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Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside
Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of
GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD
was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1
decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced
hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and
immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was
consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia,
Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with
intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1
administration might be a promising strategy for protection of alcohol-induced liver damage.

1. Introduction

Alcoholic liver disease (ALD) is an ubiquitous health burden
around the world, which causes progression of liver damage
[1, 2]. It has been demonstrated that oxidative stress is a
major pathogenesis of alcohol-induced liver damage, which
is closely related to the development of ALD [3]. Alcohol
administration induces reactive oxygen species (ROS) gener-
ation and oxidative products, which leads to the destruction
of antioxidative system [4]. Previous study has reported that
excess ROS induced by alcohol can activate Kupffer cells and
produce proinflammatory factors [5].

Emerging studies have proved that the alteration of gut
microbiota (GM) is a causative factor in ALD [6, 7]. Mean-

while, excessive alcohol intake destroys the integrity of intes-
tinal barrier and promotes lipopolysaccharides (LPS)
releasing from intestine to liver through blood circulation
[8]. Toll-like receptor 4 (TLR4) is activated by LPS in Kupf-
fer cells and induces the expression of p-nuclear factor-
kappa B (p-NF-κB). TLR4/nuclear factor-kappa B (NF-κB)
pathway results in the release of inflammatory factors, which
subsequently contributes to liver damage [9]. Therefore,
alteration of GM and inhibition of inflammatory could be
an effective strategy to prevent alcohol-induced liver injury.

Ginsenosides are bioactive compounds extracted from
Panax ginseng C.A. Meyer, which have many pharmacolog-
ical properties including anti-inflammation, antioxidant
activity, and anticancer [10, 11]. Among these ginsenosides,
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ginsenoside Rg1 (GRg1) accounts for about 0.22% in sun-
cured ginseng and Radix ginseng rubra, which is a major
bioactive component [12]. Recent studies reported that
GRg1 displayed remarkable antioxidant activity and exhib-
ited protection of liver injury [13, 14]. However, the effect
and mechanism of GRg1 on GM in mice with alcoholic liver
damage remain unclear.

Recently, network pharmacology is used to estimate the
molecular mechanism of drugs from multiple dimensions.
It reveals the potentially complex relationship between drugs
and their targets according to “disease-target-ingredient-
drug” network model [15]. This method has been success-
fully used in the research of Chinese herbal medicine, espe-
cially in seeking of bioactive ingredients and their
therapeutic targets [16]. Therefore, network pharmacology
can provide a valid strategy to further explore the potential
targets of GRg1 to prevent ALD.

In this study, the potential ALD targets of GRg1 were
predicted through network pharmacology firstly. The effects
of GRg1 on ethanol-induced liver injury were investigated
in vivo. The potential targeted pathway was explored to ver-
ify the analysis of network pharmacology. Moreover, GM
composition and gut barrier were explored in the intestine.
GM interplayed with host indexes was estimated in
ethanol-treated mice. The findings would provide an alter-
native agent from ginseng for ALD prevention.

2. Materials and Methods

2.1. Materials. GRg1 (purity ≥ 98%) was obtained from Bei-
jing Beina Chuanglian Biotechnology Technology Research
Institute (Beijing, China), which was dissolved with distilled
water. The structure of GRg1 is shown in Figure 1. Silymarin
was purchased from Madaus AG. (Cologne, Germany),
which was dissolved with olive oil. The primary antibodies
against TLR4 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) and p-NF-κB p65 (Abcam, Cambridge, UK), and the
second antibody (Cell Signaling Technology, Danvers, MA,
USA) was purchased.

2.2. Network Pharmacology Analysis. The information of
bioactive ingredients of ginseng was obtained from Tradi-
tional Chinese Medicine Systems Pharmacology Database
(TCMSP). The corresponding targets of these ingredients
were screened through HERB (http://herb.ac.cn/), TCMSP,
and literature retrieval. In addition, ALD as the key word
was screeched in the GeneCards databases (https://www
.genecards.org/). The targets related to ALD were analyzed
according to relevance score ≥ 40. All targets were converted
into their gene names by Uniport database.

The targets of bioactive components in ginseng associ-
ated with ALD were determined by R x64 3.6.3 and repre-
sented in Venn diagrams. The network analysis of herb-
ingredient-target-disease was visualized by Cytoscape 3.6.1.
The shared targets were upload to STRING for analysis of
protein-protein interaction (PPI), and then, protein type
was set as Homo Sapiens. The data were saved and enriched
by R x64 3.6.3. Meanwhile, the clusterProfiler package in R

x64 3.6.3 was used to label and visualize KEGG pathway,
to predict the pathway expression of these targets.

2.3. Design of Animal Experiments. Forty male ICR mice (6
weeks old, 18-22 g) were provided by Beijing Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China).
The pathogen-free environment for raising experimental
mice was provided by the Animal Committee of Nankai
University (SYXK2019-0001, permission date: Jan 11,
2019). We conducted animal experiments following animal
ethics. The schematic diagram of animal experimental pro-
tocol was shown in Figure S1. The dose of GRg1
administered by gavage was 10mg/kg body weight (b.w.)
and 40mg/kg b.w. [17, 18]. ICR mice were randomized
into the groups of control, alcohol, alcohol + silymarin
(100mg/kg b.w.), alcohol + low − dose GRg1 (10mg/kg
b.w.), and alcohol + high − dose GRg1 (40mg/kg b.w.). The
control group was orally administrated with distilled water,
and the alcohol group was given by gavage with alcohol
(Sigma-Aldrich, St. Louis, MO, USA) for 30 days with an
increased dose (2-6 g/kg b.w.). Silymarin (100mg/kg b.w.)
and GRg1 (10 and 40mg/kg b.w., respectively) were given
to alcohol + silymarin and alcohol + GRg1 groups and then
to alcohol by daily gavage 2 h later. After 12 h, the mice
were anesthetized with sodium pentobarbital (50mg/kg,
i.p.) and euthanized by cervical dislocation. The serum in
each mouse was obtained by blood centrifugation, and
then, the liver and intestinal tissues of the mice were
immediately placed in refrigerator (-80°C).

2.4. Histopathological Observation. The liver and colon tis-
sues were removed by laparotomy and immersed in formal-
dehyde solution. Tissues were embedded in paraffin wax.
Then, the tissue samples were cut into 5-8μm thickness
and stained by hematoxylin-eosin (H&E) and Alcian blue-
periodic acid Schiff (AB-PAS), respectively. The degree of
inflammation and lipid accumulation of in these tissues
was observed.

2.5. Analysis of Biochemical Indexes. The circulating levels of
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), lactate dehydrogenase (LDH), and alkaline phospha-
tase (AKP) were measured by detection kits (Nanjing Jian-
cheng Bioengineering Institute, Nanjing, China). Hepatic
levels of malondialdehyde (MDA), glutathione peroxidase
(GSH-Px), glutathione (GSH), catalase (CAT), and superox-
ide dismutase (SOD) were detected by detection kits of Nan-
jing Jiancheng Bioengineering Institute.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). The
liver and colon tissue samples were grinded into homoge-
nate. The sample supernatant of serum, liver, and colon
was obtained after centrifugation. The total protein contents
were measured by a BCA protein kit. The levels of LPS,
tumor necrosis factor α (TNF-α), interleukin-1 beta (IL-
1β), interleukin-6 (IL-6), transforming growth factor-β1
(TGF-β1), ROS, 8-hydroxy-2′-deoxyguanosine (8-OHdG),
4-hydroxynonenal (4-HNE), and immunoglobulin A (IgA)
in each sample were measured by ELISA reader (Tecan,
Salzburg, Austria).
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2.7. Analysis of Reverse Transcription-Quantitative
Polymerase Chain Reaction (RT-qPCR). The extraction kit
(Promega Corporation, Madison, WI, USA) was used to
extract the total RNA of colonic tissue, which were tran-
scribed into cDNA. The concentrations of RNA were mea-
sured by NanoPhotometer™ P300 spectrophotometer
(Implen, Munchen, Germany). GAPDH gene primers were
selected as internal reference genes to determine the mRNA
levels of zonula occludens-1 (ZO-1), occludin, and claudin.
Sequences of primers were placed in Table 1. SYBR Green
PCR Master Mix kit (Vazyme Biotech Co., Ltd Nanjing,
China) was applied to carry out PCR reaction. The condi-
tions of reaction were 5min 95°C, 10 s 95°C, 30 s 60°C, and
40 cycles. 2-ΔΔCt method was used to measure the relative
mRNA expression.

2.8. Western Blotting Analysis. The total protein content in
each sample of liver and colon was determined. Separation
of proteins from different samples was separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%)
and then transferred to polyvinylidene fluoride (PVDF)
membrane. The membranes were sealed and incubated with
the primary antibodies and then washed and incubated with
secondary antibodies at 25°C. Finally, protein expression of
membranes was presented by an odyssey infrared imaging
system.

2.9. DNA Sequencing of GM and Bioinformatic Analysis. The
cecal contents of each sample were obtained in a super-clean
worktable. The total microbial DNA of cecum contents was
extracted by a DNA kit (Omega Biotek, Norcross, GA,
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Figure 1: Chemical structure of GRg1.
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Table 1: Primer sequences used for RT-qPCR assay.

Genes Forward (5′-3′) Reverse (5′-3′)
GAPDH ATTCAACGGCACAGTCAAGG GCAGAAGGGGCGGAGATGA

ZO-1 ACTCCCACTTCCCCAAAAAC CCACAGCTGAAGGACTCACA

Occludin CTGTCTATGCTCGTCATCG CATTCCCGATCTAATGACGC

Claudin-1 GTTTGCAGAGACCCCATCAC AGAAGCCAGGATGAAACCCA

173 37 158

ALD Ginseng

(a)

(b)

Figure 2: Shared targets between ginseng and ALD. (a) Venn diagram of candidate targets in ginseng and ALD. (b) Bioactive ingredients-
targets-ALD network. The green octagon node represents ginseng. Cyan rectangle nodes represent the bioactive components of ginseng. The
red hexagon node represents ALD. Purple ellipse nodes represent potential targets of ginseng against ALD.
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Figure 3: Continued.
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USA), and then, DNA purity was evaluated. The hypervari-
able region (V3-V4) of 16S rRNA was multiplied by PCR
technique. The purified amplicons were quantitatively ana-
lyzed and sequenced by Illumina MiSeq platform (Illumina,
San Diego, CA, USA).

2.10. Statistical Analysis. All the results in the experiment
were expressed asmean ± standard deviation (S.D.) and ana-
lyzed using GraphPad Prism 8.0. Pearson correlation coeffi-
cient and the heat map between gut microbiota and the
related biomarkers were obtained on the platform of Gene-
denovo Biotechnology Co. Ltd (https://www.omicsmart
.com/). The significant difference was calculated according
to the student’s t-test. Values of P < 0:05 represent statisti-
cally difference.

3. Results

3.1. Shared Targets between Bioactive Ingredients in Ginseng
and ALD. The bioactive ingredients of ginseng and ALD-
related targets were gathered by using the corresponding
database. The results showed that 195 targets corresponding
to bioactive ingredients of ginseng were obtained from
TCMSP, HERB, and literatures. Meanwhile, the ALD-
related genes were gathered, and 210 ALD-related targets
were confirmed (relevance score ≥ 40). 37 shared targets
between active ingredients and ALD-related targets were
identified in generating Venn diagram (Figure 2(a)). Cytos-
cape software was employed to construct the network of
“bioactive ingredients-targets-disease” network about com-
mon targets in schematic diagram. 31 bioactive components
in Panax ginseng were associated with 37 shared targets,
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Figure 3: Potential targets analysis of bioactive components in ginseng against ALD. (a) Rank diagram of the degree between bioactive
ingredients and ALD. The size of circle reflects the degree. (b) Heat map of the degree between bioactive ingredients and ALD. Blue and
red colors indicate low and high degree value, respectively. (c) GRg1 targets ALD network. Purple ellipse nodes represent potential
targets of GRg1 against ALD. (d) Enrichment diagram of KEGG pathway.
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which have potential preventive effects on ALD
(Figure 2(b)).

3.2. Potential Target Analysis of GRg1 against ALD. To fur-
ther investigate the potential anti-ALD property of 31 bioac-
tive ingredients, the network of bioactive components in
Panax ginseng targeted to ALD was analyzed by Cytoscape
software (Figure 3(a)). The degree between bioactive ingre-
dients and ALD was visualized in heat map (Figure 3(b)).
The results showed that the degree between GRg1 and
ALD was ranked the second, which showed powerful ability
in preventing alcoholic liver injury (Figures 3(a) and 3(b)).
Recent studies have reported that GRg1 is a major ingredient
originated from Panax ginseng, which has the protective
effect on liver disease [16, 19]. Then, GRg1-target-ALD net-
work was established to explore the potential targets in pre-
venting ALD. We found that 11 genes such as IL-6, TLR4,
TNF, and CASP3 were interactive targets between GRg1
and ALD, suggesting that GRg1 protected alcoholic liver
damage through these targets (Figure 3(c) and Table 2). Fur-
thermore, KEGG pathway analysis was performed on these
interactive targets in Figure 3(d). The results showed that
GRg1 represents its protective effects against ALD were
closely related to these signaling pathways including TLR
signaling pathway and NF-κB signaling pathway.

3.3. Effect of GRg1 on Alcoholic Liver Damage in Mice. To
explore the potential effects of GRg1 on ALD, the hepatic tis-
sue morphology and plasma biochemical indexes were
determined in alcohol-induced liver damage mice. As shown
in Figure 4(a), the liver lobule structure was clear, and the
hepatocytes were arranged regularly in control group,
whereas cellular swelling and inflammatory infiltration were
exhibited in the alcohol group. After pretreatment with dif-
ferent doses of GRg1, infiltrations of inflammatory cells were
gradually decreased. The improvement of histopathology in
high dose-GRg1 group was similar to that in silymarin
group. Meanwhile, alcohol treatment obviously elevated
the activities of hepatic enzymes including ALT, AST,
LDH, and AKP in the serum. However, the enzymatic activ-
ities were gradually reduced by GRg1 pretreatment. These
biochemical index in high dose-GRg1 group was similar to

those in positive control group (Figures 4(b)–4(e)), indicat-
ing that the protective effect of high-dose GRg1 on alcoholic
liver injury closely resembled that of silymarin. Our results
demonstrate that GRg1 has protective effects on liver injury
induced by alcohol.

3.4. Effect of GRg1 on Hepatic Oxidative Stress Induced
Alcohol in Mice. Alcohol induces ROS generation and inter-
feres with antioxidant defense system, which further results
in oxidative stress in liver. Alcohol-induced oxidative stress
demonstrated an essential role in promoting ALD develop-
ment [20]. To investigate the effect of GRg1 on hepatic oxi-
dative stress, the levels of oxidation and antioxidant
parameters were detected. Alcohol administration signifi-
cantly increased ROS level and oxidative products (MDA,
4-HNE, and 8-OHdG). However, these levels of oxidative
indexes were gradually decreased in GRg1 group
(Figures 5(a)–5(d)). Similarly, as shown in Figures 5(e) and
5(f), GRg1 pretreatment significantly alleviated the alcohol-
induced decrease in antioxidant indices (SOD, GSH-Px,
CAT, and GSH). Collectively, GRg1 prevents alcohol-
induced oxidative stress by regulating the equilibrium
between oxidation and antioxidation in the liver of mice.

3.5. GRg1 Alleviated Inflammatory Response in the Liver
Treated by Alcohol. To assess the effect of GRg1 on hepatic
inflammation, inflammatory indexes were measured on the
basis of the network pharmacology analyses. In Table 3,
LPS level was significantly elevated by alcohol. However,
the elevation of LPS level in alcohol group was gradually
restored by GRg1 pretreatment. Numerous studies demon-
strate that low LPS concentration can activate LPS-
mediated TLR4/NF-κB pathway, which is essential to
hepatic inflammation [21]. Then, the protein expression
levels of TLR4 and p-NF-κB p65 were detected through
western blotting. We found that alcohol remarkably upreg-
ulated TLR4 and p-NF-κB p65 expressions. However,
these levels were gradually decreased after GRg1 pretreat-
ment (Figures 6(a)–6(c)), suggesting that LPS-induced
TLR4/NF-κB activation is attenuated by GRg1. Further-
more, inflammatory factor levels including TNF-α, IL-1β,
IL-6, and TGF-β1 were significantly upregulated by alco-
hol treatment, while GRg1 gradually decreased those
levels, especially in high-dose GRg1 group (Table 3). The
data imply that GRg1 inhibits LPS/TLR4/NF-κB signaling
pathway, which subsequently ameliorates liver inflamma-
tion induced by alcohol.

3.6. Effect of GRg1 on Intestinal Barrier in Alcohol-Treated
Mice. To investigate the integrity of intestinal epithelial cells,
anatomical and histopathological observations were per-
formed in the colon. Histopathological examination showed
that the shortened length of intestine was reversed by GRg1
pretreatment (Figure 7(a)). In addition, epithelial cells were
destroyed and loosely lined, and the space of subepithelia
was expanded in alcohol-treated mice, whereas those were
obviously alleviated in GRg1 group (Figure 7(b)). Further-
more, the tight junction proteins (ZO-1, occludin, and clau-
din-1), as indicators to measure intestinal permeability,

Table 2: The potential targets and network degrees.

Target Description Degree

IL-6 Interleukin-6 10

TLR4 Toll like receptor 4 10

TNF Tumor necrosis factor 10

CASP3 Caspase 3 9

IL-1β Interleukin-1 beta 9

TGF-β1 Transforming growth factor-beta 1 9

VEGFA Vascular endothelial growth factor A 9

BDNF Brain derived neurotrophic factor 7

CDH1 Cadherin 1 7

NF-кB1 Nuclear factor-kappa B subunit 1 7

LPL Lipoprotein lipase 3
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maintain the integrity of intestinal barrier [9]. Next, the
mRNA levels of colon tight junction proteins were detected
by RT-qPCR. The levels of ZO-1, occludin, and claudin-1
detected by PCR in alcohol group were gradually reduced
in alcohol group, which were reversed after GRg1 pretreat-
ment (40mg/kg b.w.) (Figure 7(c)). Meanwhile, GRg1 pre-
treatment gradually restored the decrease of IgA level by
alcohol (Figure 7(d)). And compared with alcohol group,
the intestinal and circulating levels of LPS in the GRg1 group
were reduced in a form of measurement dependence
(Figures 7(e) and 7(f)). The data indicate GRg1 enhances
gut barrier by promoting the expressions of tight junction
protein and IgA.

3.7. Effect of GRg1 on the Intestinal Microbiota Composition
in Alcohol-Treated Mice. To analyze the effect of GRg1 on
the GM composition in ALD mice, 16S rRNA were multi-
plex sequenced in the intestine. In this study, after alcohol

treatment, the indexes of Chao1 richness and Shannon
diversity were gradually elevated, while GRg1 pretreatment
obviously reduced the indexes of Chao1 richness and Shan-
non diversity compared with those in alcohol group
(Figures 8(a) and 8(b)). As shown in Figure 8(c), the cluster
of GM in alcohol group was obviously different with the
clusters of normal mice, while those between GM in high-
dose GRg1 group and control group were close to each
other. Meanwhile, OTUs in each group were shared and dif-
ferent in the Venn diagram (Figure 8(d)).

Then, the different GM phylotypes among all groups
were analyzed at different levels. The decrease of Verrucomi-
crobia and Bacteroidetes in alcohol group were reversed by
GRg1 treatment (Figure 8(e)). In addition, Akkermansia,
Bacteroides, Lachnospiraceae_NK4A136_group, and Allo-
prevotella were the most abundant genera (Figure 8(f)).
To further investigate the specific differences of intestinal
microbiota at various phylogenetic levels, LEfSe was used
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Figure 4: Effect of GRg1 on alcoholic liver damage in vivo. (a) The liver tissues were stained by hematoxylin-eosin (200×). The arrows
indicate inflammatory cells. (b–e) The circulating levels of ALT, AST, LDH, and AKP. ##P < 0:01 and ###P < 0:001 vs. control group. ∗P
< 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. alcohol group.
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to analyze the intestinal microbiota between alcohol group
and GRg1 (40mg/kg) group. As shown in Figures 8(g) and
8(h), Firmicutes phylum, two genera including Lachnospir-
aceae_NK4A136_group, and Ruminiclostridium were abun-
dant in alcohol group, while Verrucomicrobia phylum and
Akkermansiawere genus were predominant in GRg1

(40mg/kg) group. These results indicate that GRg1 can
regulate the composition of GM in alcohol group.

3.8. Correlations between GM and the Indexes. In order to
illuminate the potential mechanisms of GRg1 on ALD, the
relationship between intestinal flora and host indexes was
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Figure 5: The levels of oxidative and antioxidative indexes in the liver. (a) ROS, (b) MDA, (c) 4-HNE, (d) 8-OHdG, and (e) GSH were
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analyzed. As shown in Figure 9, the Pearson correlation anal-
ysis showed that Verrucomicrobia, Bacteroidetes, Akkerman-
sia, Bacteroides, Lachnospiraceae_NK4A136_group, and
Alloprevotella showed obvious positive correlation with intes-
tinal integrity indexes (tight junction proteins and sIgA), while
negative correlation with hepatic biomarkers (ROS, ALT, and
AST), hepatic indexes of inflammation (LPS, TNF-α, IL-1β,
IL-6, and TGF-β1) and TLR4/NF-κB expression. In contrast,
Firmicutes are positively associated with these oxidative and
inflammatory parameters, whereas negatively correlated with
hepatic antioxidant parameters and intestinal integrity
indexes. Here, the results suggest that GRg1 causes the alter-

ation of GM population, which enhances intestinal integrity
and arrests gut-derived inflammation by inhibition of LPS-
mediated TLR4/NF-κB pathway.

4. Discussion

ALD is caused by alcohol abuse, which is accompanied by
the development of liver injury [22]. Oxidative stress and
inflammation induced by alcohol are participated in the pro-
gression of ALD. Recent studies reported that GM partici-
pated in the evolution of alcohol-induced liver injury,
which is a critical element for prevention of ALD [6, 7].

Table 3: Inflammation parameters in liver of mice.

Group Control Alcohol GRg1 (10mg per kg b.w.) GRg1 (40mg per kg b.w.)

LPS (EU/g prot) 129:74 ± 7:77 203:41 ± 19:61### 198:33 ± 25:67 167:42 ± 13:56∗∗

TNF-α (pg/mg prot) 166:69 ± 4:58 227:81 ± 7:31### 186:64 ± 6:93∗∗ 171:91 ± 2:96∗∗∗

IL-1β (pg/mg prot) 20:47 ± 1:93 29:12 ± 1:11## 26:84 ± 1:91 24:10 ± 0:49∗∗

IL-6 (pg/mg prot) 20:02 ± 1:9 33:69 ± 1:71### 28:12 ± 1:85∗ 23:94 ± 1:24∗∗

TGF-β1(pg/mg prot) 20:24 ± 1:87 33:22 ± 1:86## 27:52 ± 2:66∗ 24:76 ± 1:93∗∗

All data are expressed as mean ± S:D. ##P < 0:01 and ###P < 0:001 vs. the control group, ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. the alcohol-treated group.
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GRg1 extracted from ginseng can suppress oxidative stress
and inflammatory responses, which exerts its pharmacolog-
ical property to prevent and treat inflammation-related dis-
eases [13, 19]. In this study, the potential targets of GRg1
against ALD were predicted through network pharmacol-

ogy, and the underlying mechanisms of GRg1 on alcoholic
liver injury were investigated in mice.

Network pharmacology is an effective approach to predict
the targets and pathways of drugs, which provides a way of the
precise prevention and treatment of disease [15]. In this study,
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Figure 8: Intestinal microbiota composition in cecum. (a) Chao1 richness index. (b) Shannon diversity index. (c) PCA plot. (d) Venn
diagram. (e) Relative abundances of microbial composition at phylum levels. (f) Relative abundances of microbial composition at genus
levels. (g) LEfSe taxonomic cladogram between alcohol group and high-dose GRg1 group. The size of the circles is based on relative
abundance. (h) LDA score diagram. ###P < 0:001 vs. control group. ∗∗P < 0:01 and ∗∗∗P < 0:001 vs. alcohol group.
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31 bioactive ingredients in ginseng were selected to have
potential anti-ALD activity by ginseng-targets-ALD network
(Figures 2(a) and 2(b)). Among these bioactive compounds,
GRg1 showed the powerful pharmacology against ALD
according to the degree values between bioactive ingredients
and ALD (Figures 3(a) and 3(b)). Recent studies demonstrated
that GRg1 can protect against some liver diseases in several
animal models [23, 24]. Combined with the related references,
GRg1 was chosen to perform the network of GRg1-tagets-
ALD.We found that 11 key genes were related to GRg1, which
were strongly correlated with ALD (Figure 3(c) and Table 2).
In addition, KEGG pathway analysis showed the TLR and
NF-κB signaling pathways were interrelated with GRg1
against ALD (Figure 3(d)). It has been confirmed that the acti-
vation of LPS/TLR4/NF-κB pathway induces the secretion of
inflammatory factors, which contributes to the development
of ALD [9, 25]. These results indicate that LPS/TLR4/NF-κB
pathway is the potential targets of GRg1 to protect against
ALD.

Excessive alcohol consumption causes histopathological
changes and disfunction in the liver [2]. The elevation of
hepatic enzymes in the serum indicates the occurrence of
liver injury, such as AST, ALT, and LDH [26]. It has been
verified that silymarin exhibits protective effects against liver
injury, which is used as a common positive control in many
studies of hepatoprotective drugs [27, 28]. In the current
study, it was found that GRg1 effectively alleviated histopa-
thological changes in liver tissue and the levels of hepatic
enzymes (AST, ALT, LDH, and AKP) in serum (Figure 4),
indicating that GRg1 can reduce alcohol-induced liver dam-
age. In addition, hepatoprotective effects of high dose-GRg1
were similar to silymarin, suggesting that GRg1 is a potential

agent for preventing ALD. Alcohol-induced excess ROS trig-
gers oxidative damage of lipid and DNA and destroys equi-
librium of oxidation and antioxidation, which leads to
hepatic inflammation and injury [4, 29]. Our results showed
that GRg1 pretreatment reversed the increase of oxidative
level (ROS, MDA, 4-HNE, and 8-OHdG) and decrease of
antioxidative level (SOD, CAT, GSH-Px, and GSH)
(Figure 5), suggesting the alleviation of alcohol-induced oxi-
dative stress.

Several studies indicate that alcohol and its metabolites
destroy the function and structure of gut epithelial cells
and result in the enlargement of gut permeability [30–32].
In this study, gross and tissue staining displayed that high-
dose GRg1 pretreatment alleviated the reduction of intesti-
nal length and histopathological changes in the colon
(Figures 7(a) and 7(b)). It has been reported that tight junc-
tion proteins crosslink to the actin cytoskeleton and form
the gut integrity [9]. In addition to alcohol and its metabo-
lites, alcohol-mediated microbial proliferation and LPS have
been found to disrupt tight junction proteins and increase
intestinal permeability, subsequently intestinal LPS enters
blood circulation through broken intestinal barrier [33,
34]. In the present study, we found that high-dose GRg1
effectively reduced the intestinal and circulating levels of
LPS and increased the levels of the tight junction proteins
in alcohol-treated mice (Figures 7(c), 7(e), and 7(f)). The
results indicate that GRg1 pretreatment restores the expres-
sion of tight junction proteins and enhances gut barrier by
reducing alcohol-induced LPS in the intestine and circula-
tion. IgA restricts the invasion of pathogens and toxins
through the mucosa and serves as the major factor of intes-
tinal mucosal defense [35]. We found that GRg1
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pretreatment improved the levels of antimicrobial peptides
and IgA (Figure 7(d)). Taking together, the findings demon-
strate that GRg1 enhances gut barrier function and decreases
the gut permeability in alcohol-treated mice.

It is well known that LPS is a microbe-derived bacterial
product, which is a crucial mediator of inflammation in
ALD. Further studies have reported that alcohol intake
increases intestinal permeability, and LPS is transported
from intestine to liver through blood circulation, which
induces inflammatory response in the liver [36, 37]. The
increase of inflammatory cytokines contributes to ALD by
regulating the gut-liver axis [9]. LPS-induced TLR4/NF-κB
activation builds a link between the gut permeability and
liver inflammation, which aggravate liver injury [21, 38].
We found that GRg1 pretreatment reversed the elevated
levels of LPS, TLR4, and p-NF-κB in alcohol group
(Figure 6 and Table 3). These findings indicate that LPS-
mediated TLR4/NF-κB activation is reduced by modulation
of gut permeability in GRg1 group. Subsequently, GRg1 pre-
treatment alleviated the increase of inflammatory factors in
the liver treated by alcohol (Table 3). Taking together, the
data demonstrated that GRg1 alleviated alcohol-induced
inflammatory response through suppression of LPS/TLR4/
NF-κB pathway and prevented liver damage, which further
proved the target predicted by network pharmacology.

Recently, more evidences have displayed that alcohol
results in imbalance of intestinal flora, and the interaction
between GM and hepatic damage promotes the development
of ALD [39, 40]. In this study, all the groups have unique
and shared OTUs (Figure 8(d)). GRg1 pretreatment signifi-
cantly decreased the values of Chao 1 richness and Shannon
diversity in alcohol group, indicating the decline of α-diversity
(Figures 8(a) and 8(b)). In addition, the GM cluster in high
dose-GRg1 group and control group was close, indicating
the similarity of β-diversity (Figure 8(c)). Our data imply that
GRg1 pretreatment can alter GM profile in alcohol-treated
mice. Bacteroidetes and Firmicute are the richest phyla, and
changes in Firmicutes/Bacteroidetes (F/B) are often associated
with health benefits [41, 42]. Our data demonstrated that
GRg1 pretreatment enhanced the proportion of Bacteroidetes
and Verrucomicrobia and reduced the value of F/B in alcohol
group, which were consistent with previous report
(Figure 8(e)). Akkermansiamuciniphila, a gram-negative bac-
terium located in the mucus layer, maintains the integrity of
intestinal barrier [43]. It has been demonstrated that Bacter-
oides, Lachnospiraceae_NK4A136 _group, and Alloprevotella
produce short-chain fatty acids, which protect intestinal bar-
rier function and inhibit inflammatory response [44–46].
Our data showed that Akkermansia, Bacteroides, Lachnospira-
ceae_NK4A136_group, and Alloprevotella were the main
microbiota at genus level, and GRg1 pretreatment increased
these abundances (Figure 8(f)). In addition, there was specific
differences of microbiota between alcohol group and high
dose-GRg1 group by LEfSe analysis (Figures 8(g) and 8(h)).
Collectively, these findings indicate that GRg1 can regulate
GM composition to ameliorate alcoholic liver damage.

It has been demonstrated that excess ethanol intake is
correlated with changes in GM composition, intestinal bar-
rier function, and inflammatory response [47]. Some gut bacte-

ria products such as LPS reach the liver through portal vein,
which activate TLR4-mediated NF-κB pathway and produce
proinflammatory cytokines in the liver [25]. Moreover, alcohol
enhances gut leakiness by inhibiting tight junction protein
expression and increases LPS load and liver pathology [48].
The interaction between GM alteration and gut-derived inflam-
mation promotes a crucial effect in progression of alcoholic liver
injury [9]. Our results demonstrate that inflammatory biomark-
ers (LPS, TLR4, NF-κB, and cytokines) in the liver showed a
negative relation with some microbiota such as Bacteroidetes,
Verrucomicrobia, Akkermansia, and Bacteroides and positive
association with Firmicutes after GRg1 pretreatment
(Figure 9). The findings demonstrate that LPS-mediated
TLR4/NF-κB activation is decreased by alteration of GM in
GRg1-treated mice. In contrast, gut barrier defense (tight junc-
tion protein expression and sIgA level) exhibited the opposite
correlation with these GM. Collectively, our data imply that
GRg1 alters the GM, which interacted with gut-derived inflam-
mation, and further alleviates alcoholic liver damage.

5. Conclusion

In this study, network pharmacological analysis showed that
11 potential targets of GRg1 against ALD were obtained and
implicated with TLR/NF-κB signaling pathways. Meanwhile,
GRg1 reduced liver pathological damage and the activities of
hepatic enzymes in alcohol-treated mice. GRg1 alleviated
alcohol-induced oxidative stress by downregulating oxida-
tive levels and upregulating antioxidative levels. GRg1
inhibits LPS/TLR4/NF-κB signaling pathway, which subse-
quently ameliorates liver inflammation induced by alcohol.
Furthermore, GRg1 inhibited intestinal and circulating LPS
levels and increased tight junction proteins and IgA levels,
which strengthened the intestinal barrier. GRg1 regulated
intestinal flora disturbance, Verrucomicrobia, Bacteroidetes,
Akkermansia, and Bacteroides were positively correlated
with intestinal barrier indicators and negatively associated
with LPS-mediated inflammation after GRg1 treatment.
Our findings proved that GRg1 as a natural product can pro-
tect against alcohol-induced liver damage via regulating gut-
liver axis.
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