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Abstract
Purpose of Review This review summarizes the current understanding of virus attenuation by large-scale recoding of viral
genomes and discusses what would ultimately be necessary for construction of better and safer live modified virus vaccines.
Recent Findings It has been shown that codon and codon pair deoptimization are rapid and robust methods that can be used for
the development of attenuated vaccine candidates. The viruses attenuated by large-scale recoding have the added value that they
are extremely genetically stable. However, the exact mechanisms that lead to viral attenuation by recoding are yet to be
determined.
Summary While the advantages of large-scale recoding (speed, simplicity, potency, and universal applicability) have been known
for more than a decade, this approach has been only inadequately explored and the attention was focused on a limited number of
RNA viruses. Attenuation of viruses by large-scale recoding should be explored to combat known and future viral threats.

Keywords Codon bias . Codon pair bias . CpG dinucleotides . Live modified virus vaccines . Synthetic attenuation virus
engineering . Large-scale recoding

Introduction

Viruses account for the majority of newly emerging human
pathogens. Over the past few years, many different viruses
such as SARS coronavirus, MERS coronavirus, avian influ-
enza viruses, hantaviruses, Zaire ebolavirus, or Zika virus
have (re)emerged as human pathogens [1–7]. Vaccines are
the most efficient and cost-effective tools to fight infectious
diseases, particularly virus infections. Millions of people and
domestic animals worldwide still suffer from many devastat-
ing infectious diseases for which no (efficient) vaccines exist.
We lack a rapid, universal, and reliable strategy that could be
used for attenuation of viruses and production of vaccines.

From the three basic types of viral vaccines, modified live
virus vaccines are the most efficacious and preferred vaccines
for healthy individuals, because they evoke broad, strong, and
durable immune responses and generally outperform
inactivated and subunit vaccines [8–10].

Traditionally, modified live virus vaccines have been pre-
pared empirically by serial passage of virulent viruses in cell
culture and/or laboratory animals [8, 9]. However, attenuation
by this procedure is costly, time consuming, and highly un-
predictable [9]. While serial passage results in accumulation
of a large number of mutations, often only a handful of them
contribute to attenuation [11, 12]. Consequently, some vac-
cines prepared by serial passage are prone to reversion to
virulence [13–15]. This safety concern is the biggest limiting
factor for use of such vaccines [8, 9, 11].

Recent advances in the de novo synthesis of DNA ushered
in the era of synthetic biology and the nascent field of modi-
fied live virus vaccines that are prepared by large-scale
recoding of pathogen genomes [16–19]. In contrast to viral
attenuation by serial passage, the attenuating mutations are
introduced into viral genomes deliberately, according to ratio-
nally designed recoding principles.

The overall concept of attenuation by large-scale recoding
is simple and effective: viruses with recoded genomes
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replicate efficiently in culture systems, which is favorable for
viral vaccine production, but their replication capacity and
virulence in vivo is severely reduced or absent [17, 20]. The
reduction of the reproductive fitness enables the host to gain
the upper hand in controlling virus replication by innate and
adaptive immune responses.

Typically, the goal of the recoding is to change dinucleo-
tide, codon, or codon pair composition of the recoded viral
genomes, because it was shown that all three types of
(interrelated) modifications could lead to replication-compe-
tent, but severely attenuated viruses. Importantly, while
recoding introduces hundreds of point mutations into viral
genomes, the amino acid composition of the encoded proteins
remains preserved. Consequently, the recoded viruses are an-
tigenically identical with their pathogenic parents. The anti-
genic identity and replicative potential enable attenuated vi-
ruses to induce immune responses that are similar to those of
virulent strains. Recoded viruses represent very promising
vaccine candidates, because it might be possible to achieve
the desired level of attenuation by adjusting the level of
recoding [17]. In addition, viruses attenuated by large-scale
recoding are extremely genetically stable, which is explained
by the sheer number of introduced mutations [16, 17, 20–22].

Virus Attenuation by Codon Deoptimization

Amino acids, except for methionine and tryptophan, can be
encoded by two or more synonymous codons, but these are
used at unequal frequencies, a phenomenon known as codon
bias. Synonymous codons also differ in translational accuracy
[23], propensity to mutate to non-synonymous and non-
conservative codons [24, 25], abundance of tRNA that decode
them [26], and capacity to allow non-standard (wobble) base
pairing between the third base of the codon and the first base
of the anticodon [27].

Codon choice affects translation efficiency [28], protein
folding [29], and mRNA stability [30], but the significance
of codon bias despite of decades of investigation remains un-
clear. The prevailing hypothesis predicts that frequently used
codons are translated more rapidly than rare codons, because
frequent codons are often decoded by abundant tRNAs [26,
31, 32]. Consequently, utilization of rare codons reduces
translation rates and protein yield because these are decoded
slowly by rare tRNAs [30, 33]. Yet, only little direct in vivo
evidence supports this hypothesis [34, 35]. In addition, it was
shown that codon-optimized genes are often not translated as
efficiently as expected [33].

The first attenuated virus that was prepared by large-scale
recoding was a poliovirus (Enterovirus C) and the recoding
modified codon usage of the capsid coding region [16, 18].
The rationale for recoding was the opposite of the codon op-
timization strategies. The goal of the recoding was to modify

viral genomes to contain more codons that are infrequently
used by the virus [18] or the virus host [16], because it was
assumed that these might reduce speed of translation elonga-
tion and thus also protein yield. The codon deoptimization
resulted in severely attenuated viruses in vitro [16, 18] and
in vivo [16]. As expected, maximization of codons that are
underrepresented in the virus host decreased translation capac-
ity and protein yields of the recoded viruses. Surprisingly,
viruses that contained the increased number of its own infre-
quent codons showed unaltered protein production, but dimin-
ished viral RNA yields and specific infectivity of purified
virions [18].

Since then, others followed suit and many other viruses
including rabies virus [36], influenza A virus, human respira-
tory syncytial virus [22, 37, 38], lymphocytic choriomeningitis
virus [39, 40], and foot-and-mouth disease virus [41] were
recoded using the codon deoptimization principles. In most
cases, codon deoptimization resulted in production of highly
attenuated viruses in vitro and in vivo [39–42]. However, some
codon-deoptimized viruses remained pathogenic [36], or be-
came only moderately attenuated [22].

Interestingly, experiments with human respiratory syncy-
tial virus showed that viruses that were codon deoptimized
according to the viral host codon usage had decreased protein
production and were attenuated, whereas viruses that were
deoptimized according to the virus codon usage were not [22].

Virus Attenuation by Codon Pair
Deoptimization

The fact that codon usage alone could not explain observed
differences in protein production implicated that other se-
quence features, such as neighboring nucleotides, or codons
(codon context) must influence translation elongation. Recent
studies accumulated compelling evidence that different
mRNA context cues modulate eukaryotic translation
(reviewed in [43]).

Similar to codon bias, codon pair bias, that is codon pair
combinations, in protein coding genes is not random either
[44, 45]. Some codon pairs are found in open reading frames
(ORFs) significantly more or less frequently than would be
expected based on the overall frequencies of two codons that
form a particular codon pair [16, 21, 44]. The level of under-
and overrepresentation of each codon pair can be measured
with the codon pair score (CPS) statistic [21].

Codon pair bias was found in every species studied [46]
and can be radically dissimilar between different species [20],
but closely related species have essentially the same codon
pair bias [45, 47]. Its existence has been known for many
years, but it was on the periphery of scientific inquiry, and
thus its biological significance and the forces shaping it are
only poorly understood [46].
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The attenuation by codon pair (bias) deoptimization, also
known as “synthetic attenuated virus engineering” (SAVE),
was pioneered in 2008 by the group of Eckard Wimmer at
Stony Brook University when the effects resulting from the
alternation of the codon pair bias was explored by recoding of
poliovirus [21]. The attenuation of viruses by codon pair
deoptimization involves reshuffling of existing codons in a
protein coding sequence without changing the codon bias or
amino acid composition of the encoded protein [20, 21]. The
goal of reshuffling is to maximize the number of codon pairs
that are underrepresented in the protein coding sequences of
the virus host.

In the seminal study, the recoding by codon pair
deoptimization involved the P1 region of the virus, which
encodes the viral capsid [21]. Remarkably, a poliovirus with
a fully codon pair-deoptimized P1 region, “PV-Min,” could
not be rescued in cell culture, despite the fact that no new rare
codons were introduced into recoded viral segment. On the
other hand, “PV-Max” virus with codon pair-optimized P1
segment had biological properties of the wild-type parent.

Since its initial description, codon pair deoptimization en-
abled rapid and highly efficient attenuation of a wide variety
of viruses, including influenza A virus [20, 48, 49•], human
immunodeficiency virus [50], human respiratory syncytial vi-
rus [51], vesicular stomatitis Indiana virus [52], and dengue
virus [53•]. Some of the recoded viruses have shown 100,000-
fold attenuation in comparison to pathogenic parents and have
been successfully used as highly protective experimental vac-
cines with a wide margin of safety [48, 49•].

There are two main competing hypotheses that propose
different molecular mechanisms that lead to attenuation of
viruses by codon pair deoptimization. One hypothesis sug-
gests that the increased numbers of underrepresented, or
“non-preferred” codon pairs in recoded sequences, are them-
selves the reason for attenuation, because they create condi-
tions that are not conducive for efficient protein production or
processing [21, 53•]. It is speculated that physical properties
of some tRNA molecules hamper their efficient interaction at
adjacent A-site and P-site in the translating ribosome. As a
consequence, codon pair-deoptimized sequences do not sup-
port efficient protein translation, and these are prone to in-
creased mistranslation, stalled translation, or premature termi-
nation [49•]. The alternate hypothesis suggests that not the
codon pairs themselves, but the increased number of CpG
(and TpA) dinucleotides that are present in codon pair-
deoptimized sequences (see below for explanation) is respon-
sible for decrease of mRNA levels and thus also protein yields
and virus attenuation [54–56].

While recoding by codon pair deoptimization has always led
to decrease of protein production, it is unknown whether this
decrease is caused primarily by suboptimal protein translation,
or could be also caused by the reduced mRNA levels, because
it was shown that codon pair deoptimization can be responsible

for extensive reduction of mRNA levels [48]. However, the
reduction ofmRNA levels does not occur universally, and often
the reduction of RNA levels is disproportional to themagnitude
of reduction of protein levels [48, 49].

Typically, codon pair deoptimization introduces several
hundred nucleotide changes into recoded genes. It is not
known which genetic changes that arise through codon pair
deoptimization are responsible for reduced protein production
and ensuing virus attenuation. There are three possible op-
tions: (1) reduction of protein production is caused by a large
number of underrepresented codon pairs that exert small neg-
ative effects on protein production, (2) reduction of protein
production is caused primarily by a small number of codon
pairs that exert strong negative effects on protein production,
and (3) other yet unknown sequence features are responsible
for decrease of mRNA stability, or faster turnover of mRNA
transcript.

In 2016, in an elegant study, Gamble et al. provided com-
pelling evidence—through experimentation with 35,000 GFP
variants in yeast species Saccharomyces cerevisiae—that co-
don pairs rather than individual codons can exert a potent
effect on translation elongation [57••]. The study identified
17 inhibitory codon pairs that were implicated in low protein
production of the superfolding GFP. The inhibitory effect
could not be assigned to individual codons, or six-base se-
quence, or encoded dipeptide, since reduced protein produc-
tion was observed only when both codons of the inhibitory
pair were present, in-frame, and adjacent in a proper order.
The correct ordering suggested that tRNA interactions with
mRNA on the ribosome mediated the inhibitory effect.

Codon and Codon Pair Deoptimization
Increases the Number of CpG Dinucleotides
in Recoded Genes

It was discovered that codon and codon pair deoptimization of
vertebrate viruses not only increases the number of codons, or
codon pairs that are underrepresented in coding sequences of
the host, but also increases the frequency of CpG and, to lesser
degree, TpA (UpA) dinucleotides in recoded sequences [45,
54, 55, 58]. The increase of CpG and TpA dinucleotides by
codon pair deoptimization is inadvertent, as codon pairs that
contain CpG and TpA dinucleotides at the codon pair bound-
ary (NNC-p-GNN) are among the most underrepresented co-
don pairs in vertebrates [45, 55]. For example, 97 of the 100
most underrepresented codon pairs contain CpG at the codon
pair boundary [45]. As a result, recoding by codon pair
deoptimization does not increase the number of CpG dinucle-
otides that are already present in the shuffled codons, because
recoding preserves codon bias, but creates new CpG and TpA
dinucleotides at the boundary between the new codon pairs.
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Similarly, because CpG and TpA dinucleotides are signif-
icantly suppressed in the genomes of higher eukaryotes [59],
synonymous codons that contain CpG and TpA dinucleotides,
for example, alanine’s GCG, or leucine’s CTA and TTA co-
dons, are also infrequently used in protein coding sequences.
Thus, codon deoptimization of vertebrate viruses also results
in elevated number of CpG and TpA dinucleotides in recoded
sequences. It is, therefore, unclear whether the increase of
underrepresented codons, codon pairs, or less-favored dinu-
cleotides in recoded sequences is primarily responsible for
virus attenuation.

Consequently, an alternative hypothesis suggests that the
cause of attenuation is to be found in the increased number of
CpG (and TpA) dinucleotides, which are recognized by an as
yet uncharacterized self/non-self-recognition system that stim-
ulates enhanced innate immune responses to such recoded
viruses [55, 56]. Since codon pair preferences and dinucleo-
tide frequencies are intimately related (the most underrepre-
sented codon pairs contain CpG and TpA dinucleotides at the
codon pair boundary), dissecting the effects of the two phe-
nomena is exquisitely difficult [56, 60].

Virus Attenuation by Increase of CpG/TpA
Dinucleotides Frequencies

Vertebrate genomes have low CpG levels and the CpG sup-
pression can be plausibly explained by the methylation-
deamination hypothesis [61]. This hypothesis suggests that
abundant methylation of cytosine in CpG dinucleotides is re-
sponsible for CpG suppression, because methylated cytosine
often mutates to thymine by spontaneous deamination [62].
As a result, methylated CpG dinucleotides decay into TpG
(and CpA) dinucleotides over time.

It remains enigmatic why CpG and TpA (UpA) dinucleo-
tides occur at lower frequency also in the genomes of most
RNA and small DNA viruses that infect vertebrates [45, 63].
For example, human papillomaviruses exhibit a frequency of
CpG dinucleotides in their genomes that is only ~ 50% of the
expected number. Even more striking, human immunodefi-
ciency viruses contain reduced CpG to only ~ 25% and human
polyomaviruses to less than 10% of the expected numbers
[45]. Because CpG methylation does not occur on RNA, the
methylation-deamination hypothesis, nor viral sequence con-
straints, can explain underrepresentation of CpG dinucleotides
in genomes of vertebrate RNA viruses [64].

An alternative explanation for suppression of CpG dinucle-
otides in the genomes of small viruses suggests that CpG
dinucleotides act as immunostimulatory motifs that trigger
antiviral immune responses [45, 54, 64]. However, the identity
of the hypothetical receptors recognizing CpG-rich RNAmol-
ecules remains elusive.

A recent study by Takata et al. showed that the host zinc-
finger antiviral protein (ZAP) is such a long-suspected ssRNA
CpG receptor, which specifically binds to CpG-rich RNA and
targets them for degradation by the RNA exosome [65••].
These results suggest that the selective pressure mounted by
ZAP drives vertebrate RNA viruses to reduce the levels of
CpG dinucleotides in their genomes. Thus, increasing the
number of CpG dinucleotides in viral genomes could be re-
sponsible for viral attenuation, because viral RNA with high
CpG content is better recognized and then removed from the
cytoplasm. Since ZAP expression is induced by interferon,
viruses that can block interferon responses or counter the ac-
tion of ZAP should be resistant to selection pressure exerted
by ZAP. It remains to be determined whether ZAP is the only
host factor that can recognize CpG-rich sequences, and what
immune evasion strategies viruses employ to avoid the action
of ZAP.

The early experiments with recoded poliovirus that had
artificially elevated CpG and UpA dinucleotides in its cap-
sid coding region showed that recoding only minimally
affected protein production, protein processing, or the over-
all production of viral particles, but had significant negative
effect on virus fitness, especially on specific infectivity of
viral particles [66]. The fitness of the recoded virus was
reduced to the threshold of viability when CpG and UpA
dinucleotides were maximized within the recoded genome
segment [66].

Since both codon pair bias and CpG dinucleotides ap-
pear to influence virus replication, a study with echovirus
7 attempted to separate the effect of two phenomena by
creating mutants in which the two parameters were inde-
pendently varied. The authors increased either the fre-
quency of CpG and UpA dinucleotides in the viral ge-
nome and left codon pair bias constant, or vice versa
[54]. Phenotypic characterization of the resulting mutants
showed that only alternation of the CpG and UpA fre-
quencies, but not codon pair bias, had a negative effect
on viral fitness [54]. Interestingly, a complementary study
showed that virus mutants that lacked CpG an UpA di-
nucleotides in their genomes had enhanced replication,
produced larger plaques, and readily outcompeted wild-
type parents in competition assays [55].

A subsequent study from the same group demonstrated
that elevation of CpG frequencies in influenza A virus can
also result in moderate attenuation of the virus in vitro and
in vivo [58]. However, since recoded viruses with increased
CpG or UpA frequencies did not have the same codon bias
as the control—unmodified and permuted—viruses, chang-
es in the codon bias could confound observed viral proper-
ties. In addition, because influenza A virus antagonizes
ZAP activity [67, 68], it remains to be determined if ZAP
alone can inhibit replication of recoded influenza A viruses
with increased CpG levels.
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Conclusion

Although the capacity to attenuate viruses by the three alterna-
tive attenuation methods is yet to be directly compared, viruses
that are designed by codon pair deoptimization show consistent-
ly high levels of attenuation, to the extent that some codon pair-
deoptimized viruses are nonviable in permissive cells [21, 52].

The major drawback of the attenuation by alternation of
codon, codon pair, or CpG dinucleotide frequencies is that
the molecular mechanisms responsible for attenuation remain
largely unknown. Until this problem is solved, it will not be
possible to improve this attenuationmethod further and design
rationally better and safer vaccines. In addition, it will not be
possible to assess reversion of attenuation based on observed
genetic changes in attenuated viruses. Also, it is yet to be
determined if DNA viruses can be attenuated by the same
attenuating principles as small RNA viruses.

The continuously decreasing cost of synthetic DNA might
soon allow us to characterize the phenotype of thousands of
differently recoded viruses. Once phenotype is connected with
genotype, unbiased and agnostic approaches might be able to
precisely identify sequence features that are essential and suffi-
cient for development of highly effective and safer viral vaccines.

In contrast to existent attenuation methods, recoded vac-
cine candidates can be designed within minutes and produced
synthetically within days. The potential applications that
might originate from these approaches are immense and could
be universally applicable for attenuation of many known vi-
ruses and bacteria, but also to yet unknown viral threats as
they emerge [17, 20].
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