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APC = activated protein C; EPCR = endothelial protein C receptor; IL = interleukin; PAI-1 = plasminogen activator inhibitor-1; PAR = protease-
activated receptor; PROWESS study = Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis Study; S-1-P = sphingo-
sine-1-phosphate; S1P1 = sphingosine-1-phosphate receptor (Edg-1); TAFI = thrombin activatable fibrinolysis inhibitor; TNF-α = tumor necrosis
factor-alpha.
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Abstract
It has been hypothesized that the protein C pathway is a pivotal link
between the inflammation and coagulation cascades. The
demonstration that a survival benefit is associated with
administration of drotrecogin alfa (activated) (recombinant human
activated protein C [APC]) in severe sepsis patients has provided
new insights into the protein C pathway. APC was originally
identified based on its antithrombotic properties, which result from
the inhibition of activated Factors V and VIII. In the early 1990s, any
potential anti-inflammatory properties of APC were thought to
relate primarily to its inhibition of thrombin generation. However,
the mid-1990s saw the identification of the endothelial protein C
receptor (EPCR), which has subsequently been shown to be
neither endothelial specific nor protein C specific, but has a
primary function as a cofactor for enhancing the generation of APC
or behaving as an APC receptor. Thus, the potential biologic
activities of APC can be classed into two categories related either
to the limiting of thrombin generation or to cellular effects initiated
by binding to the EPCR. Intracellular signaling initiated by binding
of APC to its receptor appears to be mediated by interaction with
an adjacent protease-activated receptor (PAR), or by indirect
activation of the sphingosine 1-phosphate pathway. Based mostly
on in vitro studies, binding of APC to its receptor on endothelial
cells leads to a decrease in thrombin-induced endothelial
permeability injury, while such binding on blood cells, epithelial
cells, and neurons has been shown to inhibit chemotaxis, be anti-
apoptotic, and be neuroprotective, respectively. In the
Recombinant Human Activated Protein C Worldwide Evaluation in
Severe Sepsis (PROWESS) study, drotrecogin alfa (activated)
was associated with improved cardiovascular function, respiratory
function, and a prevention of hematologic dysfunction. This article
discusses the way in which the interactions of APC may alter the
microcirculation.

Introduction
Activation of the innate immune system is the first phase of
the human response to invading microorganisms [1,2]. In

most instances, this results in a localized inflammatory and
procoagulant response that is beneficial in limiting spread of
the infection, clearing pathogens, and aiding tissue healing
[3,4]. However, in a significant number of sepsis patients,
activation of the immune system is poorly regulated, resulting
in a systemic inflammatory and procoagulant response that is
frequently fatal [5,6]. Severe sepsis and septic shock
represent the more severe complications of an uncontrolled
immune response to infection.

Activated protein C (APC), an endogenous vitamin K
dependent serine protease with multiple biological activities,
is an important modulator of the host systemic response to
severe infection [7]. APC exhibits antithrombotic properties
via inhibition of activated Factors V and VIII [8,9], and pro-
fibrinolytic properties via inhibition of plasminogen activator-
inhibitor 1 [10,11]. Inhibition of thrombin production results in
indirect anti-inflammatory properties [12]. Additionally, APC
may exhibit direct anti-inflammatory and anti-apoptotic [13]
properties via interaction with its receptor (endothelial protein
C receptor [EPCR]) on the endothelium [14], neutrophil [15],
monocytes [15], eosinophil [16], and airway epithelial cells
[17]. Profound species specificity has been widely shown for
the anticoagulant/antithrombotic activity of APC [18-22].
Little is known about the species specificity of its nonanti-
coagulant activities. Many published in vitro and in vivo
pharmacology studies exploring its nonanticoagulant activities
have been conducted using concentrations of APC much
higher than median steady-state plasma levels (45 ng/ml or
0.8 nM in patients with severe sepsis) [23] in humans given
96 hours drotrecogin alfa (activated) (recombinant human
APC) therapy at 24 µg/kg per hour (Table 1), the dose for the
treatment of severe sepsis at high risk of death. Since 2003,
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more in vitro and in vivo studies have been conducted with
APC concentrations or infusion rates that approximate those
achieved or given in patients with severe sepsis. These
studies suggest that some of the nonanticoagulant activities
of APC may be less species-specific than the anticoagulant
activity. These nonanticoagulant activities include reducing
leukocyte interactions with activated endothelium, and
reducing chemotaxis of leukocytes in response to
chemokines [15,16,24].

This review summarizes the most recent insights into the
protein C pathway, emphasizing results from clinical studies
as well as potentially more clinically relevant preclinical
studies (i.e. those that have incorporated concentrations or
dosing regimens of APC that are approximately equal to the
therapeutic dose of APC approved for the treatment of
severe sepsis).

Major components of the protein C pathway
in severe sepsis
Protein C and APC
Protein C is converted to APC when thrombin complexes
with thrombomodulin, an endothelial surface glycoprotein
[25]. The activation of protein C is facilitated by the EPCR,
which appears to be primarily located on major blood vessels
[12,14]. In healthy individuals, circulating levels of protein C
and APC are 3,000–7,000 ng/ml and 1–3 ng/ml, respectively.
Under normal conditions, circulating levels of APC are
dependent on the concentrations of protein C and thrombin
[26]. Infusing low concentrations of thrombin in healthy
baboons results in concentrations of APC exceeding
200 ng/ml [27]. Activation of the protein C pathway in
patients undergoing thrombolysis for acute myocardial
infarction results, on average, in APC concentrations of
69 ng/ml, possibly related to the release of thrombin from
lysing thrombus [28]. Consequently, in the setting of a normal
endothelium, activation of the protein C pathway would be
expected to result in an increase in circulating levels of APC.
In severe sepsis, however, the host response leads to a
generalized systemic dysfunction of the endothelium [4].

In studies of drotrecogin alfa (activated) in adult patients
with severe sepsis, endogenous protein C and APC
concentrations were measured in placebo-treated patients
at variable time points during the first 4 days of study
participation. In a Phase II study, 80% of placebo-treated
patients had no detectable levels of APC (lower limit of
detection = 5 ng/ml) [29,30]. The remaining patients had
transiently detectable levels that displayed no discernible
pattern, and no patient had a level exceeding 20 ng/ml. In a
Phase III study, only 11 of 333 placebo-treated patients had
measurable levels of APC (lower limit of detection = 10 ng/ml)
[23]. In these 11 patients, only 13 of the 36 total samples
collected had measurable concentrations of APC, and only
two samples contained concentrations exceeding 20 ng/ml.
Data from studies with a small number of severe sepsis
patients confirm that levels of endogenous APC are much
lower than the therapeutic levels (45 ng/ml) achieved with
drotrecogin alfa (activated) treatment, and are not sustained
[31,32].

Acquired protein C deficiency in sepsis in humans and
in animal models
In both Phase II and III studies with drotrecogin alfa
(activated), over 85% of patients presented with protein C
levels below the lower limit of normal, consistent with
previous reports demonstrating protein C deficiency in severe
sepsis [33,34]. Potential explanations for this acquired
protein C deficiency include degradation by neutrophil
elastases [35], conversion to APC, decreased synthesis by
the liver [36,37], and increased trapping by the soluble form
of EPCR in sepsis patients [38,39]. Neutrophils are key to
sepsis-induced inflammation, and it has been demonstrated
that mediators released from neutrophils, such as elastase,
can significantly degrade protein C stores [36]. Since protein
C is synthesized almost exclusively by the liver, it is difficult to
examine this parameter in patients with severe sepsis, but
animal models of sepsis can offer unique insights. Heuer and
colleagues demonstrated that protein C mRNA levels in the
liver are significantly reduced 20 hours after cecal ligation
and puncture in the rat [37]. The effect on protein C mRNA
levels in this model of sepsis appears to be selectively
reduced compared with other proteins produced by the liver,
such as antithrombin [40].

Thrombomodulin and EPCR
In severe sepsis, the host response also leads to a general-
ized systemic dysfunction of the endothelium [4,41].
Thrombomodulin is required for activation of protein C, and
in vitro studies have shown that endotoxin and inflammatory
cytokines can downregulate endothelial-surface thrombo-
modulin [42,43]. Thrombomodulin can also be cleaved by
neutrophil elastases and released into the systemic
circulation. In a study of pediatric patients with severe sepsis
from meningococcal infection, thrombomodulin and EPCR
were reduced in skin biopsy specimens, which can
contribute to low levels of APC [44].

Table 1

Concentrations of protein C, APC, or rhAPC in humans

Concentrations (ng/ml)

Normal endogenous protein C levels 4,000

Normal endogenous APC levels 1

rhAPC in PROWESS patients 45
(median steady-state levels)

Levels of APC/rhAPC used in many 1,000–20,000
non-clinical in vitro/in vivo studies

APC, activated protein C; PROWESS, Recombinant Human Activated
Protein C Worldwide Evaluation in Severe Sepsis; rhAPC,
recombinant human activated protein C (drotrecogin alfa [activated]).
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EPCR, a type I transmembrane protein with homology to
CD1d/major histocompatibility complex class I proteins [45]
involved in antigen presentation, facilitates the conversion of
protein C to APC. A recent in vivo study reported that EPCR
mRNA expression was upregulated in the liver, kidney, and
lung 24 hours after cecal ligation and puncture in protein C
heterozygous mice [40]. Gu and colleagues demonstrated
that intravenous injection of lipopolysaccharide increased
EPCR mRNA levels in the lung and heart, and increased (by
approximately fourfold at 6 hours, the peak of expression) the
soluble EPCR serum level in rodents. However, the cell-
surface EPCR levels in the lung and heart changed little in
response to endotoxin challenge, suggesting that the
increase of mRNA may compensate for the increased
shedding of the receptor from the endothelium [46].

In severe sepsis patients, deficiencies in the protein C
pathway can contribute significantly to the decrease in APC
generation. In summary, low concentrations of circulating
APC can be explained by low protein C concentrations,
downregulation or shedding of thrombomodulin and EPCR,
and/or APC trapping by soluble EPCR. The low levels of
protein C and APC provide a scientific rationale for giving
exogenous APC to patients with sepsis-induced coagulo-
pathy and inflammation.

Targeting the host response to infection
The generally accepted concept that limiting or suppressing
the host response to infection would be beneficial in
mitigating organ dysfunction in severe sepsis has been the
focus of sepsis research for more than 20 years. Most of the
early focus was on blocking the excessive inflammatory
response, but most recent studies have begun to investigate
targeting of the coagulation cascade. As the anticoagulant
activity of the APC pathway displays species specificity
[18-22], there were few preclinical studies investigating the
efficacy of APC for severe sepsis prior to the approval of
drotrecogin alfa (activated). Taylor and colleagues demon-
strated that infusion of high-dose, plasma-derived human
APC in baboons in a bacteremic model prevented the
coagulopathic, hepatotoxic, and lethal effects of an otherwise
lethal dose of Escherichia coli [47]. More interestingly,
blocking endogenous activation of protein C in the same
model using an antibody to protein C resulted in a more
severe response to a lethal dose of E. coli, and a sublethal
dose was made lethal. The blockade of EPCR during infusion
of 10% of a lethal dose of E. coli in baboons greatly
increased interleukin (IL)-8 concentrations and leukocyte
infiltration into the tissues [48]. The disruption of the binding
of APC to its receptor may suggest a role for EPCR in the
regulation of leukocyte trafficking in the host response to
bacterial infection. In EPCR transgenic mice, EPCR was
overexpressed in both large vessels and capillaries, resulting
in a survival advantage to endotoxin challenge [49]. This
study reported higher levels of endogenous APC in these
transgenic EPCR mice on endotoxin challenge compared

with wild-type mice. These recent data suggest that EPCR
may be a key modulator of both endogenous anticoagulation
and the interaction between leukocytes and the endothelium
in health and in disease (Fig. 1).

Taken together, these data are consistent with the hypothesis
that, in patients with severe sepsis, acquired protein C
deficiency and diffuse endothelial injury may result in the
inability to convert protein C to APC. Consequently, providing
APC, rather than protein C concentrate, ensures
administration of a biologically active therapeutic capable of
providing a survival benefit.

The multipotent protein C pathway
The first known activity of the protein C pathway was
anticoagulation, with this property of APC first reported by
Seegers and colleagues in 1960 [50]. Similar to thrombin,
APC is a serine protease and appears to have multiple
biological activities, both alone and via EPCR. The species
specificity of the anticoagulant activity of the protein C
pathway influenced experiments exploring other nonanti-
coagulant activities of this pathway during the 1980s and
1990s. In examining the anticoagulant/antithrombotic activity
of human APC in nonprimates, much higher doses of human
APC were used to overcome the cross-species barrier effect.
For example, the dose of human APC that produced an
antithrombotic effect in a guinea pig was about 2 mg/kg per
hour compared with a dose of about 0.015 mg/kg per hour in
rhesus monkey [51,52]. Given the antithrombotic effects of
APC, it also serves as an indirect inhibitor of the inflammatory
activities of thrombin. There has been a growing interest in
the potential direct anti-inflammatory activities of APC [53-
57]. Preclinical experiments done in the 1980s and 1990s
almost inevitably used supratherapeutic exposure of APC. As
such, some of the reported activities of APC from these
studies may not be clinically relevant, and recent data also
suggest that APC at high concentrations appears to have
opposing effects to lower concentrations [58-60].

The anticoagulant/antithrombotic activity of APC
The antithrombotic activity of APC has been well established
in various thrombotic models and in multiple animal species
[9,52,61-65]. The antithrombotic activity of drotrecogin alfa
(activated) was demonstrated in patients with severe sepsis
by the reduction in levels of D-dimers and markers of
thrombin generation (F1.2, thrombin–antithrombin complex)
compared with placebo-treated patients [66]. Surprisingly,
unlike several other anticoagulants [67-72], drotrecogin alfa
(activated) does not significantly reduce markers of thrombin
generation in a human model of low-dose endotoxemia
[73,74]. The unexpected differences in pharmacodynamic
effects of drotrecogin alfa (activated) observed between
patients with severe sepsis and the human endotoxemia
model will be important in future studies and should prompt
caution in extrapolating data from human endotoxemia
models to actual patients with severe sepsis.
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The profibrinolytic activity of APC
Preclinical studies suggest that APC may enhance the
endogenous fibrinolytic pathway by inhibiting tissue
plasminogen activator with plasminogen activator inhibitor-1
(PAI-1), and by limiting the activation of thrombin-activatable
fibrinolysis inhibitor (TAFI) by thrombin [75,76]. However, the
PAI-1 concentration in plasma is several orders of magnitude
lower than the other four known plasma serine protease
inhibitors (α1-antitrypsin, α2-macroglobulin, α2-antiplasmin,
and protein C inhibitor) for APC. Thus, in the actual milieu of
the circulation, the effect of APC on PAI-1 may be minimal.
This may explain why, in patients with severe sepsis,
drotrecogin alfa (activated) treatment does not significantly
lower PAI-1 levels compared with placebo patients [66].
Even in human endotoxin models studied with drotrecogin
alfa (activated), there was no significant decrease in the
levels of plasma PAI-1 compared with placebo [73,74]. In a
human model of local inflammation with pulmonary low-dose
endotoxin [77], drotrecogin alfa (activated) given systemically
blunted the rise in PAI-1 levels in the bronchoalveolar lavage
fluid as compared with the placebo group, but did not appear
to influence the endogenous fibrinolytic potential [78].

TAFI is now known to be an acute phase reactant [66,79]
and, thus, would not be an appropriate biomarker to study the

profibrinolytic activity of the protein C pathway in sepsis. In
summary, the profibrinolytic properties of drotrecogin alfa
(activated) may be a minor mechanism of action.

The anti-inflammatory activity of APC
There have been many preclinical in vitro and in vivo studies,
almost all using suprapharmacological concentrations of
APC, suggesting that APC has direct anti-inflammatory
activity by downregulating the expression of inflammatory
cytokines such as IL-1 and tumor necrosis factor-alpha
(TNF-α) [80-84]. However, to date, no such effects have
been observed in any clinical studies of drotrecogin alfa
(activated). A study of patients with severe sepsis showed
that there were no significant differences between
drotrecogin alfa (activated) and placebo groups in the levels
of TNF-α, IL-1β, IL-8, and IL-10, but that there was a faster
reduction in IL-6 levels in the drotrecogin alfa (activated)
group [66]. Two independent, placebo-controlled, blinded
studies [73,74] were conducted with drotrecogin alfa
(activated) in a human endotoxemia model. In both studies,
compared with placebo, drotrecogin alfa (activated) did not
significantly decrease levels of multiple cytokines (TNF-α,
IL-1β, IL-6, IL-8, and IL-10) and leukocyte cell-surface
adhesion molecules. In addition, in a placebo-controlled
human pulmonary endotoxin model [77], drotrecogin alfa
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Figure 1

The protein C pathway: modulation of thrombin generation and cell signaling. APC, activated protein C; EPCR, endothelial protein C receptor; PAI-
1, plasminogen activator inhibitor 1; PAR, protease-activated receptor; Rac, ras-related protein; Rho, ras-homolog; S-1 P-1; sphingosine 1
phosphate 1-receptor.
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(activated) was given intravenously at 24 µg/kg per hour for
16 hours, starting 2 hours prior to the endotoxin challenge.
Drotrecogin alfa (activated) treatment did not have a
significant effect on the levels of inflammatory cytokines (TNF-
α, IL-1β, IL-6, IL-8, 1L-10, and monocyte chemoattractant
protein-1) in the bronchoalveolar lavage fluid compared with
placebo.

The effect of APC on leukocyte–endothelial cell
interactions
More recently, preclinical studies have explored the
nonanticoagulant activities of APC using therapeutic levels of
APC. These recent studies suggest that the anti-inflammatory
properties of the protein C pathway may not involve lowering
inflammatory cytokine levels, but rather may involve lowering
the chemotactic response of leukocytes and modulating the
interaction of leukocytes with the activated endothelium.
Intriguingly, the effect of APC on leukocytes appears to be
limited to chemotaxis, as other leukocyte functions, such as
phagocytic and oxidative burst, are unaffected [15,16,85].

Using intravital microscopy of the dorsal skin fold of a
hamster endotoxemia model, Hoffmann and colleagues [24]
demonstrated that intravenous administration of human
plasma-derived APC at 24 µg/kg per hour significantly
reduced endotoxin-induced leukocyte rolling and adhesion in
both arterioles and venules. At this infusion rate, there is
minimal anticoagulant activity of human APC in the hamster
due to species specificity [52]. The study by Hoffmann and
colleagues [24] strongly suggests that these anti-inflam-
matory properties of APC are independent of its anti-
coagulant activity. In vitro studies [15,16] using therapeutic
concentrations of both plasma-derived human APC and
drotrecogin alfa (activated) suggest that the effects observed
by Hoffmann and colleagues may occur via the lowering of
the chemotactic response of leukocytes to chemokines. The
effect of APC on leukocyte chemotaxis is mediated by EPCR,
which is present both on endothelial cells and on neutrophils.
This may explain the significant decrease of leukocytes in the
bronchoalveolar lavage fluid observed in a human pulmonary
endotoxin model [77] for individuals treated with drotrecogin
alfa (activated) compared with placebo.

Transendothelial migration of leukocytes from the circulation
also involves concerted endothelial cell–cell and cell–matrix
interactions [86]. Several in vitro studies have examined the
effects of drotrecogin alfa (activated) or plasma-derived
human APC on the barrier function of primary human
endothelial cells [59,60,87]. These studies, each using
primary human endothelial cells derived from different
vascular beds, showed that APC was able to protect the
endothelial barrier from thrombin-induced disruption.
Thrombin-induced transient endothelial barrier disruption
(maximum around 30 min and recovered by 2–3 hours)
occurs by activating protease-activated receptor (PAR)-1,
one of four PARs on the endothelium [88,89]. The data from

these studies suggest that the protective effects of APC
involve interaction with EPCR and PAR-1. These studies also
suggest that the mechanism of action of APC is linked to the
sphingosine-1-phosphate (S-1-P) pathway and the Rho-
kinase pathway (Fig. 1). In extending these intriguing in vitro
observations to future studies, it is important to note the
significant complexity of these signaling pathways. It is known
that there is a wide variation in the tissue distribution of the
receptors implicated in these in vitro studies of APC. For
example, Edg-1 (also known as S1P1), the receptor for S-1-P,
has been shown to be abundant in the brain and lung, but
virtually absent in the kidney vasculature [90]. One in vitro
study offers an important insight [60] into the opposing effects
of thrombin in endothelial barrier function above and below the
half-maximal thrombin concentration for activating PAR-1
(about 40–50 pM [91]). At thrombin concentrations below
40–50 pM, thrombin strengthens endothelial barrier function,
while at higher concentrations thrombin disrupts the barrier.
Primary human endothelial cells derived from different vascular
beds, however, appear to have different sensitivities to
thrombin-induced barrier disruption. Human endothelial cells
derived from the lung microvascular bed are more resistant to
thrombin-induced barrier disruption than cells derived from the
coronary arterial or umbilical venous bed (Fig. 2). The thrombin
concentration used in this experiment (320 pM) is an estimate
of the levels of thrombin generated in patients with severe
sepsis from the Recombinant Human Activated Protein C
Worldwide Evaluation in Severe Sepsis (PROWESS) study
(Table 2) [33]. We speculate from these recent studies that
the multiple biological activities of APC may differ from tissue
to tissue, governed by the tissue distribution of the various
receptors, intracellular signaling pathways, and sensitivity of
the cells to various inflammatory stimuli.

Conclusion
More than four decades since the discovery of the
anticoagulant activity of APC, we are continuing to learn
about the diverse biological activities of this molecule.
Drotrecogin alfa (activated) treatment has been shown to
reduce mortality in patients with severe sepsis and has been
approved for the treatment of severe sepsis patients at
significant risk of death in more than 50 countries. An
improvement in respiratory function and more rapid resolution
of cardiovascular dysfunction were demonstrated in the
pivotal Phase III PROWESS study. The exact mechanisms by
which drotrecogin alfa (activated) exerts its beneficial effects
on organ function and survival are yet to be fully understood.
However, it is likely that the multiple biologic activities of this
agent were critical to its success in PROWESS. Most of
these activities appear to involve the modulation of
endothelial function, modulation of leukocyte activity, and
improvement in microvascular perfusion in severe sepsis, thus
improving organ function. New and current noninvasive
technologies may allow researchers to study the effect of
drotrecogin alfa (activated) treatment in the microvascular
beds of patients with severe sepsis. Further insights into the
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potential mechanisms of action of drotrecogin alfa (activated)
will require the translation of preclinical study results to
clinical research, and finally to the bedside.
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Figure 2

Effect of thrombin on monolayer and cytoskeletal rearrangement of human primary endothelial cells derived from three different vascular beds. At
early passages, cultured cells were plated in 8-well fibronectin-coated CultureSlides (Becton Dickinson, Bedford, MA, USA), 35,000 cells/well.
After 24–48 hours, confluent monolayer cells were stimulated with 320 pM human thrombin (Sigma, St Louis, MO, USA) for 30 min at 37°C. Cells
were fixed with 4% formaldehyde and stained for f-actin using Fluorescein isothiocyanate-conjugated phalloidin (Sigma, catalog number P5282).
HCAEC, human coronary arterial endothelial cells; HMVEC-L, human lung microvascular endothelial cells; HUVEC, human umbilical venous
endothelial cells. All cells were obtained from Cambrex (Walkersville, MD, USA). All images are shown at ×40 magnification.

HMVEC-L HUVEC HCAEC

Controls

Thrombin 320 pM

Table 2

Concentrations of thrombin used in experiments

Concentration (nM)

Most historical experiments 20–500

EC50 for PAR-1 activation 0.05

Baseline levels of markers of thrombin ~0.1–1
generation in PROWESS patients (severe sepsis)

More recent studies of APC’s effects on 0.02–1
thrombin/PAR-1/endothelial cells

APC, activated protein C; EC50, Concentration inducing half-maximum
activation of PAR-1; PAR-1, protease-activated receptor 1;
PROWESS, Recombinant Human Activated Protein C Worldwide
Evaluation in Severe Sepsis.
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