GaMD simulation.
Although in principle multiple binding and unbinding events
may be needed in order to compute converged ligand binding
free energy, structural clustering and reweighting of the GaMD
simulation allows us to identify energetically preferred binding
sites and pathway of the diffusing ligand. Particularly, the lowest
energy cluster of ACh is identified in the orthosteric site, in
excellent agreement with the Glide docking pose. The second
lowest energy cluster is located in the extracellular vestibule,
with the positively charged N atom of ACh forming cation−π
interaction with the receptor residue Trp5257.35. This is
consistent with previous extensive experimental and computa-
tional studies that the extracellular vestibule of class A GPCRs
acts as a metastable intermediate site during binding of
orthosteric ligands.6,15 The energetically preferred pathway of
agonist binding to the M3 receptor identified from the current
GaMD-NAMD simulation is similar to that found in previous
long-time scale cMD,34 aMD,6 and GaMD simulations35 of
class A GPCRs. GaMD is thus promising to predict low-energy
conformations of ligand binding and serve as a useful tool in
structural biology and drug discovery. Moreover, GaMD mainly
accelerates transitions across enthalpic energy barriers because
it is based on boosting the system potential energy surface.
However, GaMD can be potentially combined with the parallel
tempering36 and replica exchange37 algorithms for further
enhanced sampling over entropic barriers as discussed earlier.11

In summary, we have implemented GaMD in NAMD 2.11
that shows excellent scalability for supercomputer simulations
of large biomolecules.38 The updated source code files of
NAMD 2.11 for implementing GaMD are now publicly
available at http://gamd.ucsd.edu. The implementation shall
be released in the upcoming version 2.12 of NAMD. It is
complementary to the original implementation of GaMD in the
graphics processing unit (GPU) version of the AMBER
software11 that runs extremely fast simulations with one or a
small number of GPU cards.17c,32 As demonstrated on selected
model systems, results of the current work shall facilitate the
applications of GaMD in enhanced sampling and free energy
calculations of a wide range of large biomolecules, such as
proteins, lipid membrane, nucleic acids, virus particles, and
cellular structures.

■ APPENDIX A: IMPLEMENTATION OF GAUSSIAN
ACCELERATED MOLECULAR DYNAMICS IN NAMD

The Gaussian Accelerated Molecular Dynamics (GaMD)
algorithm is implemented in NAMD 2.1138 as the following:

The following is a list of the input parameters for GaMD
simulation in NAMD:

• accelMDG < Is Gaussian accelerated MD on? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether Gaussian accelerated

MD (GaMD) is on.
• accelMDGiE < Flag to set the threshold energy E for

adding boost potential >
Acceptable Values: 1, 2
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Default Value: 1
Description: Specifies how the threshold energy E is

set in GaMD. A value of 1 indicates that the threshold
energy E is set to its lower bound E = Vmax. A value of 2
indicates that the threshold energy E is set to its upper
bound E = Vmin + (Vmax − Vmin)/k0.

• accelMDGcMDPrepSteps < no. of preparatory cMD
steps >
Acceptable Values: Zero or positive integer
Default Values: 200 000
Description: The number of preparatory conventional

MD (cMD) steps in GaMD. This value should be smaller
than accelMDGcMDSteps (see below). Potential en-
ergies are not collected for calculating the values of Vmax,
Vmin, Vavg, σV during the first accelMDGcMDPrepSteps.

• accelMDGcMDSteps < no. of total cMD steps >
Acceptable Values: Positive integer
Default Value: 1 000 000
Description: The number of total cMD steps in

GaMD. With accelMDGcMDPrepSteps < t < ac-
celMDGcMDSteps, Vmax, Vmin, Vavg, σV are collected
and at t = accelMDGcMDSteps, E, and k0 are computed.

• accelMDGEquiPrepSteps < no. of preparatory equilibra-
tion steps in GaMD >
Acceptable Values: Zero or positive integer
Default Value: 200 000
Description: The number of preparatory equilibration

steps in GaMD. This value should be smaller than
accelMDGEquiSteps (see below). With accelMDGcMD-
Steps < t < accelMDGEquiPrepSteps + accelMDGcMD-
Steps, GaMD boost potential is applied according to E
and k0 obtained at t = accelMDGcMDSteps.

• accelMDGEquiSteps < no. of total equilibration steps in
GaMD >
Acceptable Values: Zero or positive integer
Default Value: 1 000 000
Description: The number of total equilibration steps in

GaMD. With accelMDGEquiPrepSteps + ac-
celMDGcMDSteps < t < accelMDGEquiSteps +
accelMDGcMDSteps, GaMD boost potential is applied,
and E and k0 are updated every step.

• accelMDGSigma0P < upper limit of the standard
deviation of the total boost potential in GaMD >
Acceptable Values: Positive real number
Default Value: 6.0 (kcal/mol)
Description: Specifies the upper limit of the standard

deviation of the total boost potential. This option is only
available when accelMDdihe is off or when accelMDdual
is on.

• accelMDGSigma0D < upper limit of SD of the dihedral
potential boost in GaMD >
Acceptable Values: Positive real number
Default Value: 6.0 (kcal/mol)
Description: Specifies the upper limit of the standard

deviation of the dihedral boost potential. This option is
only available when accelMDdihe or accelMDdual is on.

• accelMDGRestart < Flag to restart GaMD simulation >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether the current GaMD

simulation is the continuation of a previous run. If this
option is turned on, the GaMD restart file specified by
accelMDGRestartFile (see below) will be read.

• accelMDGRestartFile < Name of GaMD restart file >
Acceptable Values: UNIX filename
Description: A GaMD restart file that stores the

current number of steps, maximum, minimum, average,
standard deviation of the dihedral and/or total potential
energies (depending on the accelMDdihe and accelMDd-
ual parameters), and the current time step settings. This
file is saved automatically every restartfreq steps. If
accelMDGRestart is turned on, this file will be read and
the simulation will restart from the point where the file
was written.
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