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ignificance Statement

Decision-making under risk entails the possibility of simultaneously receiving positive (reward) and negative
(punishment) stimuli. To learn in this context, one must integrate conflicting information related to the
magnitude of reward and the probability of punishment. Long-term inactivation of the basolateral amygdala
(BLA) disrupts this process and increases risky behavior. In a recent study published in the Journal of
Neuroscience, Orsini et al. (2017) showed that briefly inhibiting the BLA may result in increased or
decreased risk-taking behavior, depending on the phase of the decision process in which BLA activity is
disrupted. Here, we discuss the results and propose future experiments that could improve our under-
Kstanding of how the BLA contributes to adaptive learning under risk and uncertainty. /

~

In complex, “real-world” environments, choices made
may result in both rewards and adverse outcomes, each
associated with different and often-changing probabili-
ties. Decision-making under risk and uncertainty requires
sustained attention and constant updating of learned
rules to adequately valuate available alternatives. During
risky decision-making, rewarding or punishing outcomes
encountered following each decision facilitate learning
through positive or negative reinforcement, respectively
(Wachter et al., 2009). How individuals react to such
competing environmental cues has been the focus of
numerous studies in decision neuroscience (Preuschoff
et al., 2015). These studies show that cultural, social, and
genetic factors shape risk preference, although transient
internal states, such as mood, fatigue, or recent experi-
ence, may also influence an individual’s propensity to
risk-taking (Weber and Johnson, 2009).

Located at the crossroads of corticolimbic circuits that
mediate reinforcement learning, the basolateral amygdala
(BLA) responds to arousing stimuli of both positive and
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negative valence (Shabel and Janak, 2009) and is neces-
sary for the establishment of reward associations (Baxter
and Murray, 2002) and fear conditioning (Krabbe et al.,
2017). This functional heterogeneity has made the BLA a
prime target to study associative learning using risky
decision-making tasks (RDTs), in which rodents have to
choose between a small, “safe” food reward and a large,
“risky” reward that might be paired with a punishment.
Over the last decade, studies using RDTs have shown
that pharmacological inactivation and lesions of the BLA
increase risk-seeking behavior (Orsini et al., 2015; Pianta-
dosi et al., 2017). However, studies with high temporal
resolution allowing trial-by-trial manipulation of BLA ac-
tivity are lacking. Therefore, it remains unknown whether
increased risk-seeking behavior is the result of BLA loss-
of-function specifically during the deliberation phase, i.e.,
in decision-making per se, and/or during the outcome
phase, i.e., the associative phase of reward and punish-
ment.
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Figure 1. A, Experimental paradigm used in Orsini et al. (2017). The RDT was divided in three phases: deliberation, outcome, and
intertrial interval. Optogenetic inhibition of the BLA occurred during one of the three phases and lasted =5 s. B, Reward (green) and
punishment (red) are processed by distinct subpopulations within the BLA. Only major afferent and efferent BLA connections
discussed in the text are shown. C, Concurrent delivery of a large reward alongside punishment results in conflicting information, of
positive and negative valence, respectively, reaching the BLA. Hypothesis: in absence of no-Go inputs from BLA to CeA, NAc shell,
and PFC, predominance of Go inputs to the NAc (notably from VTA) may bias the animal’s perceived experience toward rewarding
stimuli, thus increasing risky choice. R, rostral; C, caudal; M, medial; L, lateral.

In a study published in the Journal of Neuroscience,
Orsini et al. (2017) addressed this gap in knowledge by
using optogenetics to inhibit BLA activity at three different
phases of a RDT; namely, deliberation, outcome, and
intertrial interval. The deliberation phase corresponded to
the =10-s period during which rats had to choose be-
tween two levers (safe, associated with a small reward, or
risky, associated with a large reward that was accompa-
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nied by an increasing probability of a footshock). Lever
choice marked the beginning of the 5-s outcome period
during which reward (always) and punishment (if any) were
delivered, followed by a variable intertrial interval that
brought each trial’s length to 40 s. Laser delivery occurred
during one of the three phases and lasted =5 s (Fig. 1A).
In the control condition, as expected, the likelihood of
choosing the risky reward diminished as the probability of
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punishment increased. Interestingly, transient BLA inacti-
vation yielded opposite results depending on the phase of
the decision-making process at which it occurred. On the
one hand, BLA inhibition during the deliberation phase
decreased risky choice and resulted in a higher probability
of performing a lose-shift, i.e., making a safe choice im-
mediately after punishment. On the other hand, silencing
of BLA neurons during delivery of a large, punished out-
come, increased risky choice, and decreased the propor-
tion of lose-shift trials.

How to reconcile such disparate results? One possible
explanation comes from the fact that optogenetic inhibi-
tion reduced overall BLA activity, without cell-type spec-
ificity. Because the BLA receives inputs from and sends
projections to different cortical and subcortical targets
(O’Neill et al., 2018), it is important to consider its func-
tional and anatomic heterogeneity before discussing
Orsini et al.’s results.

Inputs reaching the BLA from the prefrontal cortex
(PFC) and dopaminergic neurons in the ventral tegmental
(VTA) modulate reward sensitivity. Disruption of PFC-to-
BLA projections, pharmacological blockade of D, recep-
tors (D4R), and D,R stimulation all reduce risky choice (St
Onge et al., 2012; Larkin et al., 2016). D4R stimulation
however may increase or decrease risky choice, depend-
ing on reward probabilities and individual risk-preferences
(Larkin et al., 2016).

Regarding BLA outputs, recent evidence suggests that
risk-seeking and risk-avoidance are mediated by distinct
neuronal subpopulations within the BLA, which in turn
project to segregated brain regions driving opposing out-
comes (Namburi et al., 2015; Beyeler et al., 2016, 2018).
BLA neurons that synapse in the nucleus accumbens
(NAc projectors) are preferentially excited to reward-
predictive cues (Beyeler et al., 2016), whereas central
amygdala (CeA) projectors and medial PFC (mPFC) pro-
jectors are preferentially excited to cues associated with
an aversive outcome (Burgos-Robles et al., 2017; Fig. 1B).
In contrast, neurons projecting to the ventral hippocam-
pus do not show a preference for either positive or neg-
ative stimuli (Beyeler et al., 2016). Moreover, a study by
the same research group showed that specific activation
of BLA NAc projectors and CeA projectors facilitate pos-
itive and negative reinforcement learning, respectively
(Nambuiri et al., 2015). Taken together, these results sug-
gest that distinct BLA subpopulations are engaged differ-
ently at discrete time-points of the decision-making
process. Hence, it is possible that non-specific inhibition
of pre- and/or postsynaptic activity within the amygdala
might have selective effects depending on the phase of
the decision-making process that is disrupted.

BLA Inhibition during Delivery of Large,
Punished Outcome Increases Risky
Choice

Delivery of a large reward alongside punishment results
in conflicting positive- and negative-valence signals si-
multaneously reaching the BLA. The increase in risk-
seeking behavior reported by Orsini et al. (2017) with BLA
inactivation during delivery of a large, punished reward
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suggests that intact BLA function contributes to the inte-
gration of reward magnitude and punishment-related in-
formation.

Given the role of BLA NAc-, CeA-, and mPFC-
projecting neurons in reinforcement learning, it seems
sensible to hypothesize that conflicting outcomes are
represented in the BLA by opposing yet complementary
activity of these neuronal populations. The increase of
risky choice and the reduction in the number of lose-shift
trials observed by Orsini et al. (2017) suggests that, in the
presence of conflicting inputs, activity of CeA and/or
mPFC projectors is more determinant than that of NAc
projectors in informing subsequent decisions. If, indeed,
discrete BLA subpopulations are preferentially recruited
during the outcome phase, inhibition of all projection
neurons would have an impact only on the neurons that
are normally activated during said phase. This raises the
question of why, in the absence of BLA to NAc inputs,
risk-seeking behavior is not affected. According to our
current understanding of NAc reward circuitry, there are
at least two possible, non-mutually exclusive, explana-
tions for this result. The first possible explanation relates
to the functional and anatomic subdivisions of the NAc,
while the second has to do with other brain structures
besides the BLA that feed into the NAc.

First, the BLA projects to both the lateral (“core”) and
medial (“shell”) subdivisions of the NAc. A recent study
showed that pharmacological inactivation of either BLA or
NAc shell during a RDT increased risky behavior, suggest-
ing that both structures suppress punished reward seek-
ing (Piantadosi et al., 2017). In contrast, NAc core
inactivation reduced overall responding, even in the ab-
sence of any risk, suggesting that NAc core facilitates
reward-seeking, independent of motivational conflict (Pi-
antadosi et al., 2017). It is therefore possible that non-
specific BLA inactivation affected a BLA-NAc shell circuit
responsible for the punishment-induced inhibition of be-
havior.

Second, the NAc is a major target of dopaminergic VTA
neurons, which encode the value of predicted and ob-
served rewards and respond strongly to rewards during
the course of learning (Hollerman and Schultz, 1998).
Moreover, VTA stimulation following a “risky loss,” i.e.,
punishment in the absence of reward, increases risk pref-
erence (Stopper et al., 2014). Taken together, these ob-
servations indicate that BLA silencing during delivery of a
large, punished reward might result in or resemble the
effect of reduced NAc shell activity, effectively “releasing”
the NAc core, which may also respond to strong VTA
inputs that bias the animal’s perceived experience toward
rewarding stimuli (Fig. 1C).

BLA Inhibition during Deliberation
Decreases Risky Choice

The result of decreased risky choice with BLA inactiva-
tion during deliberation observed by Orsini et al. (2017)
appears to be at odds with previous reports using lesions
and pharmacologic inhibition of the BLA (Orsini et al.,
2015; Piantadosi et al., 2017). Nevertheless, as mentioned
above, said techniques do not offer the time resolution
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needed to study the role of the BLA during different
phases of the RDT, a limitation that was circumvented by
the use of optogenetics. Therefore, the experiments con-
ducted by Orsini et al. (2017) demonstrate that previously
observed deficits in decision-making following BLA inac-
tivation are the result of BLA loss-of-function that specif-
ically affected the integration of conflicting outcomes and
not the deliberative process itself. Given that decreased
risk-seeking behavior was elicited exclusively with BLA
silencing during the deliberation phase, it remains to be
seen which network(s) within the BLA inform decision-
making during such a brief period, lasting no more than 5
s in the study by Orsini et al. (2017). A viable approach to
answer this question would be the use of optogenetics to
identify (“phototag”) BLA subpopulations by simultane-
ously injecting a Cre-dependent opsin construct in the
BLA and a construct carrying Cre recombinase in the
structure where the population of interest projects (Beye-
ler et al., 2018). Should a neuronal BLA subpopulation be
identified as key in decision-making during deliberation,
this approach could be used in combination with compu-
tational models developed for functional neuroimaging to
better characterize any observed activity patterns (Pré-
vost et al., 2013). Of particular interest would be to test
whether the BLA performs model-based computations, in
which the value of actions are updated using a rich rep-
resentation of the structure of the decision problem, as
opposed to purely prediction-error driven model-free al-
gorithms (Corrado and Doya, 2007).

Concluding Remarks and Future
Directions

The main contribution of the study by Orsini et al. (2017)
is the demonstration that the BLA plays different roles at
different behavioral phases of risky decision-making.
While these findings may have implications for the study
of impulse control disorders, it should be noted that cer-
tain aspects of risky decision-making can be encountered
in everyday situations and may have real-life conse-
quences with respect to personal finances. For instance,
Knutson et al. (2011) showed that individuals who were
better at positive reinforcement learning had more assets,
whereas those who were more effective at learning from
negative outcomes had less debt. In a subsequent study,
the authors found that reduced impulse control, but not
cognitive abilities, was the main factor that predicted an
individual’s susceptibility to investment fraud (Knutson
and Samanez-Larkin, 2014).

Future studies may build on the work of Orsini et al.
(2017) to further our understanding of how the BLA con-
tributes to adaptive learning in the context of risk and
uncertainty. To this end, we propose two avenues of
research going forward. First, investigate if the effects of
BLA inhibition vary as a function of individual differences
in risk propensity. Although most subjects show a marked
bias toward risk aversion, a few seem to prefer risk.
Recent studies have shown that risk-seeking rats could
be “converted” to risk-averse rats using phasic optoge-
netic stimulation of D,R neurons in the NAc (Zalocusky
et al., 2016) or D,R agonists infused into the BLA (Larkin
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et al., 2016). Thus, a priori identification of risk-prone and
risk-averse subjects may reveal whether acute BLA inhi-
bition has the same effect on behavior regardless of
previously established risk preference.

Second, it remains to be seen whether repeated tran-
sient manipulation of BLA activity over an extended pe-
riod of time will result in significant and long-lasting
changes in reward processing. For instance, chronic
mPFC stimulation in rats reduces reward-seeking behav-
ior and gives rise to brain-wide activity patterns that
predict the onset and severity of anhedonia (Ferenczi
et al., 2016). Given the numerous reciprocal connections
between the BLA and other brain regions, including the
mPFC, we posit that chronic manipulation of BLA activity
could similarly change corticolimbic synchrony and alter
reward sensitivity. Experiments using intermittent optoge-
netic or sustained chemogenetic manipulation of BLA
activity could be used to test this hypothesis. Going for-
ward, research with a focus on brain networks, rather than
on specific isolated structures, may best reveal the mech-
anisms whereby different behaviors arise from common
brain regions.
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