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This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is 
the rhythmic aspect of phrase construction and the relationships between phrases. For 
the sake of establishing the neural correlates, a musical experiment has been designed 
to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored 
through electroencephalography (EEG) by using a brain–computer interface. The power 
spectral value of each EEG channel is estimated to obtain how power variance distrib-
utes as a function of frequency. Our experiment shows statistical differences in theta and 
alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite 
form and the other in rondo form.

Keywords: phrase rhythm, brain activity, electroencephalography (eeg), brain–computer interface (Bci), music-
evoked stimuli

1. inTrODUcTiOn

Our interest in music-evoked emotions is linked to finding solutions able to improve the quality of 
life and care of aging adults who can or want to keep living at home. The approach uses advanced 
tools and techniques of Information Technology and Communications supplemented with expert 
knowledge based on experimental techniques from psychology, neurobiology, and music about the 
regulation of emotions (Fernández-Caballero et  al., 2014, 2016; Castillo et  al., 2016). More con-
cretely, this paper attempts to show the neural correlates of phrase rhythm which cause changes in the 
emotional state of a music listener through conducting an experiment (similar to Fernández-Sotos 
et al. (2015, 2016)). Neural correlates of emotional responses have been explored by a number of 
researchers (Schmidt and Trainor, 2001). The potential of music to evoke emotions makes music 
a valuable tool for the investigation of emotions (Koelsch, 2014). There are currently only a few 
studies on the psychophysiology of the perception of the vertical harmonic structure of music by 
humans (Maslennikova et al., 2015). The neuronal correlates of the hierarchy of musical tones and 
their ratios at the cortical level in humans are generally studied using evoked potential methods 
and functional magnetic resonance imaging (fMRI) (Minato et al., 2009; Koelsch, 2011). This paper 
provides one-step forward toward understanding the neural correlates of phrase rhythm. For this 
aim, an approach based on monitoring electroencephalography (EEG) signals is fully introduced.

Phrase rhythm is, in its most basic sense, the rhythm articulated by a series of phrases. In music 
and music theory, a musical phrase is a unit of musical meter that has a complete musical sense of 
its own, built from figures, motifs, and cells and combining to form melodies, periods, and larger 
sections (Nattiez, 1990), or the length in which a singer or instrumentalist can play in one breath. 
White (1976) defines a phrase as “the smallest musical unit that conveys a more or less complete 
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musical thought.” Let us highlight that phrase rhythm is the 
rhythmic aspect of phrase construction and the relationships 
between phrases (Rothstein, 1989). For the composer of a piece, 
it is important that the listener relates different moments of a 
play and looks forward to new musical resources. In this way, the 
composer uses the principles of repetition and contrast. Ideas 
and parts heard before (phrases equal to each other) are used in 
the repetition, while with the contrast, the composer proposes 
new ideas to create expectation. These are precisely the aspects 
studied to find the neural correlates of phrase rhythm.

The rest of the paper is as described next. Section 2 introduces 
the materials and methods employed in the experimentation. 
The musical experiment that is designed to induce music-evoked 
stimuli is explained first. Two classical music pieces with suf-
ficient differences in their phrase structure are used to search the 
neural correlates of phrase rhythm. These are the first movement 
of the sonatina in bipartite sonata form by Wolfgang Amadeus 
Mozart named “Sonatina for clarinet and piano in Bb Major” 
(Mozart, 1959), and the first movement of James Hook’s “Sonata 
No. 1 for trumpet and piano in Eb Major” in rondo form (Hook, 
2003). This section also includes a brief description of the Emotiv 
Epoc+ brain–computer interface (BCI) used to acquire the EEG 
signals. Moreover, the study carried out by means of the musical 
experiment is described. Also, the four stages used to process 
the BCI data and to validate the proposal are described in detail. 
These are signal acquisition, data preprocessing, feature extrac-
tion, and classification and statistical analysis. Afterward, Section 
3 describes the most outstanding results of the study carried out, 
showing the first evidences related to the neural correlates of 
phrase rhythm. Finally, Section 4 provides some discussion and 
conclusions.

2. MaTerials anD MeThODs

2.1. Description of the experimentation
The experimentation is carried out in an especially organized 
room, where each participant is placed in front of a computer. 
A total of twenty healthy subjects (60% male, age 35.22 ± 9.34) 
participate in the experiment. Two different classical music pieces 
(Mozart and Hook), both with a 2-min duration, are presented to 
each participant. During the experiment, electroencephalogram 
recordings were acquired using an Emotiv EPOC+ headset, 
transforming brain activity into electrical signals that are ampli-
fied and digitized for further processing. In fact, the Emotiv 
Epoc+ is the EEG data acquisition means used in this study. It is a 
helmet whose main virtue is its easy setup and use, requiring a few 
minutes of preparation by the user who will use it. The helmet has 
14 channels for detecting EEG signals and two references, taking 
readings of brain activity at a frequency of 128 Hz. The data trans-
mission from the helmet to the computer is performed wireless. 
Emotiv Epoc+ also provides a series of facilities, as it includes a 
dedicated software for direct access to the data acquired by the 
helmet. In addition, you can access the status of signal quality of 
the electrodes’ signals and the recorded data.

Electroencephalography (EEG) measures the electrical activ ity  
of the brain using electrodes attached to the scalp (Tonoyan 

et al., 2016). The electrodes are activated by the flow of electri-
cal currents during synaptic excitation of the dendrites in 
neurons. On the other hand, a brain–computer interface (BCI) 
is a man–machine interaction system capable of capturing, 
processing, and interpreting brain waves. The interest in these 
devices in developers and researchers for technological purposes 
is triggered by the rapid and continuous development of low-
cost hardware and software systems supporting multichannel 
analysis in real time. Mostly all EEG devices roughly consist of 
the same parties, although each manufacturer provides certain 
characteristic changes or customizations. EEG devices are mainly 
formed by the electrodes dedicated to signal conditioning and 
amplification, and for transferring data to the computer. As told 
before, the system has a total of 14 sensors or active channels, 
which correspond to the AF4, F8, F4, FC6, T8, P8, O2, O1, P7, 
T7, FC5, F3, F7, and AF3 positions. The positions correspond to 
the arrangement according to the international 10–20 standard 
(Klem et al., 1999). Figure 1 shows the positions of the electrodes 
in the international 10–20 system, as well as the location of the 
electrodes in the Emotiv Epoc+ helmet. Our approach includes 
the typical stages of this type of BCI system, namely, (1) signal 
acquisition, (2) data preprocessing, (3) feature extraction, and (4) 
classification. These stages are described below.

It is important to notice that the musical pieces used in this 
experimentation are in major mode. The results offered in this 
article would probably not apply in minor mode musical pieces 
in line with a series of studies (e.g., Husain et al., 2002; Knoferle 
et al., 2012).

2.2. Musical experiment
This musical experiment exposes participants to listening the 
first movement of two different pieces in classical style, i.e., two 
sonatina movements. The first excerpt is the first movement 
of the sonatina in bipartite sonata form named “Sonatina for 
clarinet and piano in Bb Major” by Wolfgang Amadeus Mozart 
(see Figure 2 at the right). A bipartite sonata is a type of musical 
composition having a major theme (theme A), which is exposed 
in main tonality, followed by a theme B heard in the dominant, 
finishing the first section. In the second section, the first theme 
(theme A′) is exposed in the dominant and the secondary theme 
(theme B′) is presented in the tonic. In this case, the theme B is 
heard in the dominant because it adds a final coda, which is in the 
tone of the tonic. The second musical piece is the first movement 
of the “Sonata No. 1 for trumpet and piano in Eb Major” in rondo 
form, by James Hook (see Figure 2 at the left). Rondo form is 
a musical form based on the repetition of the same theme. The 
main theme reappears and alternates with different secondary 
themes. In this case, we have the ABACAD form (theme A fol-
lowed by B, back to the theme A followed by the theme C, newly 
theme A, and finally theme D). Both sonatas are performed in a 
version for clarinet and piano, so that the change of instrumental 
timbre does not affect the listener. Moreover, both musical pieces 
are played at a same volume.

Electrophysiological data are captured to see the listener’s 
response to the phrase rhythm while listening to the music 
pieces. The physiological data from listeners are considered for 
evaluation of the musical experiment. In short, this experiment 
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FigUre 1 | (a) International 10–20 system of electrode placement. (B) Emotiv Epoc+ electrode placement.
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aims to measure the degree of activation using EEG in the 
electrophysiological response to the principle of repetition and 
contrast marked by the musical form, related to phrase rhythm. 
Therefore, we study Mozart’s music movement in bipartite form 
versus Hook’s rondo form piece.

2.3. Methodology
The methodology followed in this work is represented in Figure 3. 
First of all, EEG signals are acquired by means of the Emotiv 
EPOC+. Then, these signals are preprocessed by applying filters 
and artifact removal techniques. After that, frequency features are 
extracted for each EEG channel. Principal Component Analysis 
(PCA) is applied to reduce the number of features in further 
analysis. Then, statistical significance is calculated by a one-way 
ANOVA test and 10-fold cross-validation. Finally, a decision tree 
model is used for classifying the samples into the two groups of 
study.

2.3.1. Data Preprocessing
As most biomedical signals appear as weak in an environment 
that is filled with many other signals, it is not a simple task to 
obtain relevant information from brain activity. Artifacts result-
ing from eye blinks or other muscular movements make signals 
more noisy and difficult to interpret. At this stage, different types 
of filter designs, covering a wide range of approaches, and algo-
rithms to remove unwanted artifacts from the raw signal must be 
are used. In this work, the recorded EEG signals are preprocessed 
using advanced signal processing techniques (Koelstra et  al., 
2012). The baseline of each EEG channel is removed by apply-
ing a forward/backward filtering approach. The equation that 
describes the output y[n] of the digital filters used in this work is

 

y n b x n b x n b x n N
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(1)

where x[n] is the input signal, N is the filter order, and bi are 
amplitude coefficients of the impulse response at instant i.

Apart from the electrical information of the brain, EEG 
signals also contain artifacts produced by other co-occurring 
physiological signals. Technical artifacts, similar to electrode-
pop peaks, may also appear (Barlow, 1986). All these artifacts 
can be removed by means of a blind source separation technique, 
such as independent component analysis (ICA) (Sanei, 2013). 
Artifacts are considered independent of the electrical activity of 
the brain, which makes ICA a suitable methodology to remove 
artifacts and maintain only the information related to neural 
activity.

Other types of artifacts cannot be eliminated by using 
ICA decomposition. It is the case of high-amplitude noise 
or interferences, mainly provoked by body movements or a 
poor contact of the electrodes over the scalp (Goncharova 
et  al., 2003). To eliminate these artifacts, bad channels are 
usually removed and reconstructed by interpolating adjacent 
channels. Nevertheless, the low spatial density of the signals 
registered with Emotiv EPOC+ (only 14 channels) does not 
allow to apply this methodology. Instead, an adaptive filter 
should be used to reduce noise in EEG signals (Reddy and  
Narava, 2013).

2.3.2. Feature Extraction
At this stage, EEG signals have been filtered and freed of arti-
facts. Thus, several analysis techniques are applied to extract 
the signals’ main features. Feature extraction allows to obtain 
certain specific characteristics of the acquired signals, which are 
useful for discriminating between different mental states. In the 
present work, the power spectral value of each EEG channel is 
estimated to obtain how power variance distributes as a func-
tion of frequency. Indeed, EEG is typically described in terms 
of rhythmic activity, where the frequency band is divided into 
different bandwidths (Michel et al., 1992). More concretely, the 
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FigUre 3 | steps followed in the methodology.

FigUre 2 | rhythmic harmonies. Left: first movement of the Hook sonatina. Right: first movement of the Mozart sonatina.

4

Martínez-Rodrigo et al. EEG Study of Phrase Rhythm

Frontiers in Neuroinformatics | www.frontiersin.org April 2017 | Volume 11 | Article 29

EEG spectrum is commonly separated into four different bands: 
theta (4–7 Hz), alpha (8–15 Hz), beta (16–31 Hz), and gamma 
(32–45 Hz). Each bandwidth is related with some kind of bio-
logical activity (Tatum, 2014).

In this work, a non-parametric method based on the Fast 
Fourier Transform (FFT) is used. FFT is based on the Discrete 
Fourier Transform (DFT) algorithm, with the particularity of the 
simplicity of its algorithm and a high processing speed. The DFT 
algorithm can be described as follows:

 
X x e Nk

n

N

n
j kn N= ⋅ , = , , , −

=

−
− /∑

0

1
2 0 1 1π k … ,

 
(2)

where Xn is a sequence of complex numbers and N is the length 
of the sequence.

When a signal is transformed into the frequency domain, its 
waveform is subdivided into bandwidths, following the afore-
mentioned boundaries. Finally, the spectral power (SP) for each 
bandwidth is calculated such that
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where X corresponds to the signal’s sample in the frequency 
domain. It is worth noting that SP is computed for each frequency 
band and for each EEG channel, and also that each participant 
listens to both musical pieces. Therefore, the feature matrix is an 
N × M matrix sized 40 × 56, where N is the number of samples 
(20 participants listening to 2 music pieces) and M is the feature 
vector (SP computed over each of the 4 frequency bands and each 
of the 14 EEG channels).

2.3.3. Classification and Statistical Analysis
It is time now to classify the input parameters into a set of differ-
ent patterns or classes and to statistically analyze the classification 
performance. The success of classification is determined by the 
appropriate choice of the parameters characterizing the signal 
and the effectiveness of the selected classification algorithms. 
In this work, Shapiro–Wilk and Levene tests are used to verify 
that data are normal and homoscedastic. Moreover, statistical 
differences between the two groups under study are calculated by 
using a one-way ANOVA test. In this sense, a value of statistical 
significance ρ ≤ 0.05/14 = 0.00357 is considered to be sufficient. 
In addition, each feature’s individual ability to discriminate 
between both groups is evaluated by using a Receiver Operating 
Characteristic (ROC) curve. This curve is the result of represent-
ing Sensitivity (Se) in front of 1 − Specificity (Sp). The sensitivity 
is the relation between true positive (TP) and all real positive 
values; in other words, true positives plus false negatives (FN), as 
can be seen in the following equation:

 
Se TP

TP FN
=

+
.
 

(4)

On the other hand, specificity is the result of dividing the num-
ber of true negatives (TN) into the number of real negatives (true 
negatives plus false positives (FP)), as shown in the next formula:

 
Sp TN

TN FP
=

+
.
 

(5)

Finally, the accuracy (Acc) for the classification of samples into 
the corresponding groups is defined as the relation between the 
number of samples properly classified (true positives and true 
negatives) and the whole population:

 
Acc = +

+ + +
TP TN

TP FP TN FN
.
 

(6)

It is important to highlight that a ten-fold stratified cross-
validation is used in this analysis. The reason for stressing 
the data is to avoid the possibility of classification results to 
be highly dependent on the choice of a given training-test 
segmentation. More precisely, for each experiment, the entire 
database is separated into ten equally sized folds, such that each 
fold is a good representative of the data. Then, ten learning and 
test iterations are performed. At each iteration, nine folds are 
randomly used to train the system, while the remaining fold is 
used to test the performance. Furthermore, at each iteration, a 
threshold is obtained for maximizing the ROC performance. 

Such threshold is then used to assess the performance on the 
test set.

With the aim of improving the classification performance and 
exploring the possible relationships among the different EEG 
channels, as well as the frequency bands activated, different clas-
sifiers are tested. Specifically, decision tree, linear and quadratic 
discriminant analysis, logistic regression, linear support vector 
machine, and k-nearest neighbor methods are applied on the 
data. However, in this study, the tree-based model shows the 
highest correctness in discriminating among groups. Therefore, 
this model is finally used to classify the data. In this regard, it 
is worth noting that some rules are imposed to prevent tree 
overgrowth. Thus, each node stops when it contains only samples 
from one class, or a group of subjects with less than 20% of all 
observations. Moreover, the splitting criterion used to evaluate 
the goodness of the alternative splits for each node is based on 
the impurity-based Gini index.

Finally, given the high amount of relevant features, some 
methodology for selection process or dimensionality reduction 
has to be carried out. Indeed, one of the difficulties that are 
inherent in multivariate analysis is the quantity of information 
that has to be managed. Often, a variable might be measuring 
the same driving principle than another one in the system. 
However, in many systems, there exist exclusively a few forces or 
variables governing the behavior of the whole system. Therefore, 
it is possible to reduce the variables by taking advantage of 
redundant information. In short, it is possible to simplify the 
system by replacing a group of variables with a new single vari-
able that is a linear combination of the original ones. Principal 
Component Analysis (PCA) is the methodology used in this 
work to perform dimension reduction. PCA is characterized 
by generating a new set of principal components, all of them 
orthogonal to each other, eliminating redundant information 
(Jolliffe, 2002).

3. resUlTs

In the study, no significant differences are found when the spec-
tral power (SP) is computed for each EEG channel and for bands 
beta and gamma. On the contrary, a number of channels result 
significant when theta and alpha bands are studied. Tables 1 and 2 
show the statistical significances for all the relevant channels and 
for theta and alpha bands, respectively. As you may appreciate, 
most EEG channels show statistical differences between the two 
groups and for the two bands. It is worth noting that the same 
channels show some discriminant power in both bands, theta and 
alpha. They belong to several areas of the brain, including frontal, 
parietal, temporal, and occipital zones.

From a statistical point of view, the most remarkable differ-
ences between the groups are provided by parietal channel P8 and 
frontal channel F4 in the theta band. The discriminatory power 
reached by occipital channel O2 is also remarkable. Similarly, 
F4 is the most relevant channel in the alpha band. In addition, 
the symmetrically spaced parietal channels P7 and P8, as well 
as the frontal–central channels FC5 and FC6 reach comparable 
significance in this band. Finally, again T7 shows an important 
significance in the alpha band.
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TaBle 2 | statistical outcomes for all the relevant channels and for alpha 
bands.

ch ρ Se (%) Sp (%) acc (%) 

AF3 4.20 × 10−11 64.70 63.90 64.20
F7 0.143 66.50 65.50 65.90
F3 1.06 × 10−5 65.40 67.30 66.60
FC5 7.27 × 10−16 61.70 65.70 64.30
T7 2.48 × 10−15 55.30 70.60 65.30
P7 2.44 × 10−16 57.50 65.10 62.50
O1 0.082 68.00 61.80 63.90
O2 3.45 × 10−9 57.50 69.20 65.20
P8 3.04 × 10−15 64.30 72.10 69.40
T8 1.25 × 10−7 68.00 61.20 63.50
FC6 1.25 × 10−14 63.50 57.10 59.30
F4 3.39 × 10−20 62.80 69.60 67.30
F8 2.49 × 10−12 75.20 51.50 59.60
AF4 6.64 × 10−12 53.80 74.10 67.10

First column: EEG channel. Second column: statistical significance; values in bold 
demonstrate statistical significance. Third column: sensitivity. Fourth column: specificity. 
Fifth column: global accuracy.

TaBle 1 | statistical outcomes for all the relevant channels and for theta 
bands.

ch ρ Se (%) Sp (%) acc (%)

AF3 0.0136 66.50 56.10 59.70
F7 0.231 67.70 64.50 65.60
F3 0.00806 55.60 70.00 65.10
FC5 3.35 × 10−9 55.30 70.80 65.50
T7 2.27 × 10−8 64.30 60.20 61.60
P7 0.00085 66.50 66.70 66.60
O1 0.11 69.50 62.20 64.70
O2 1.30 × 10−13 62.40 70.60 67.80
P8 1.88 × 10−16 68.80 62.60 64.70
T8 1.53 × 10−7 65.40 59.50 61.50
FC6 6.71 × 10−12 66.20 55.80 59.30
F4 2.15 × 10−14 66.90 66.70 66.80
F8 0.00321 72.90 54.80 61.00
AF4 6.81 × 10−6 64.30 61.20 62.30

First column: EEG channel. Second column: statistical significance; values in bold 
demonstrate statistical significance. Third column: sensitivity. Fourth column: specificity. 
Fifth column: global accuracy.
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Moreover, the single discriminatory ability for each chan-
nel can be observed in Table 1 for theta band. It is important 
to remark that a 10 − k-fold approach is used to perform the 
analysis. Moreover, the analysis is repeated 10 times, so that the 
final sensitivity, specificity, and global accuracy correspond to 
the averaged value of these iterations. The O2 channel reports 
the highest discriminatory power in theta band, achieving a cor-
rectness of 67.80%. On the contrary, the FC6 channel achieves 
a lowest global accuracy of 59.70%. Regarding the frontal area, 
all EEG channels obtained a poor performance in the classifica-
tion. Thus, F7 reports no statistical significance. Similarly, AF3, 
AF4, and F8 achieve global accuracies that range from 59.70 to 
62.30%. Finally, the central channel FC5 and parietal channels 
P7 and P8 achieve a notable performance with global precisions 
of 65.50, 64.70, and 66.70%, respectively. With respect to the 
alpha band (see Table 2), P8 achieves the highest performance 
in the classification with a 69.40% of correctness. On the con-
trary, and similar to the previous case, FC6 reports the lowest 
global accuracy with 59.30%. The rest of the channels achieve 
comparable performances, ranging from 62.50 to 67.30% of 
correctness.

In order to provide a spatial view of brain activation, Figure 4 
provides EEG maps containing the average of SP calculated 
for each channel and for the two groups. More concretely, in 
Figure 4A, the theta power average (in ×107) for each EEG chan-
nel is shown. As it can be appreciated, an increase of the SP is 
observed in certain areas of the EEG for the Mozart sonata. On 
the contrary, a generalized decrease of power is observed when 
people listen to the Hook sonata. Frontal, right parietal, and 
right occipital areas are the most active zones. Indeed, F3, F4, 
P8, O2, and T7 show the highest increase in power. These results 
are in concordance with the outcomes obtained throughout the 
one-way ANOVA test. On the other hand, Figure 4B represents 
the averaged alpha power computed for each EEG. In a similar 
manner to the previous case, an increase of the SP is observed in 
group II, especially in the frontal, right parietal, and right occipi-
tal channels. On the contrary, a generalized decrease of the SP can 

be appreciated in group I. These results are in agreement with the 
reported statistical significance, as all central and parietal chan-
nels report a comparable discriminatory power. Nevertheless, it 
is important to highlight that P8 and O2 obtain the highest power 
increase in the alpha power.

In order to study the possible relationships among EEG chan-
nels and bands, a tree-based model classifier is used. Nevertheless, 
given the high amount of available information, the features are 
reduced using PCA, according to the methodology described 
in Section 2.3.3. In this regard, components are included in 
the analysis until the sum of the variances reaches 95%. More 
concretely, 10 out of 21 components are chosen. It is worth not-
ing that only relevant EEG channels from theta and alpha bands 
are included in the PCA analysis (see Tables 1 and 2). Finally, 
the components are used to feed the tree classifier. The global 
accuracy obtained with this methodology reaches 85.5% correct-
ness. This involves an increase in the global performance of more 
than 15% regarding the best single parameter achieved by P8 in 
the theta band. In Figure 5, more detailed information about the 
sensitivity and specificity obtained with this model is offered by 
means of a confusion matrix. It is important to remark the ability 
of the algorithm in classifying correctly the Hook sonata, with 
91% of probability, against the sensitivity reported by F8 in the 
ROC analysis.

4. DiscUssiOn

The results observed in our experimentation show statistical 
differences between the musical pieces (bipartite vs. rondo) for 
theta and alpha bands. These studies are dedicated to provide 
information on the neural correlates of phrase rhythm through 
observing brain activity by EEG signals. The results offer a view 
on the changes that occur in the emotional state of a music listener 
when listening to two different sonatas. These results are in line 
with other recent works that are described next.

In a study with three excerpts of instrumental classical and 
rock music (Schmidt and Hanslmayr, 2009), the authors show 
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FigUre 4 | comparison of average sP for each eeg channel and for the two groups (group i: hook sonata, group ii: Mozart sonata). (a) In the theta 
band. (B) In the alpha band.

FigUre 5 | confusion matrix.
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that resting EEG alpha activity over frontal electrode sites predicts 
evaluations of affective musical stimuli. Left-active individuals 
with relatively greater alpha power over right frontal electrode 
sites rated all stimuli as more positive than right-active individu-
als. These results indicate that frontal alpha-asymmetry reflects 

interindividual differences in affective response tendencies to 
emotional musical stimuli. Also, a very recent study with two 
ragas (Hindustani music) chosen for analysis were “Chayanat”  
(romantic/joy) and “Darbari Kannada” (pathos/sorrow) (Banerjee 
et  al., 2016). EEG signals were acquired at the frontal (F3/F4) 
lobes of the brain while listening to music at three experimental 
conditions (rest, with music, and without music). The finding 
shows that arousal-based activities were enhanced while listening 
to Hindustani music of contrasting emotions (romantic/sorrow) 
for all the subjects in case of alpha frequency band. In the same 
line, three music clips, taken from Mozart’s sonata (MS)-K. 448, 
Brahms’ Hungarian dance no. 5 (BHD), and a simplified version 
of the theme taken from Haydn’s symphony no. 94 played by a 
computer synthesizer (HS), of 6-s duration, which were repeated 
in random succession 30 times each, were analyzed, and the 
conclusion was that the power spectra revealed a significant dif-
ference only in the lower −1 alpha band (7.17–9.16 Hz) (Jausovec 
and Habe, 2003). Again, the alpha band reveals to be discriminant 
in all these studies, as in our experiment.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


8

Martínez-Rodrigo et al. EEG Study of Phrase Rhythm

Frontiers in Neuroinformatics | www.frontiersin.org April 2017 | Volume 11 | Article 29

It is worth noting that our experiment reveals that the left 
frontal and left temporal channels show important differences 
between the groups under study. These results are in agreement 
with the existing literature, regarding the induction of emotions 
through music. Furthermore, the activation of the right occipital 
area is remarkable, more specifically in the alpha band.

To conclude, this paper has introduced our experimentation 
toward understanding the neural correlates of phrase rhythm. 
Our interest in this kind of approaches dedicated to music-
evoked emotions is related to a research that aims to find solu-
tions capable of improving the quality of life and care of aging 
adults who can or want to keep living at home. We are convinced 
that certain musical parameters related to rhythm are useful to 
guide the aging adult’s emotional state to a pleasant mood. In 
this experiment, phrase rhythm is studied through forcing brain 
activation. By means of a BCI used as a simple EEG, the neural 
correlates have been studied in the frequency domain. The power 
spectral value of each EEG channel has been estimated to obtain 
how power variance distributes as a function of frequency.

The musical experiment has offered the listener two sonatina 
movements. The first of them is the first movement of the sonatina 
in bipartite sonata form named “Sonatina for clarinet and piano in 
Bb Major” by Mozart. The second one is the first movement of the 
“Sonata No. 1 for trumpet and piano in Eb Major” in rondo form, 
by Hook. Both sonatas provide sufficient differences in phrase 
rhythm to be studied in relation the activity in certain brain 
areas. More concretely, we have studied the electrophysiologi-
cal response to the principle of repetition and contrast marked 

by both musical forms. The results of processing the acquired 
signals are in line with previous studies that use different musical 
parameters to induce emotions. Indeed, our experiment shows 
statistical differences in theta and alpha bands between two clas-
sical sonatas with variations in their phrase rhythm. Nonetheless, 
it is our intention to replicate the experiment with a 64-channel 
EEG in a future work. This new experiment will be able to validate 
the results gotten in this work, as well as to assess the precision of 
a BCI used as an EEG in the frequency domain.
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