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Introduction
The use of stem cells to model neurological diseases in vitro and 
provide a source of cells for transplantation is an extremely active 
area of research. Stem cells, due to their immortal nature and abil-
ity to differentiate, can provide a pool of relevant cell types for 
transplantation or in vitro use, allowing researchers to probe the 
molecular mechanisms underlying neurological disease. This 
review aims to provide a comprehensive examination of recent 
literature in the field of neuroregeneration with a focus on the use 
of stem cell technology in this dynamic field of research.

Many disorders of the nervous system ranging from trauma to 
neurodegeneration involve the loss of neuronal connections. This 
highlights the importance of understanding the underlying mecha-
nisms and promoting neural regeneration. The response of the nerv-
ous system to injury and the ability of neurons to regenerate, 
restoring lost neuronal connections, are dependent upon the loca-
tion of the insult (Gordon, 2016). Nerves within the peripheral nerv-
ous system (PNS) can regenerate to some extent following injury 
due to the supportive growth environment provided by Schwann 
cells (Bhangra et al., 2016). However, unlike PNS injury, injury to 
the central nervous system (CNS), including spinal cord injury 
(SCI), results in the formation of an inhibitory environment. For 
example, the formation of a glial scar post SCI can result in the 
inhibition of neurite regeneration due to the release of inhibitory 
chondroitin sulphate proteoglycans (CSPGs) from reactive astro-
cytes and inhibitory molecules found on myelin debris from dam-
aged neurons (Rolls et al., 2009; Xu et al., 2015; Yiu and He, 2006).

The inability of neurons to regenerate in the glial scar or to 
reinnervate severe lesions in the PNS results in functional deficits 
that may have a significant impact on the quality of life for an 
individual. Not only is such loss of neural connectivity heavily 
implicated in the clinical outcome of these types of physical 

trauma, it is also common to many disorders of the CNS including 
stroke or neurodegenerative diseases such Alzheimer’s disease, 
Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS; 
Adalbert and Coleman, 2013; Martinez-Morales et al., 2013). For 
this reason, the promotion of neural regeneration is an important 
avenue for medical research and designing therapeutics that pro-
mote neuronal regeneration could help alleviate the symptoms of 
a large number of nervous system disorders. There are a number 
of strategies under development, including the use of cell-based 
approaches and the development of stem cell technologies to 
replace damaged or lost tissues.

Stem cells have the ability to self-renew and differentiate into 
mature, specialised subtypes, providing a useful tool in the study 
of neuronal cell loss (Martello and Smith, 2014; Martinez-
Morales et al., 2013; Tabar and Studer, 2014). The ability of stem 
cells to differentiate into neural subtypes not only is applicable to 
cellular replacement therapies but can also provide novel insights 
into the biomolecular mechanisms that underpin neural degener-
ation through forming the basis of in vitro cell-based models 
(Avior et al., 2016; Trounson and DeWitt, 2016).

Classification of stem cells is based on their developmental 
potential (Figure 1). Pluripotent stem cells give rise to specialised 
cell types from each of the three germ layers, whereas multipotent 
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stem cells can differentiate into more restricted lineages (Martinez-
Morales et al., 2013). Pluripotent stem cells include human 
embryonic stem (ES) cells that are derived from the inner core of 
the developing blastocyst, and their malignant counterparts, 
embryonal carcinoma (EC) cells, derived from teratoma tumours 
(Przyborski et al., 2004). More recently developed induced pluri-
potent stem cell (iPSC) technology involves the reprogramming 
of adult somatic cells into an undifferentiated, pluripotent cell 
with the capacity to differentiate into mature cell types (Takahashi 
et al., 2007; Takahashi and Yamanaka, 2006, 2016). ES and EC 
cells form the basis of many in vitro models of neural differentia-
tion, development and regeneration (Clarke et al., 2017; Roloff 
et al., 2015; Wichterle et al., 2002); however, they are rarely used 
to generate neurons for cellular replacement therapies due to ethi-
cal issues in the case of the ES cells and the tumourigenic proper-
ties of EC cells (Andrews, 2002). iPSCs are derived from mature 
adult cells, for example, skin fibroblasts, that can be repro-
grammed to become pluripotent and can subsequently be differen-
tiated towards more specialised cells including neural lineages 
(Sharma, 2016; Trounson and DeWitt, 2016). iPSC-derived neu-
rons provide a unique opportunity for cellular replacement 

therapies as mature neurons can be obtained from a skin biopsy of a 
patient (through reprogramming of dermal fibroblasts and subse-
quent differentiation), producing patient-specific cells for implanta-
tion (Sharma, 2016). iPSC technology is also beneficial in the 
development of patient-specific, in vitro cell-based models of neu-
ral regeneration, which can be used for patient-specific drug screen-
ing and personalised medicine applications (Avior et al., 2016).

Multipotent stem cells include neural stem cells (NSCs), 
which are the precursors of mature neurons and glia. There are 
several examples of where NSCs have successfully been used to 
replace neurons lost, including application to treat ischemic 
stroke (Hicks et al., 2013; Mack, 2011). Human adult dental pulp 
stem cells (DPSCs) are also multipotent stem cells that are 
thought to originate from migrating cranial neural crest cells and 
are located within the perivascular niche of dental pulp (Martinez-
Morales et al., 2013). DPSCs have the ability to differentiate into 
mature neurons, transplantation of which has resulted in func-
tional recovery in animal models of SCI and stroke (Leong et al., 
2012; Nosrat et al., 2001). Mesenchymal stem cells (MSCs) 
originate from tissues that include bone marrow, adipose tissue 
and peripheral and umbilical cord blood (Martinez-Morales 

Figure 1. Types of stem cell commonly used to study and treat neurological deficits. Pluripotent stem cells are unique in their ability to self-
renew and differentiate into specialised cellular subtypes. They include human embryonic stem (ES) cells derived from the inner cell mass of 
the developing blastocyst, embryonal carcinoma (EC) cells, the malignant counterpart of the ES cell derived from teratocarcinomas and induced 
pluripotent stem cells (iPSCs), which are formed from the reprogramming of somatic cell types using a cocktail of transcription factors. Pluripotent 
stem cells undergo robust neural differentiation when stimulated with morphogens to produce a pool of neural derivatives that form the basis of 
in vitro models to study neural degenerative or regenerative responses. In contrast, multipotent stem cells are more lineage restricted and some 
type may provide a supportive role. For example, multipotent mesenchymal stem cells (MSCs) from the bone marrow can differentiate into myelin-
producing glial subtypes that if transplanted can provide trophic support to damaged neurons within the nervous system. This strategy can provide 
a more regenerative microenvironment to encourage endogenous neural regeneration. Alternative sources of cells with beneficial properties include 
dental pulp stem cells (DPSCs) that can successfully differentiate to form mature neurons and have been tested during transplantation into animal 
models of SCI and enabling functional recovery.



Clarke and Przyborski 3

et al., 2013). Promising clinical reports have suggested that 
MSCs may improve functional recovery in ischemic stroke 
patients, with the beneficial properties of MSCs thought to 
include paracrine and autocrine action in damaged tissues, 
through the secretion of growth factors and anti-inflammatory 
cytokines (Chamberlain et al., 2007; Han et al., 2014; Murphy 
et al., 2013; Teixeira et al., 2013; Ylöstalo et al., 2012).

In this review, we address the role of both pluripotent and 
multipotent stem cells in two main aspects of neural regenera-
tion. First, we consider the development of stem cell–based mod-
els of neural systems to further our understanding of regenerative 
mechanisms and to screen potential molecules for their ability to 
induce neural regeneration. Second, we provide an overview of 
examples for the latest stem cell–based cellular replacement ther-
apies and their ability to recover functionality in disorders of the 
nervous system.

Stem cell–based in vitro models of 
neural regeneration
Modelling neural differentiation of stem cells in vitro is an 
important tool that can be used to investigate the molecular path-
ways involved in neural regeneration and also screen molecules 
that may be used to modulate regenerative responses. Induction 
of neural differentiation by stem cells is most often achieved by 
activating signalling pathways involved in the development of 
the nervous system (Schwartz et al., 2008). For example, the reti-
noic acid (RA) pathway is involved in patterning and differentia-
tion of the nervous system, and stimulation of retinoid signalling 
is often used in vitro to promote neuronal differentiation of stem 
cells (Clarke et al., 2014; Janesick et al., 2015; Maden, 2002; 
Maden and Hind, 2003; Roloff et al., 2015). Similarly, inhibition 
of glycogen synthase kinase-3 (GSK-3) by the molecule TWS119 
involved in Wnt signalling and induction of fibroblast growth 
factor (FGF) signalling are also commonly used to modulate neu-
ral differentiation of stem cells (Clarke et al., 2014; Schugar 
et al., 2007; Schwartz et al., 2008).

New technologies are being developed to continually improve 
our ability to control neural differentiation by stem cells. RA is a 
metabolite of vitamin A that ultimately results in the induction of 
gene expression of retinoid-inducible genes, some of which are 
responsible for neuronal development (Clarke et al., 2014; 
Janesick et al., 2015; Maden, 2007; Maden and Hind, 2003). The 
vitamin A derivative, all-trans retinoic acid (ATRA), is com-
monly used to induce neuronal differentiation in vitro. However, 
its use in vitro is limited due to its ability to readily break down 
when exposed to light and heat, thus leading to variable and 
inconsistent induction of development. Synthetic forms of the 
molecule such as EC23 have been designed, which contains a 
non-isomerisable linker unit, resulting in a more stable and potent 
compound (Christie et al., 2008; Clemens et al., 2013). EC23 has 
been shown to induce neuronal differentiation and neurite out-
growth in a robust and reproducible manner, and to a signifi-
cantly greater extent than the naturally occurring ATRA in a stem 
cell model of neuritogenesis (Clarke et al., 2017). Some of the 
most common in vitro models of neurite outgrowth are based on 
pluripotent stem cells differentiated with retinoids to produce 
functional neurons (Clarke et al., 2017; Hayman et al., 2004; 
Pewsey et al., 2010; Przyborski, 2001; Przyborski et al., 2003, 
2004; Tegenge et al., 2011). Human pluripotent stem cell–derived 

models such as these can be advantageous over other non-human 
neurite outgrowth models, as they are more applicable to study-
ing human physiology and disease. In addition, primary cell cul-
tures derived from animal models and immortalised cell lines 
such as neuroblastoma cells often have a limited capacity for 
neuritogenesis (Kovalevich and Langford, 2013).

Stem cell–based models of neurite outgrowth are often used 
to study the molecular processes that inhibit neurite regeneration. 
Inhibition of neurite outgrowth occurs in nervous system disor-
ders ranging from CNS trauma (Fawcett and Asher, 1999; 
Niederost et al., 2002; Xu et al., 2015; Yiu and He, 2006) to neu-
rodegenerative diseases (Petratos et al., 2008; Postuma et al., 
2000; Takenouchi et al., 2001) and has been implicated in schizo-
phrenia (Miyoshi et al., 2003; Ozeki et al., 2003) and Down’s 
syndrome (Roizen and Patterson, 2003). An example application 
of an in vitro model to study the process of neurite inhibition is 
one that occurs following SCI and the formation of the glial scar 
that prevents the reinnervation of damaged neurons (Rolls et al., 
2009; Yiu and He, 2006). Following injury to the spinal cord, 
astrocytes become reactive and secrete inhibitory molecules 
including CSPGs which are thought to induce Rho A signalling 
through a receptor-mediated mechanism, resulting in growth 
cone collapse and inhibition of neurite outgrowth (Dent et al., 
2011; Jeon et al., 2012; Sainath and Gallo, 2015). Further under-
standing of the downstream signalling cascade that results in the 
loss of neurite outgrowth is important in the development of 
novel therapeutic targets to overcome such inhibition and ulti-
mately restore neurite outgrowth. As the activation of Rho A sig-
nalling is thought to be the main mechanism responsible for 
CSPG-mediated neurite inhibition, molecules focused on inhibit-
ing Rho A and its downstream effectors have been used to study 
stem cell–derived models of neurite outgrowth (Figure 2; Clarke 
et al., 2017; Lehmann et al., 1999; Lingor et al., 2007; Monnier 
et al., 2003; Roloff et al. 2015). Inhibition of Rho A through C3 
transferase (Gu et al., 2013; Minase et al., 2010; Monnier et al., 
2003) or the non-steroidal anti-inflammatory drug ibuprofen 
(Roloff et al., 2015) has had positive effects on neurite regenera-
tion in vitro. Similarly, the inhibition of Rho A kinase (ROCK), a 
downstream effector of Rho A, through the use of both the selec-
tive ROCK inhibitors, Y-27632 (Clarke et al., 2017; 
Gopalakrishnan et al., 2008; Monnier et al., 2003) and fasudil 
(Gopalakrishnan et al., 2008; Lingor et al., 2007), has been 
shown to significantly enhance neurite regeneration in vitro. 
Neurite outgrowth models such as those derived from human 
stem cells are useful assays that can be used to study the effect of 
manipulating Rho A signalling to overcome an inhibitory stimu-
lus. Such models provide the basis for drug screening assays to 
identify molecules that can restore neurite outgrowth within an 
inhibitory environment.

Another important application for stem cells in vitro is the 
generation of disease-specific models that can be used to further 
elucidate the complex molecular mechanisms underpinning spe-
cific neurodegenerative disease, such as in Alzheimer’s disease 
and PD, together with potential screening applications for new 
drug treatments (Figure 3). Disease-specific models can be 
derived from ES cells through the identification of genetic abnor-
malities by pre-implantation genetic diagnosis (Mateizel et al., 
2006) or pre-implantation genetic screening (Biancotti et al., 
2010) during in vitro fertilisation and the subsequent isolation of 
embryos that would otherwise be discarded. However, as iPSC 
technology has become more routine, specific disease models are 
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more commonly derived from somatic cells taken from a patient 
and reprogrammed into iPSCs for use in in vitro modelling and 
drug screening (Avior et al., 2016). Fibroblasts taken from 
patients with neurodegenerative diseases can be reprogrammed 
using a cocktail of transcription factors to a pluripotent state 
(iPSC) that can then be differentiated towards a neural lineage to 
produce cells with a specific disease phenotype. Such cells can 
subsequently be used in the screening of compounds that can 
potentially induce neural regeneration and recovery of the dis-
ease phenotype (Barmada et al., 2014; Cooper et al., 2012; 
Hossini et al., 2015; Israel et al., 2012; Liu et al., 2014; Ren et al., 
2015; Sareen et al., 2013). This technology also has an applica-
tion in personalised medicine, as drug efficacy for specific patient 
conditions can be determined (Avior et al., 2016).

Stem cell–based neuroregenerative 
therapies
Stem cell differentiation procedures can be used to guide stem 
cell fate towards a desired lineage, producing a population of 

specialised cells. This has implications in many degenerative dis-
eases, as a source of cells for transplantation purposes. A major 
consideration in the use of stem cell derivatives for cell replace-
ment therapies is the purity of the cell population. This is a par-
ticularly important consideration as the remaining pluripotent 
cells in the transplanted population could potentially lead to 
tumour formation. However, the incidence of tumour formation 
in the majority of clinical trials appears to be well controlled 
(Trounson and DeWitt, 2016). Therefore, the use of stem cells in 
regenerative medicine is becoming a popular area of research 
with clinical trials underway for the use of this technology in 
many neurodegenerative diseases including PD and ALS 
(Trounson and DeWitt, 2016).

ALS is a degenerative disease caused by the death of motor 
neurons that results in a progressive decline in neuromuscular 
capacity (Contestabile, 2011). Unlike the genetic form of ALS that 
has been linked to a mutation in the gene for superoxide dismutase 
1 (SOD-1; Kaur et al., 2016), the mechanisms of disease pathogen-
esis in spontaneous ALS remain poorly understood. However, 
astrocytes, which in healthy individuals provide metabolic support 
to the neuron, are thought to adopt a pro-inflammatory phenotype 

Figure 2. The Rho A signalling cascade is often targeted to induce neurite outgrowth in vitro. In vitro stem cell–based models of neurite outgrowth 
have provided an opportunity to study the molecular pathways that induce neurite inhibition within a variety of neurological disorders. It is 
now thought that in the glial scar that forms following damage to the spinal cord chondroitin sulphate proteoglycans (CSPGs) activate Rho A 
signalling through a receptor-dependent mechanism which ultimately results in the activation of downstream Rho-associated protein kinase (ROCK). 
Activation of this signalling pathway in turn results in the stabilisation of actin filaments inducing growth cone collapse and neurite retraction. 
In vitro neurite outgrowth models have allowed for the screening of potential inhibitors of this pathway and have resulted in the identification of 
compounds that can induce recovery of neurite growth in an inhibitory environment. These include inhibitors of Rho A such as C3 transferase and 
ibuprofen and also inhibitors of ROCK such as Y-27632 and fasudil.
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in ALS, contributing towards neurotoxicity. For this reason, stud-
ies have focused on the generation of astrocytes from pluripotent 
stem cells and there has recently been approval for a Phase I–II 
clinical trial based on the transplantation of a glial-restricted pro-
genitor derivative of ES cells (Trounson and DeWitt, 2016). Much 
of the focus of stem cell therapies for ALS has been to improve the 
diseased microenvironment and provide neurotrophic support to 
resident cells (Boulis et al., 2011; Lunn et al., 2009, 2011; Silani 
et al., 2010). This has been achieved by grafting foetal-derived 
neuroprogenitor cells that secrete glial-derived neural growth fac-
tor into the spinal cord of rats to prevent respiratory failure 
(Gowing et al., 2014). Another approach that has undergone clini-
cal trials is the intraspinal transplantation of human spinal stem 
cells that not only secrete growth factors with neuroprotective 
properties but also differentiate into functional neurons that form 
synapses with resident neurons (Feldman et al., 2014).

PD is a progressive degenerative disease and movement dis-
order, clinical symptoms of which may include bradykinesia, 
rigidity, resting tremor and postural instability, along with cogni-
tive and psychiatric disturbances (Moore et al., 2005). Symptoms 
result from a selective loss of dopaminergic neurons within the 
substantia nigra of the brain (Moore et al., 2005). A significant 
amount of research has focused on the use of stem cell technolo-
gies and differentiation procedures to generate and replace lost 
dopaminergic neurons. However, although A9 dopaminergic 
neurons are known to be the cell type that is depleted in PD, the 
exact cell type for transplantation has been under review as 
patients transplanted with foetal brain tissue have subsequently 
developed dyskinesia.

Considerable progress has been made over recent years in the 
generation of functional dopamine neurons from ES cells for 
transplantation purposes and, when transplanted into rodent 
models of the disease, they have resulted in restoration of motor 
function to a level that is similar to foetal tissue transplantation 
(Ganat et al., 2012; Grealish et al., 2014; Steinbeck and Studer, 
2015). In addition to this, transplanted neurons have been found 
to form synapses with resident neurons, release dopamine and 
ultimately reduce clinical symptoms associated with the disease 

(Trounson and DeWitt, 2016). The long-term survival and char-
acterisation of the resultant cell population generated by ES cell 
differentiation have been important factors to consider in the 
development of this therapeutic strategy (Ganat et al., 2012; 
Grealish et al., 2014).

In addition to the generation of dopaminergic neurons from 
ES cells, parthenogenetic embryonic stem (pES) cell–derived 
neurons have been approved for Phase I clinical trials for the 
treatment of PD (Trounson and DeWitt, 2016). Unlike ES cells, 
pES cells are derived from the chemical stimulation of unferti-
lised human ova that are unable to develop into normal offspring 
due to a wide range of developmental and epigenetic defects 
(Brevini et al., 2012). pES cells offer the ethical advantage over 
ES cell–based therapies, as viable human embryos are not 
destroyed in their derivation and they can be used to generate an 
unlimited supply of neurons for transplantation (Gonzalez et al., 
2015). Neurons derived from pES cells transplanted into rodent 
and non-human primate models of PD have resulted in an 
increase in dopamine levels without any adverse effects 
(Gonzalez et al., 2015), suggesting that pES cell–derived neu-
rons may be a suitable candidate for cell replacement therapies 
in PD.

Huntington’s disease (HD) is a progressive neurodegenera-
tive disorder that is untreatable and ultimately fatal. It is an auto-
somal dominant, inherited disorder that results in the loss of 
dopamine- and cAMP-regulated neuronal phosphoprotein 
(DARPP)-32-positive medium spiny projection neurons in the 
striatum, and therefore the replacement of this cell type with stem 
cell derivatives is becoming an attractive therapeutic option 
(Reddington et al., 2014). Foetal striatal tissue transplantation 
has had mixed results in the treatment of HD, with long-term 
grafts resulting in a diseased phenotype of the transplanted tissue 
(Barker et al., 2013; Cicchetti et al., 2009; Steinbeck and Studer, 
2015). Research is now focused on the generation of medium 
spiny neurons from ES cells and iPSCs. Transplantation of such 
neurons has resulted in limited success, as transplanted cells do 
not appear to integrate into host neuronal networks (Reddington 
et al., 2014). It is now thought that transplantation success can be 

Figure 3. In vitro culture of induced pluripotent stem cells (iPSCs) and their use in drug development. Patient-derived somatic cells such as 
fibroblasts can be reprogrammed to form iPSCs that in turn can undergo robust differentiation to form mature neurons in culture. This process 
can be used to produce disease-specific neural subtypes such as neurons from patients with complex neurodegenerative disorders and in vitro 
models simulating aspects of the disease. These models can then be used for high-throughput screening (HTS) of test compounds that may combat 
conditions symptomatic of the disorder. iPSC technology also provides advantages in the field of personalised medicine as patient-specific in vitro 
models of neurological disease can be generated to test the efficacy of specific drug treatments prior to their administration.
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improved by the inclusion of glial support in the transplanted 
population (Reddington et al., 2014).

Trauma to both the PNS and the CNS can result in a loss of 
neural connectivity, either due to the incapacity of the CNS to 
regenerate, or due to a lesion exceeding the means of regenera-
tion in the PNS. The generation of stem cell–derived neural cells 
to bridge the injury, replacing lost tissue with the potential to 
restore function, is becoming an increasingly popular area of 
research (Trounson and DeWitt, 2016). MSCs due to their ability 
to differentiate into mature subtypes and secrete factors that form 
an environment conducive to regeneration have formed the basis 
of many studies aimed at treating functional deficit in SCI (Varma 
et al., 2013). The result of MSC treatment in SCI has been mixed, 
as many studies have used different methodologies of transplan-
tation which has resulted in a varied outcome ranging from 
improvement in neurological function to no clinical improve-
ment (Varma et al., 2013).

Repair of peripheral nerve injury by many types of stem cell 
has been evaluated with successful methodologies including the 
growth of DPSCs in a conduit containing a collagen gel to bridge 
the gap in a rat facial nerve injury, supporting axonal regenera-
tion (Bhangra et al., 2016). Functional recovery has also been 
reported in mice with a sciatic nerve defect through the use of a 
bio-adsorbable conduit containing iPSC-derived neurospheres 
and a growth factor delivery system (Bhangra et al., 2016). 
Therapies based on iPSC-derived cellular treatments also have 
the added benefit of providing patient-specific cell-based thera-
pies, avoiding any immune rejection issues.

Common strategies employed to treat peripheral nerve injury 
often combine biomaterials with stem cell technology to bridge 
and populate large nervous lesions. Such materials include gra-
phene, which is both conductive and can enhance neuronal dif-
ferentiation from populations of NSCs (Li et al., 2013). Solid 
scaffolds composed of synthetic materials such as polystyrene 
(Hayman et al., 2004) and polylactide (Melissinaki et al., 2011) 
have also been described to enhance neural differentiation and 
promote the growth of neuronal cell types. Integrated approaches 
to enhance functionality following peripheral nerve injury are 
essential to ensure that cells are delivered to the site of injury 
through the most appropriate mechanism.

Conclusion
The ability of stem cells to continually self-renew and produce a 
defined population of specialised neural cells upon induction of 
differentiation is an important tool in the treatment of neurode-
generation. Both pluripotent and multipotent stem cell types have 
important applications in the development of in vitro models of 
disease pathogenesis, allowing investigation into specific disease 
mechanisms and the screening and identification of potential new 
drugs. The generation of neuronal populations from such cells is 
also an important source of cellular material for transplantation 
purposes, with early clinical studies showing evidence of benefi-
cial effects in several neurological disorders. This area of stem 
cell research is particularly active, with promising results in 
terms of functional recovery following transplantation. 
Particularly, iPSC technology offers a range of benefits over 
other types of stem cells, as they can provide an autologous 
source for patient-specific cell types for transplantation or per-
sonalised medicine through drug screening.

The outcome of such work has also demonstrated that much 
more needs to be considered than just replacing a lost cell type, 
and that the entire cellular microenvironment and secretory pro-
file of cells should be considered to enable restoration of a 
healthy nervous system. This is particularly important in terms of 
complex neurodegenerative diseases such as Alzheimer’s disease 
and PD, as replacing a lost cell type may not permanently restore 
functionality. For this reason, better understanding of the molec-
ular pathogenesis mechanisms should always be considered 
simultaneously with cell replacement therapy.
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