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Enantioselective reductions of p-R1-C6H4C(O)CH2R2 (R1 = Cl, Br, CH3, OCH3, NO2 and R2 = Br, Cl) mediated by Geotrichum
candidum CCT 1205 and Rhodotorula glutinis CCT 2182 afforded the corresponding halohydrins with complementary R and S
configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)- or (S)-halohydrins are important
building blocks in chemical and pharmaceutical industries.

1. Introduction

Chiral halohydrins are important and valuable intermediates
in the synthesis of fine chemicals and pharmaceuticals as op-
tically active 1,2-aminoalcohols. The halohydrin (R)-1-aryl-
2-haloethanol may be used for the preparation of (R)-1-aryl-
2-aminoethanols that are used as α- and β-adrenergic drugs.

An interesting chemoenzymatic synthetic route to obtain
optically active 1-aryl-2-ethanolamines is from the enantio-
selective reduction of the correspondent α-haloacetophe-
nones giving halohydrins that are transformed into an epoxy
that reacts with the appropriate amine (Scheme 1) [1, 2].

An enormous potential of the use of microorganisms and
enzymes for the transformation of synthetic chemicals with
high chemo-, regio-, and enantioselectivity has been inc-
reasing in the pharmaceutical industry [3]. The dehydroge-
nases in the form of whole cells for the production of chiral
styrene oxides have been used on a pilot-plant scale [4].
Therefore, a large number of papers have appeared reporting
the enantiomeric reduction of α-bromoacetophenone [5–
10] and α-chloroacetophenone [4, 6, 7, 11–17] by whole cells
of microorganism and also by isolated enzyme [18] giving
halohydrins in high enantiomeric excesses (ee).

There are few examples of biocatalytic reduction of α-ha-
loacetophenone having suitable substituted group attached
to the aromatic ring for enantioselective preparation of some
target 1-aryl-2-ethanolamines [2, 19]. It is known that some
examples of biocatalytic reductions of α-haloacetophenone
that have substituted groups like 3-chloro [20, 21], 4-nitro
[10, 22], and 3,4-methylenedioxy [23–25] were mediated by
a number of microorganisms. Also, isolated enzymes have
been used to reduce α-haloacetophenone having various
kinds of substituted groups [26, 27].

The performances of Rhodotorula glutinis CCT 2182 and
Geotrichum candidum CCT 1205 in bioreduction of α-
haloacetophenone have been calling our attention due to
the efficiency and complementary enantioselectivity of these
microorganisms giving the corresponding (R)- and (S)-
halohydrins in high ee, respectively [8]. Also, those microor-
ganisms show the same efficiency in the reduction of α-
azido-para-substituted acetophenones [28]. In this work, we
use those two microorganisms for reduction of α-bromo-
and α-chloroacetophenones having para-substituted groups
to produce separately both enantiomers of halohydrins that
can be used as chiral building blocks for preparations of the
corresponding 1,2-aminoalcohols.
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Scheme 1: (a) reduction using chiral catalytic reagent or biocatalytic process; (b) base; (c) amine.

2. Materials and Methods

IR spectra were recorded on a Bomem MB Series spectrom-
eter. 1H and 13C NMR spectra were recorded on a Varian
Gemini 300 spectrometer in CDCl3. Gas chromatographic
analyses were performed using a Shimadzu GC/MS Class
5000, with helium as carrier gas. The fused silica capil-
lary columns used were either a Supelco Simplicity ITM
(30 m × 0.25 mm × 0.25 μm) and a chiral GC-column
CHIRASILDEX (30 m × 0.25 mm × 0.25 μm). Optical
rotation was measured with a J-720, VRDM306 JASCO,
589.3 nm (25◦C) spectropolarimeter. The melting points
were obtained in MQAPF-301-MicroQuı́mica equipment.

The 2-bromo-1-(4-substituted phenyl)-1-ethanones 1a-e
were obtained with brominating 4-substituted acetopheno-
nes in CH2Cl2 at 0◦C, and 2-chloro-1-(4-substituted phe-
nyl)-1-ethanones 1f-j were prepared applying the Wyman
and Kaufman methodology [29] by chlorination of corre-
sponding 4-substituted acetophenones with sulfuryl chloride
in CH2Cl2 at 0◦C. All other reagents and solvents were rea-
gent grade.

The racemic 2-halo-1-(4-substituted phenyl)-ethanols
2a-j, used as reference for the determination of ee in a GC
provided with a chiral column, were obtained by reacting the
corresponding 1a-j with NaBH4 in water/methanol at rt. All
other solvents and reagents were reagent grade.

2.1. Growth Conditions for Microorganisms Culture. The mi-
croorganisms Geotrichum candidum CCT 1205 (isolated
from industrial waste water treatment—Preston, United
Kington) and Rhodotorula glutinis CCT 2182 (isolated from
Psidium guajava—Atlantic Rainforest, Brazil) were stored
at “André Tosello” Research Foundation (Campinas, Brazil)
[30]. G. candidum was cultivated in 400 mL of nutrient broth
1 (10 g/L malt extract, 5 g/L peptone, 10 g/L glucose, 3.12 g/L
K2HPO4, and 11.18 g/L KH2PO4) at 28◦C, and R. glutinis
was cultivated in 400 mL of nutrient broth 2 (3 g/L Yeast
extract, 3 g/L malt extract, 5 g/L peptone, and 10 g/L glucose)
at 30◦C. Both yeasts were incubated for 2 days on an orbital
shaker (200 rpm) before use. All materials and medium were
sterilized in an autoclave at 121◦C before use and the yeasts
were manipulated in a laminar flow cabinet.

2.2. General Procedure for Bioreduction of 2-Halo-1-(4-substi-
tuted phenyl)-ethanones. The yeasts were incubated for two
days (400 mL nutrient broth in Erlenmeyer of 1 L). After

that, the ketone 1 (2 mmol) dissolved in 1.5 mL of ethanol
was added directly to the suspension where the yeasts grew.
The resulting suspension was stirred in an orbital shaker
(200 rpm) at 28◦C for G. candidum and at 30◦C for R.
glutinis until the full conversion of 1 (18 h). The product was
extracted with CH2Cl2 and purified by flash silica gel column
chromatography using hexane/ethyl acetate (7 : 3).

2.3. (S)-(+)-2-Bromo-1-(4-bromophenyl)ethanol (S)-2a. The
bioreduction of ketone 1a (0.556 g, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2a (0.540 g with 96.4%)
as colorless solid, m.p. 72◦C; [α]25

D +40.0◦ (c 1, CHCl3) [lit.
−31.0◦, c 2.9, CHCl3 for R isomer, 94% ee] [31], giving an
optical purity of >99% determined by GC using a chiral
column; IR (KBr): 3402, 3086, 3064, 3049, 3026, 2958, 2922,
2852, 1593, 1488, 1420, 1402, 1218, 1192, 1071, 1010, 828,
722, 680, 613 cm−1; 1H NMR (300 MHz, CDCl3): δ 2.74 (s,
1H, OH), 3.46 (dd, 1 H, J = 8.4 Hz and 11.3 Hz, CH2), 3.59
(dd, 1 H, J = 3.6 Hz and 11.3 Hz, CH2), 4.87 (dd, 1H, J =
3.6 Hz and 8.4 Hz, CH), 7.24–7.31 (m, 2H, Ph), 7.48–7.51
(m, 2H, Ph); 13C NMR (75 MHz, CDCl3): δ 39.72, 72.97,
122.12, 127.43, 131.55, 138.99; MS m/z (rel. int. %): 188 (5),
187 (71), 186 (7), 185 (79), 183 (4), 182 (2), 171 (2), 169 (2),
159 (13), 158 (2), 157 (17), 155 (4), 120 (4), 119 (2), 106 (3),
105 (6), 103 (4), 102 (9), 91 (14), 90 (6), 89 (7), 79 (6), 77
(100), 75 (18), 78 (46), 76 (16), 50 (62), 51 (57), 43 (39).

2.4. (R)-(−)-2-Bromo-1-(4-bromophenyl)ethanol (R)-2a.The
bioreduction of ketone 1a (0.556 g, 2 mmol) by Rhodotorula
glutinis CCT 2182 furnished (R)-2a (0.554 g, 99.0% yield)
as colorless solid, m.p. 72◦C; [α]25

D −40.4◦ (c 1, CHCl3) [lit.
−31.0◦, c 2.9, CHCl3 for R isomer, 94% ee] [31], giving an
optical purity of >99% determined by GC using a chiral
column; 1H and 13C NMR and IR spectra and MS analysis
were identical to those observed with its (S) enantiomer.

2.5. (S)-(+)-2-Bromo-1-(4-chlorophenyl)ethanol (S)-2b. The
bioreduction of ketone 1b (0.467 g, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2b (0.448 g, 95.1% yield)
as colorless oil; [α]25

D +38.7◦ (c 1, CHCl3) [lit. 38.6◦, c 1.15,
CHCl3 for S isomer, 91% ee] [32], giving an optical purity
of >99% determined by GC using a chiral column; IR (film):
3392, 3088, 3051, 3030, 3003, 2957, 2896, 1596, 1492, 1428,
1408, 1338, 1310, 1256, 1310, 1256, 1199, 1173, 1089, 1072,
1013, 973, 944, 897, 834, 778, 752, 704, 674 cm−1; 1H NMR
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(300 MHz, CDCl3) δ 2.74 (sl, 1H, OH), 3.48 (dd, 1H, J =
7.0 Hz and 11.3 Hz, CH2), 3.61 (dd, 1H, J = 5.8 Hz and
11.3 Hz, CH2), 4.87 (dd, 1H, J = 5.8 Hz and 7.0 Hz, CH),
7.24–7.28 (m, 2H, Ph), 7.31–7.51 (m, 2H, Ph); 13C NMR
(75 MHz, CDCl3) δ 39.72, 72.97, 122.12, 127.43, 131.56,
139.00; MS m/z (rel. int. %): 143 (29), 142 (11), 141 (100),
139 (4), 138 (2), 121 (7), 115 (6), 113 (16), 112 (6), 111 (4),
108 (7), 107 (5), 105 (4), 104 (2), 103 (2), 102 (2), 91 (2), 89
(1), 79 (11), 78 (9), 77 (70), 76 (2), 75 (15), 74 (9), 70 (6), 63
(8), 51 (28), 50 (30), 49 (3), 44 (22), 43 (20), 40 (32).

2.6. (R)-(−)-2-Bromo-1-(4-chlorophenyl)ethanol (R)-2b. The
bioreduction of ketone 1b (0.467 g, 2 mmol) by Rhodotorula
glutinis CCT 2182 furnished (R)-2b (0.457 g, 97.0% yield)
as colorless oil; [α]25

D −38.7 (c 1, CHCl3) [lit. 38.6, c 1.15,
CHCl3 for S isomer, 91% ee] [32], giving an optical purity of
>99% determined by GC using a chiral column; 1H and 13C
NMR and IR spectra and MS analysis were identical to those
observed with its (S) enantiomer.

2.7. (S)-(+)-2-Bromo-1-(4-methylphenyl)ethanol (S)-2c. The
bioreduction of ketone 1c (0.426 g, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2c (0.413 g, 96.0% yield)
as colorless oil; [α]25

D +48.3◦ (c 1, CHCl3) [lit. +41.8◦, c 1.0,
CHCl3 for S isomer, 95% ee] [32, 33], giving an optical
purity of >99% determined by GC using a chiral column; IR
(film): 3378, 3064, 3044, 2971, 2931, 2907, 2836, 1612, 1585,
1511, 1458, 1443, 1368, 1300, 1243, 1205, 1174, 1115, 1087,
1069, 1034, 1004, 898, 830, 807 cm−1; 1H NMR (300 MHz,
CDCl3) δ 2.32 (s, 3H, CH3), 2.46 (sl, 1H, OH), 3.50 (dd,
1H, J = 8.7 Hz and 10.4 Hz, CH2), 3.62 (dd, 1H, J = 3.4 Hz
and 10.4 Hz, CH2), 4.87 (dd, 1H, J = 3.4 Hz and 8.7 Hz, CH),
7.18–7.26 (d, 2H, J = 8 Hz, Ph), 7.30 (d, 2H, J = 8.0 Hz, Ph);
13C NMR (75 MHz, CDCl3) δ 21.16, 40.12, 73.67, 125.91,
129.32, 137.32, 138.16; MS m/z (rel. int. %): 217–215 (M+,
2-2), 202 (2), 200 (2), 138 (7), 137 (93), 136 (16), 135 (13),
134 (45), 123 (1), 122 (2), 121 (2), 120 (3), 119 (5), 118 (5),
117 (8), 115 (4), 110 (4), 109 (49), 108 (4), 107 (4), 105 (4),
104 (2), 103 (4), 102 (2), 95 (3), 94 (34), 93 (43), 92 (9), 91
(38), 90 (2), 89 (5), 81 (2), 79 (9), 78 (8), 77 (30), 76 (4), 75
(3), 74 (4), 68 (5), 67 (3), 66 (13), 65 (20), 64 (11), 63 (21),
62 (8), 61 (3), 55 (4), 54 (1), 53 (10), 52 (8), 51 (30), 50 (19),
49 (1), 45 (8), 44 (6), 43 (100), 41 (12), 40 (10).

2.8.(R)-(−)-2-Bromo-1-(4-methylphenyl)ethanol (R)-2c. The
bioreduction of ketone 1c (0.426 g, 2 mmol) by Rhodotorula
glutinis CCT 2182 furnished (R)-2c (0.410 g, 95.3% yield)
as colorless oil; [α]25

D −48.3 (c 1, CHCl3) [lit. +41.8◦, c 1,
CHCl3 for S isomer] [32], giving an optical purity of >99%
determined by GC using a chiral column; 1H and 13C NMR
and IR spectra and MS analysis were identical to those
observed with its (S) enantiomer.

2.9. (S)-(+)-2-Bromo-1-(4-methoxyphenyl)ethanol (S)-2d.
The bioreduction of ketone 1d (0.458 g, 2 mmol) by
Geotrichum candidum CCT 1205 gave (S)-2d (0.453 g, 98.0%
yield) as colorless oil; [α]25

D +19.8◦ (c 1, CHCl3) [lit. −37.7◦,
c 1.0, CHCl3 for R isomer, 87% ee] [31, 34], IR (film): 3371,

3062, 3030, 2973, 2928, 2907, 2878, 1616, 1581, 1511, 1458,
1442, 1368, 1300, 1240, 1205, 1174, 1112, 1081, 1069, 1024,
1001, 892, 830, 804 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.72
(sl, 1H, OH), 3.61 (dd, 1H, J = 8.7 Hz and 11.2 Hz, CH2),
3.70 (dd, J = 3.9 Hz and 11.2 Hz, CH2), 3.79 (s, 3H, CH3),
4.86 (dd, 1H, J = 3.9 Hz and 8.7 Hz, CH), 6.89 (d, 2H, J =
8.8 Hz, Ph), 7.31 (d, 2H, J = 8.8 Hz, Ph); 13C NMR (75 MHz,
CDCl3) δ 42.12, 56.28, 78.95, 114.94, 127.71, 133.40, 160.03;
MS m/z (rel. int. %): 233–231 (M+, 1-1), 218 (1), 215 (1), 214
(1), 202 (2), 200 (2), 153 (2), 152 (4), 151 (2), 138 (6), 137
(100), 135 (11), 134 (9), 122 (2), 121 (2), 120 (2), 119 (20),
110 (3), 109 (16), 108 (3), 107 (2), 105 (2), 104 (1); 103 (4),
102 (2), 95 (3), 94 (16), 93 (2), 92 (7), 91(18), 90 (2), 89 (4),
81 (2), 79 (6), 78 (5), 77 (21), 76 (2), 75 (3), 68 (2), 67 (2),
66 (5), 65 (12), 64 (9), 63 (6), 55 (1), 54 (1), 53 (8), 52 (4),
51 (12), 50 (14), 45 (3), 44 (2), 43 (79), 41 (10), 40 (8).

2.10. (R)-(−)-2-Bromo-1-(4-methoxyphenyl)ethanol (R)-2d.
The bioreduction of ketone 1d (0.458 g, 2 mmol) by Rhodo-
torula glutinis CCT 2182 gave (R)-2d (0.452 g, 97.8% yield)
as colorless oil; [α]25

D −19.7 (c 1, CHCl3) [lit. −37.7◦, c 1.0,
CHCl3 for R isomer, 87% ee] [31], 1H and 13C NMR and IR
spectra and MS analysis were identical to those observed with
its (S) enantiomer.

2.11. (S)-(+)-2-Bromo-1-(4-nitrophenyl)ethanol (S)-2e. The
bioreduction of ketone 1e (0.488 g, 2 mmol) by Geotrichum
candidum CCT 1205 gave (S)-2e (0.480 g, 97.6% yield) a light
yellow solid, mp 98◦C; [α]25

D +25.0◦ (c 1, CHCl3) [lit. +32.1◦,
c 1, CHCl3 for S isomer, 91% ee] [33, 35], giving an optical
purity of >99% determined by GC using a chiral column.
IR (KBr): 3455, 3109, 3079, 2947, 2924, 2889, 2851, 1601,
1520, 1347, 1291, 1203, 1074, 1012, 855, 760, 730 cm−1; 1H
NMR (300 MHz, CDCl3 ): δ 2.83 (sl, 1H, OH), 3.53 (dd,
1H, J = 8.4 Hz and 10.6 Hz, CH2), 3.68 (dd, 1H, J = 3.5 Hz
and 10.6 Hz, CH2), 5.03–5.08 (m, 1H, CH), 7.45 (d, 2H, J =
8.8 Hz, Ph), 8.22 (d, 2H, J = 8.8 Hz, Ph);13C NMR (75 MHz,
CDCl3): δ 39.32, 72.52, 123.60, 126.65, 146.10, 146.90; MS
m/z (rel. int. %): 153 (8), 152 (100), 149 (2), 141 (1), 139 (1),
136 (2), 127 (1), 125 (2), 122 (5), 106 (10), 105 (9), 102 (4),
95 (5), 94 (11), 91 (8), 78 (13), 77 (17), 66 (6), 51 (17), 50
(13), 43 (20).

2.12. (R)-(−)-2-Bromo-1-(4-nitrophenyl)ethanol (R)-2e. The
bioreduction of ketone 1e (0.488 g, 2 mmol) by Rhodotorula
glutinis CCT 2182 gave (R)-2e (0.483 g, 98.0% yield) a light
yellow solid, mp 98◦C; [α]25

D −25.0◦ (c 1, CHCl3) [lit. +32.1◦,
c 1, CHCl3 for S isomer, 91% ee] [33, 36], giving an optical
purity of >99% determined by GC using a chiral column; 1H
and 13C NMR and IR spectra and MS analysis were identical
to those observed with its (S) enantiomer.

2.13. (S)-(+)-2-Chloro-1-(4-bromophenyl)ethanol (S)-2f. The
bioreduction of ketone 1f (0.467 g, 2 mmol) by Geotrichum
candidum CCT 1205 gave (S)-2f (0.468 g, 99.4% yield) as
colorless oil; [α]25

D +35.0◦ (c 1, CHCl3) [lit.−35.87◦, c 1.1072,
CHCl3 for R isomer, 99% ee] [14], giving an optical purity of
>99% determined by GC using a chiral column; IR (film):
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3421; 3106; 3087; 3064; 3031; 3006; 2956; 2895; 1593, 1575,
1494; 1453; 1426; 1387; 1336; 1300; 1295; 1248; 1200; 1085;
1064; 1074; 1030; 1012; 972; 944; 917; 869; 824; 768; 724;
698 cm−1; 1H NMR (300 MHz, CDCl3 ): δ 2.41 (sl, 1H,
OH), 3.61 (dd, 1H, J = 8.7 Hz and 11.3 Hz, CH2), 3.73 (dd,
1H, J = 3.4 Hz and 11.3 Hz, CH2), 4.88 (dd, 1H, J = 3.4 Hz
and 8.7 Hz, CH), 7.28 (d, 2H, J = 8.4 Hz, Ph), 7.51 (d, 2H,
J = 8.4 Hz, Ph); 13C NMR (75 MHz, CDCl3): δ 50.90, 74.12,
122.04, 127.28, 132.02, 139.46; MS m/z (rel. int. %): 238–236
(M+, 1-1), 202 (1), 200 (1), 158 (1), 156 (3), 108 (7), 107
(100), 105 (5), 104 (2), 103 (4), 102 (1), 91 (6), 89 (1), 79
(60), 78 (8), 77 (42), 76 (2), 75 (2), 51 (31), 50 (13).

2.14. (R)-(−)-2-Chloro-1-(4-bromophenyl)ethanol (R)-2f.
The bioreduction of ketone 1f (0.467 g, 2 mmol) by
Rhodotorula glutinis CCT 2182 gave (R)-2f (0.460 g, 97.7%
yield) as colorless oil; [α]25

D −34.9 (c 1, CHCl3) [lit. −35.87◦,
c 1.1072, CHCl3 for R isomer, 99% ee] [14], giving an optical
purity of >99% determined by GC using a chiral column; 1H
and 13C NMR and IR spectra and MS analysis were identical
to those observed with its (S) enantiomer.

2.15.(S)-(+)-2-Chloro-1-(4-chlorophenyl)ethanol (S)-2g. The
bioreduction of ketone 1g (0.378 g, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2g (0.363 g, 95.0% yield)
as colorless oil; [α]25

D +48.3◦ (c 1.25, CHCl3) [lit. [α]20
D 44.2◦

(c 2.1, CHCl3) for S isomer, 96,6% ee] [36], giving an optical
purity of >99% determined by GC using a chiral column;
IR (film): 3387, 3103, 3090, 3067, 3053, 3020, 2956, 2894,
1598, 1492, 1427, 1410, 1338, 1308, 1252, 1198, 1090, 1075,
1013, 970, 947, 895, 871, 833, 776, 751, 704, 673 cm−1; 1H
NMR (300 MHz, CDCl3): δ 3.2 (sl, 1H, OH), 3.58 (dd, 1H, J
= 8.4 Hz and 11.3 Hz, CH2), 3.67 (dd, 1H, J = 3.7 Hz and
11.3 Hz, CH2), 4.84 (dd, 1H, J = 3.7 Hz and 8.4 Hz, CH),
7.27–7.34 (m, 4H, Ph); 13C NMR (75 MHz, CDCl3): δ 50.39,
73.15, 127.16, 128.27, 128.48, 133.82, 138.09; MS m/z (rel.
int. %): 192-191 (M+, 4), 158 (2), 156 (7), 143 (11), 142 (3),
141 (38), 139 (4), 138 (2), 121 (7), 115 (6), 114 (3), 113 (19),
112 (6), 111 (5), 105 (2), 103 (5), 102 (2), 101 (1), 91 (2), 89
(1), 87 (1), 85 (2), 78 (8), 77 (77), 75 (13), 74 (7), 73 (3), 70
(7), 71 (2), 65 (2), 63 (5), 62 (3), 61 (2), 60 (1), 55 (1), 53
(3), 52 (6), 51 (33), 50 (23), 49 (3), 46 (1), 45 (11), 44 (4), 42
(100), 41 (1), 40 (1).

2.16. (R)-(−)-2-Cloro-1-(4-chlorophenyl)ethanol (R)-2g. The
bioreduction of ketone 1g (0.378 g, 2 mmol) by Rhodotorula
glutinis CCT 2182 furnished (R)-2g (0.36 g, 94.2% yield) as
colorless oil; [α]25

D −48.3◦ (c 2.1, CHCl3); [lit. [α]20
D 44.2◦ (c

2.1, CHCl3) for S isomer, 96,6% ee] [36], giving an optical
purity of >99% determined by GC using a chiral column; 1H
and 13C NMR and IR spectra and MS analysis were identical
to those observed with its (S) enantiomer.

2.17.(S)-(+)-2-Chloro-1-(4-methylphenyl)ethanol(S)-2h.The
bioreduction of ketone 1h (0.337 g, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2h (0.329 g, 96.4% yield)
as colorless oil; [α]25

D +48.3◦ (c 1.1, CHCl3) [lit. +47.2◦ (c
1.1, CHCl3) for S isomer, 92% ee] [32], giving an optical

purity of >99% determined by GC using a chiral column; IR
(film): 3414, 3094, 3052, 3017, 2970, 2924, 2863, 1611, 1512,
1445, 1411, 1369, 1302, 1280, 1257, 1192, 1181, 1112, 1090,
1071, 1010, 941, 892, 813, 724 cm−1; 1H NMR (300 MHz,
CDCl3): δ 2,34 (s, 3H, CH3), 2.50 (sl, 1H, OH), 3.63 (dd,
1 H, J = 8.5 Hz and 11.2 Hz, CH2), 3.74 (dd, 1H, J = 3.9 Hz
and 11.2 Hz, CH2), 4.85 (dd, 1H, J = 3.9 and 8.5 Hz, CH),
7.20 (d, 2H, J = 8 Hz, Ph), 7.29 (d, 2H, J = 8 Hz, Ph);
13C NMR (75 MHz, CDCl3): δ 21.17, 50.82, 73.98, 126.05,
129.39, 137.13, 138.22; MS m/z (rel. int. %): 171-170 (M+, 4)
158 (1), 156 (3), 137 (2), 136 (16), 135 (1), 122 (4), 121 (50),
119 (5), 118 (5),117 (8), 115 (4), 107 (2), 105 (1), 103 (1),
102 (1), 94 (4), 93 (49), 92 (11), 91 (45), 89 (4), 78 (5), 79
(2), 77 (30), 75 (1), 74 (1), 67 (3), 66 (2), 65 (20), 64 (2), 63
(10), 62 (4), 60 (15), 59 (2), 57 (4), 55 (1), 53 (4), 52 (5), 51
(18), 50 (9), 46 (1), 45 (9), 44 (3), 43 (100), 41 (10), 40 (4).

2.18. (R)-(−)-2-Chloro-1-(4-methylphenyl)ethanol (R)-2h.
The bioreduction of ketone 1h (0.337 g, 2 mmol) by
Rhodotorula glutinis CCT 2182 furnished (R)-2h (0.327 g,
95.7% yield) as colorless oil; [α]25

D −48.3 (c 1.1, CHCl3) [lit.
+47.2◦ (c 1.1, CHCl3) for S isomer, 92% ee] [32], giving
an optical purity of >99% determined by GC using a chiral
column; 1H and 13C NMR and IR spectra and MS analysis
were identical to those observed with its (S) enantiomer.

2.19. (S)-(+)-2-Chloro-1-(4-methoxyphenyl)ethanol (S)-2i.
The bioreduction of ketone 1i (0.369 g, 2 mmol) by
Geotrichum candidum CCT 1205 furnished (S)-2i (0.370 g,
99.2% yield) as colorless oil; [α]25

D +41.4◦ (c 1, CHCl3) [lit.
+40.2◦, for S isomer, 90,5% ee] [36], giving an optical purity
of >99% determined by GC using a chiral column; IR (film):
3400, 3372, 3062, 3031, 2950, 2931, 2907, 2836, 1610, 1520,
1511, 1458, 1443, 1368, 1300, 1250, 1205, 1174, 1115, 1084,
1069, 1030, 1004, 898; 840, 780 cm−1; 1H NMR (300 MHz,
CDCl3) δ 2.70 (sl, 1H, OH), 3.52 (dd, 1H, J = 8.7 Hz and
11.4 Hz, CH2), 3.61 (dd, 1 H, J = 3.8 Hz and 11.4 Hz, CH2),
3.80 (s, 3H, CH3), 4.78 (dd, 1H, J = 3.8 Hz and 8.7 Hz, CH),
6.90 (d, J = 8.7 Hz, 2H, Ph), 7.20 (d, J = 8.7 Hz, 2H, Ph); 13C
NMR (75 MHz, CDCl3) δ 50.70, 55.34, 73.61, 113.78, 127.10,
132.12, 159.62; MS m/z (rel. int. %): 186 (M+, 6), 152 (21),
153 (2), 151 (2), 138 (7), 137 (100), 135 (13), 134 (45), 122
(2), 121 (2), 120 (3), 119 (27), 110 (4), 109 (23), 108 (4),
107 (4), 105 (4), 104 (2), 103 (4), 102 (2), 95 (3), 94 (26), 93
(3), 92 (9), 90 (2), 91(38), 89 (5), 81 (2), 78 (8), 79 (9), 77
(25), 76 (4), 75 (3), 74 (4), 68 (5), 67 (3), 66 (13), 65 (38),
64 (11), 63 (21), 62 (8), 61 (3), 55 (4), 54 (1), 53 (10), 52
(8), 51 (30), 50 (19), 49 (1), 45 (8), 44 (6), 43 (100), 41 (12),
40 (10).

2.20. (R)-(−)-2-Chloro-1-(4-methoxyphenyl)ethanol (R)-2i.
The bioreduction of ketone 1i (0.369 g, 2 mmol) by
Rhodotorula glutinis CCT 2182 furnished (R)-2i (0.366 g,
98.0% yield) as colorless oil; [α]25

D −41.5 (c 1, CHCl3) [lit.
+40.2◦, for S isomer, 90,5% ee] [36], giving an optical purity
of >99% determined by GC using a chiral column; 1H and
13C NMR and IR spectra and MS analysis were identical to
those observed with its (S) enantiomer.
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Table 1: Asymmetric reduction of 2-halo-1-(4-substituted phenyl)-ethanones 1a-j mediated by Geotrichum candidum CCT 1205 and
Rhodotorula glutinis CCT 2182a.

Ketone Microorganism T (◦C) Alcohol Yield (%) [α]25
D

b

1a Geotrichum candidum 28 (S)-2a 96.4 +40.0

1b “ 28 (S)-2b 95.1 +38.7

1c “ 28 (S)-2c 96.0 +48.3

1d “ 28 (S)-2d 98.0 +19.8

1e “ 28 (S)-2e 97.6 +25.0

1f “ 28 (S)-2f 99.4 +35.0

1g “ 28 (S)-2g 95.0 +48.3

1h “ 28 (S)-2h 96.4 +48.3

1i “ 28 (S)-2i 99.2 +41.4

1j “ 28 (S)-2j 97.0 +32.6

1a Rhodotorula glutinis 30 (R)-2a 99.0 −40.4

1b “ 30 (R)-2b 97.0 −38.7

1c “ 30 (S)-2c 95.3 −48.3

1d “ 30 (R)-2d 97.8 −19.7

1e “ 30 (R)-2e 98.0 −25.0

1f “ 30 (R)-2f 97.7 −34.9

1g “ 30 (R)-2g 94.2 −48.3

1h “ 30 (R)-2h 95.7 −48.3

1i “ 30 (R)-2i 98.0 −41.5

1j “ 30 (R)-2j 98.0 −32.6
a
18 h, 2 mmol of ketone/1.5 mL of EtOH was added to 15 g of yeast (wet weight)/400 mL of nutrient broth 1 (malt extract, peptone) for Geotrichum candidum

or nutrient broth 2 (yeast extract, malt extract, peptone) for Rhodotorula glutinis. bee>99%. cSee Materials and Methods for c values and solvent.

Anti-Prelog rule face

Face predicted by Prelog rule
to hydrogen transfer from NAD(P)H

R1

O

CH2R2

R2 = Br; Cl

Figure 1: Prelog rule for discrimination of the faces of carbonylic
group by the enzymes.

2.21. (S)-(+)-2-Chloro-1-(4-nitrophenyl)ethanol (S)-2j. The
bioreduction of ketone 1j (0.399, 2 mmol) by Geotrichum
candidum CCT 1205 furnished (S)-2j (0.391 g, 97.0% yield)
a white solid, mp 87◦C (lit. p.f. 87◦C) [33]; [α]25

D +32,6◦ (c
1, CHCl3) [lit. +37.2◦, c 2.0, CHCl3 for S isomer, 98,2% ee]
[36], giving an optical purity of >99% determined by GC
using a chiral column; IR (KBr): 3304, 3051, 3021, 2970,
2923, 2878, 1599, 1506, 1452, 1364, 1323, 1275, 1251, 1204,
1166, 1125, 1075, 1024, 964, 951, 902, 863, 823, 773, 743,
703, 652 cm−1; 1H NMR (300 MHz, CDCl3) δ 2.93 (sl, 1H,
OH), 3.64 (dd, 1H, J = 8.1 Hz and 11.3 Hz, CH2), 3.68 (dd,
1H, J = 3.3 Hz and 11.3 Hz, CH2), 5.03–5.05 (m, 1H, CH),

7.50 (d, 2H, J = 8.7 Hz, Ph), 8.20 (d, 2H, J = 8.7 Hz, Ph);
13C NMR (75 MHz, CDCl3) δ 50.20, 69.38, 123.56, 126.73,
146.59, 146.95; MS m/z (rel. int. %): 166 (5), 153 (8), 152
(100), 136 (2), 122 (6), 107 (2), 106 (13), 105 (12), 102 (3),
95 (4), 94 (13), 81 (3), 79 (3), 78 (18), 77 (22), 65 (9), 51 (24),
50 (16), 43 (23), 41 (9).

2.22. (R)-(−)-2-Chloro-1-(4-nitrophenyl)ethanol (R)-2j.
The bioreduction of ketone 1j (0.399 g, 2 mmol) by
Rhodotorula glutinis CCT 2182 furnished (R)-2j (0.395 g,
98.0% yield) a white solid, mp 87◦C (lit. p.f. 87◦C) [36];
[α]25

D −32,6◦ (c 1, CHCl3) [lit. +37.2◦, c 2.0, CHCl3 for S
isomer, 98,2% ee] [33], giving an optical purity of >99%
determined by GC using a chiral column; 1H and 13C NMR
and IR spectra and MS analysis were identical to those
observed with its (S) enantiomer.

3. Results and Discussion

The reduction of ethanones 1a-j was carried out in 5 mmol/L
in a slurry of growing yeast of Rhodotorula glutinis CCT
2182 and Geotrichum candidum CCT 1205. These ethanones
having substituted groups (electron withdrawing groups—
EWG: –NO2, –Br, –Cl; electron donating groups—EDG: –
CH3, –OCH3) attached to position 4 of benzene ring were
studied in order to investigate the influence of these groups
in the bioreduction performed by these two microorganisms.
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Figure 2: Pharmaceutical useful ethanolamines.

The reaction progress was monitored by GC analysis, and the
yields and enatiomeric excesses are shown in Table 1.

The reductions of 2-bromo-1-(4-substituted phenyl)-
ethanones 1a-e and 2-chloro-1-(4-substituted)-ethanones
1f-j mediated by Rhodotorula glutinis CCT 2182 gave the
corresponding halohydrins 2a-j with (R) configuration,
while the halohydrins 2a-j with (S) configuration were
obtained when Geotrichum candidum CCT 1205 mediated
the reduction of the ethanones 1a-j.

α-Haloacetophenones have been used as mechanistic
probe in the reduction reactions of NADH-dependent horse
liver alcohol dehydrogenase [37–40], for identification of
reductants in sediments [41] and even in the whole cells [42].
This probe enables the differentiation between reduction
processes which proceed through hydride transfer (H−)
or by a multistep electron transfer (e−, H• or e−, H+,
e− as has been suggested). Acetophenone is the reduction
product obtained by electron transfer, while optically active
halohydrin is obtained when an enzyme mediates a hydride

transfer process. In this work, the reductions of 1a-e proceed
via hydride transfer mediated by an oxireductase, since
halohydrins were obtained in high ee and no 4-substituted
acetophenone was detected.

Rhodotorula glutinis gives products following the Prelog
rule [43], which predicts that, in general, hydrogen transfer
from NAD(P)H to the prochiral ethanones 1a-j occurs to
the face of carbonylic group shown in Figure 1, taking into
account that the aryl group is larger than the –CH2Br and
–CH2Cl groups. On the contrary, the Geotrichum candidum
gives anti-Prelog halohydrins.

The excellent results and complementary enantioselec-
tivities of the produced halohydrins obtained by using Rho-
dotorula glutinis CCT 2182 and Geotrichum candidum CCT
1205 in reduction of ethanones 1a-j are remarkable and
highlight the potential of such approach to obtain separately
the two isomers of the 1,2-aminoalcohols, by reaction of
the easily obtainable epoxy with the appropriated amine
(Scheme 2), as an alternative to the approach using the
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reduction of α-azido-para-substituted acetophenones medi-
ated by those microorganisms [28]. The separate synthesis
of two enantiomers is important since the FDA Guidance
for Development of New Stereoisomeric Drugs [44] says
that “to evaluate the pharmacokinetics of a single enan-
tiomer or mixture of enantiomers, manufacturers should
develop quantitative assays for individual enantiomers in in
vivo samples early in drug development.” However, the prod-
ucts of biotransformation of 1b-e and 1g-j using Rhodotorula
glutinis CCT 2182 may be used as important starting material
for the preparation of the known pharmaceuticals products
with (R) configuration: Eliprodil from halohydrins 2b and
2g; Tembamide from halohydrins 2c and 2h; Aegeline from
halohydrins 2d and 2i; Nifenalol from halohydrins 2e and 2j
(Figure 2).

4. Conclusions

The use of Rhodotorula glutinis CCT 2182 and Geotrichum
candidum CCT 1205 in bioreduction reaction of 2-halo-1-(4-
substituted phenyl)-ethanones results in an important chiral
halohydrins in high ee, excellent yield, and complemen-
tary enantioselectivity. These halohydrins may be used as
intermediates in the synthesis of optically active substituted
styrene oxides and aminoalcohols which have numerous
industrial applications.
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