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Anthropogenic noise and habitat structure
shaping dominant frequency of bird
sounds along urban gradients

Zezhou Hao,1 Chengyun Zhang,2 Le Li,1 Bingtao Gao,1 Ruichen Wu,1 Nancai Pei,1,* and Yang Liu3,4,*

SUMMARY

The shifts of bird song frequencies in urbanized areas provide a unique system to understand avian acous-
tic responses to urbanization. Using passive acoustic monitoring and automatic bird sound recognition
technology, we explored the frequency variations of six common urban bird species and their associations
with habitat structures. Our results demonstrated that bird song frequencies in urban areas were signif-
icantly higher than those in peri-urban and rural areas. Anthropogenic noise and habitat structure were
identified as crucial factors shaping the acoustic space for birds. We found that noise, urbanization, and
open understory spaces are factors contributing to the increase in the dominant frequency of bird sounds.
However, habitat variables such as vegetation density and tree height can potentially slow down this
upward trend. These findings offer essential insights into the behavioral response of birds in a variety
of urban forest habitats, with implications for urban ecosystem management and habitat restoration.

INTRODUCTION

Bird sounds play a crucial role in courtship rituals, territorial defense, alarm signaling, and other aspects vital for survival and reproduction.1

The structure of bird sounds is shaped by species-specific evolutionary processes and adaptive pressures. They also serve as direct evidence

revealing the impact of urbanization on biodiversity.2 Anthropogenic noise and changes in vegetation structure are two important factors

contributing to the loss of functional bird habitats during urbanization.3 The increasing noise in urban environments due to the proliferation

of human-made facilities (such as transportation and industries) may hinder bird adaptation to urban areas.4 During the process of urbaniza-

tion, urban forests and other green spaces have become new refuges for urban birds, with vegetation serving a crucial role in mitigating

anthropogenic noise and creating quiet spaces.5 Consequently, understanding the interactive effects of anthropogenic noise and habitat

structure on bird sounds is essential for gaining insights into avian adaptability and ecological responses in urban environments.

The characteristics of anthropogenic noise include high amplitude and mostly low-frequency sounds (typically <4 kHz) that overlap with

bird signals, reducing the effective space for communication.6 Noise disrupts the transmission and reception of birdsongs, forcing them to

employ adaptive strategies to sustain effective sound communication. In the face of anthropogenic noise, birds exhibit a range of behavioral

adjustments, including changes in singing frequency and pitch and reduced song complexity and diversity,7,8 as well as alterations in song

amplitude and the duration.9–12 Among the strategies for regulating bird vocalizations, frequency regulation has been the focus of previous

studies. Increasing the minimum or dominant frequency is one of the strategies employed by many oscine birds to cope with noise interfer-

ence.13–15 High-energy noise occupying low-frequency spaces prompts birds to shift their singing frequencies to a higher range to improve

audibility and propagation efficiency.16 Complex spatial structures, such as forest habitats should favor low-frequency signals, as high-fre-

quency signals aremore susceptible to reverberation and echo effects.17Moreover, there are also species-specific responses and adaptations

to urban environments.18 However, in certain species, noise seems to be the primary driving factor underlying frequency shift, as vocalization

frequencies exhibit an increase alongside escalating noise levels across diverse habitats.19 Nevertheless, studies on single species solely

demonstrate a rise in vocalization frequency when exposed to amplified noise levels within less urbanized regions.20 Research involving mul-

tiple species is essential to fully comprehend how anthropogenic noise affects biodiversity, as it unveils trends and effects that may bemissed

in studies focusing on a single species. Moreover, multispecies research helps to clarify the mechanisms by which bird vocalizations react to

noise in urban environment.21

The habitat structure of urban green spaces is a crucial factor influencing bird singing behavior, jointly shaping the acoustic niche of birds in

urban environments. The interior vegetation structure and spatial structure of forests influence attenuation and reflection of sound.22 This has

an impact on the propagation of both noise and birdsongs. Vegetation absorbs, scatters, and reflects noise waves, reducing the intensity and
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propagation distance of noise, thus mitigating noise disturbance to birds to some extent.23,24 Research has confirmed the noise-reducing

effect of plant communities in urban areas. Structural features such as the width, canopy structure, and configuration of plant communities

all influence their noise-reducing capability.25,26 Measurements of traffic noise intensity at different greenbelt widths showed that larger green

spaces had greater noise reduction capacity.27 Furthermore, vegetation structure directly or indirectly affects the propagation conditions of

birdsongs.28 Canopy structure is a key factor influencing birdsongs,29 and variables like canopy height variation,30 leaf height diversity,31 and

vegetation cover32 all show correlations with birdsongs. Habitat vegetation structure constructs the acoustic space for birds, providing them

with relatively quiet surroundings for vocalization transmission and reception. This enables them to communicate effectively, maintain social

connections, and adapt to the complex noise background in urban environments.

This study explores the impact of anthropogenic noise and habitat structure on the dominant frequency of birdsong, which is defined as

the frequency corresponding to the maximum amplitude of bird vocalizations.33,34 Previous studies have shown that increasing the minimum

frequency of vocalizations is a common strategy employed by birds to cope with low-frequency urban noise.20 Some studies have also re-

vealed that raising the dominant frequency is an adaptive strategy employed by certain bird species tomitigate noise interference.35 Because

urban biodiversity conservation is challenged by changes in habitat structure brought about by urbanization and the growing disturbance

caused by anthropogenic noise,36 examining bird song adaptation to urbanization can unravel processes that maintain urban biodiversity.

Therefore, this research focuses on two principal questions, which are as follows. Do the dominant frequencies of bird calls vary across various

urbanized areas? What are the specific habitat variables that influence the dominant frequencies when there are disparities, and what mech-

anisms exert their influence?

In this study, we constructed an automatic bird vocalization recognition model based on convolutional neural networks (CNNs) to analyze

thedominant frequencies of sounds for six common songbird speciesin urban areas of southernChina. Bydeciphering the variationmechanism

of vocalization information for generalist bird species in the context of urban noise and vegetation structure, we aim to reveal how birds adjust

their singing behavior in response to noise interference and the effects of urbanization on ecological community diversity.We hypothesize that

the dominant frequency of bird sounds varies across different urbanized areas, primarily influenced by a combination of anthropogenic factors

(noise andurbanization) and vegetation characteristics (crownbaseheight and vegetation density). This studywill gain a deeper understanding

of the soundadaptationmechanismsofbirdsduring theprocessof urbanizationandexplore the interactionbetweenbirdsongs adaptationand

forest structure, as well as their importance for bird social communication, ecosystem stability, and urban ecological environment.

RESULTS

The energy distribution characteristics of ambient anthropogenic noise

According to the energy distribution of anthropogenic noise in various frequency ranges, the anthropogenic noise surrounding the study area

is primarily concentrated in the 0–1 kHz range (Figure 1). The environmental noise levels in the 0–1 kHz range were calculated at different

urbanization gradient sites. The Dafushan Forest Park (DF) sites close to the city showed the highest average environmental noise level

(mean G standard deviation: 69.7 G 2.23 dB). The Mafengshan Forest Park (MF) sites in the urban periphery had the next highest average

environmental noise level (64.4 G 2.95 dB), while the Shimen National Forest Park (SM) sites in the urban outskirts exhibited the lowest

average environmental noise level (58.6 G 2.54 dB) (F2,244 = 313.49, p < 0.05).

Figure 1. Boxplots showed the value of the noise level in different frequency bands of all three urban gradients in this study

Note: The colors in the boxplots represent frequency ranges from dark gray to light gray, corresponding to frequency intervals such as 0–1 kHz, 1–2 kHz, 2–3 kHz,

3–4 kHz, 4–5 kHz, 5–6 kHz, 6–7 kHz, 7–8 kHz, 8–9 kHz, 9–10 kHz, 10–11 kHz. Data are represented as mean G SEM.
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Dominant frequency differences between sites and species

A two-way ANOVAwas performed to compare the differences in birdsong at both the sites and species levels. For the site factor, the ANOVA

showed a significant effect (F2, 1062 = 117.19, p < 0.05), indicating significant differences in bird vocalizations among different sites. Further

post hoc comparisons revealed that in the urban environment close to the city (DF), the dominant frequency of bird vocalizations was signif-

icantly higher than in the urban periphery (MF) and urban outskirts (SM) sites (p < 0.01 - Figures 2 and 3). For the species factor, the ANOVA

showed a highly significant effect (F5, 1062 = 2220.57, p < 0.05), indicating significant differences among different bird species. Further post

hoc comparisons revealed that, except for red-whiskered bulbul and light-vented bulbul, which showed no significant differences between

sites, the dominant frequency differences among other species were found to be statistically significant. There was a statistically significant

interaction between site and species level on dominant frequency (F10, 1062 = 9.00, p < 0.05). Additionally, multiple comparisons were used

to test the influence of the urbanization gradient on the frequency distribution of bird vocalizations (Table 1). Specifically, in the urban envi-

ronment close to the city (DF), the dominant frequency of bird vocalizations was significantly higher compared to bird vocalizations in areas

further away from the city (MF and SM) (p < 0.05). However, for the chestnut bulbul (Hemixos castanonotus), red-whiskered bulbul (Pycnonotus

jocosus), light-vented bulbul (Pycnonotus sinensis), and scarlet minivet (Pericrocotus speciosus), the differences in dominant frequency

among sites further from the city were relatively small (p > 0.05). Although most comparisons reached statistical significance, it appears

Figure 2. Bird sounds spectrograms and power spectra of dominant frequencies under three urban gradients

(A–C) Example of (A) chestnut bulbul, (B) red-whiskered bulbul, and (C) light-vented bulbul.
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that in urban areas birds tend to sing at higher frequencies, which aligns with a potential influence of ambient noise on bird songs. For the

common tailorbird (Orthotomus sutorius) and yellow-browed warbler (Phylloscopus inornatus), significant differences in dominant frequency

were observed among different sites (p < 0.05). In summary, these results indicate that different bird species exhibit differential sensitivity to

noise, and this variation is influenced by the degree of urbanization.

Dominant frequency responses to noise and habitat structure

The model sets for species with higher inherent dominant frequencies, such as the common tailorbird, yellow-browed warbler, and scarlet

minivet, showed more complex combinations of explanatory variables (Table S1) than those for species with lower inherent frequencies,

like the chestnut bulbul, red-whiskered bulbul, and light-vented bulbul. Furthermore, the goodness-of-fit tests indicated that models for spe-

cies with higher inherent dominant frequencies had better fits (common tailorbird: R2 = 0.28, scarlet minivet: R2 = 0.29, and yellow-browed

warbler: R2 = 0.32), compared to somewhat weaker predictive values for species with lower inherent dominant frequencies (chestnut bulbul:

R2 = 0.18, red-whiskered bulbul: R2 = 0.11, and light-vented bulbul: R2 = 0.19).

Linear mixed model (LMM) analysis of the effects of anthropogenic noise and habitat characteristics on the dominant frequency of bird

vocalizations is summarized in Figure 4. The results revealed significant correlations between dominant frequencies and various

Figure 3. Bird sounds spectrograms and power spectra of dominant frequencies under three urban gradients

(A–C) Example of (A) common tailorbird, (B) scarlet minivet, and (C) yellow-browed warbler.
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environmental variables, especially anthropogenic noise, urbanization (city), crown base height, and vegetation density. The results of the

LMM indicated a predominantly positive influence of urbanization levels and anthropogenic noise on the dominant frequency of bird

sounds, suggesting an increase in the dominant frequency for most bird species concurrent with the rise in anthropogenic noise and urban-

ized area. In terms of habitat vegetation factors, an increase in crown base height similarly led to an elevation in the dominant frequency for

some bird species, whereas an increase in vegetation density and tree height had a negative impact on the dominant frequency of bird

sounds. These outcomes demonstrate varied responses of different bird species to environmental variables. Specifically, anthropogenic

noise exhibited a significant positive effect on five bird species, excluding the light-vented bulbul (p = 0.38). The rise in urbanization level

significantly increased the dominant frequency of sounds for the light-vented bulbul, scarlet minivet, and yellow-browed warbler, while the

impact was not significant for the other three species. Regarding vegetation-related variables, an increase in crown base height positively

correlated with the dominant frequency of sounds in the red-whiskered bulbul, light-vented bulbul, scarlet minivet, and yellow-browed war-

bler (p values all less than 0.05) but had no significant impact on the chestnut bulbul (p = 0.38) and common tailorbird (p = 0.26). An increase

in vegetation density had a significant negative effect on birds with higher dominant frequencies, but not on those with lower frequencies.

An increase in tree height was significantly negatively correlated with the dominant frequency of sounds in the chestnut bulbul (p < 0.01), but

not in other bird species.

DISCUSSION

By analyzing the effects of noise and vegetation structure on the dominant frequency of bird songs, this study aims to elucidate the distinct

impacts of various environmental factors on bird sound frequencies and further deepen our understanding of themechanisms that contribute

to urban biodiversity conservation. Firstly, our research findings show significant variations in the dominant frequency of bird calls across

different urbanized areas. The ANOVA analysis results indicate that, in sites with higher urbanization levels (DF), bird dominant frequencies

were significantly higher compared to urban periphery (MF) and urban outskirts (SM) sites. Based on the results of the LMMmodel, noise and

urbanization are the primary factors contributing to the increase in bird dominant frequencies, consistent with previous research that high-

lights the importance of noise environments and urbanization levels on birdsongs.18,34,37–39 However, it is crucial to note that our results indi-

cate variation in noise sensitivity among different bird species.40 Specifically, chestnut bulbul, red-whiskered bulbul, light-vented bulbul, and

scarlet minivet showed relatively small differences in dominant frequency among sites further from the city, whereas common tailorbird and

yellow-browed warbler exhibited significant discrepancies in their dominant across different sites. These differences may stem from the

ecological characteristics and adaptability of different species, as some birds can adapt to sound propagation under varying noise levels

and vegetation structure conditions, while othersmay bemore sensitive to environmental changes, contributing to the decline of urban biodi-

versity.41 Additionally, based on the results of the LMM analysis, this study also found that vegetation density and tree height have a negative

impact on the dominant frequency of bird, while understory height shows a positive influence. Although our findings indicate that birds tend

Table 1. Statistical results of multiple pairwise comparisons between the species

Species Sites Dominant frequency (Hz) Group 1 Group 2 df F p value

Chestnut bulbul (Hemixos castanonotus) DF 3260 G 278 DF MF 1062 3.38 <0.01

MF 3047 G 243 DF SM 1062 5.18 <0.01

SM 2954 G 288 MF SM 1062 1.80 0.22

Red-whiskered bulbul (Pycnonotus jocosus) DF 2732 G 233 DF MF 1062 2.73 0.02

MF 2570 G 224 DF SM 1062 4.27 <0.01

SM 2553 G 247 MF SM 1062 1.54 0.37

Light-vented bulbul (Pycnonotus sinensis) DF 2640 G 231 DF MF 1062 2.74 0.02

MF 2483 G 129 DF SM 1062 4.07 <0.01

SM 2434 G 152 MF SM 1062 1.32 0.56

Common tailorbird (Orthotomus sutorius) DF 4548 G 600 DF MF 1062 8.11 <0.01

MF 4198 G 779 DF SM 1062 12.57 <0.01

SM 3636 G 203 MF SM 1062 4.46 <0.01

Scarlet minivet (Pericrocotus speciosus) DF 5149 G 196 DF MF 1062 3.88 <0.01

MF 4861 G 118 DF SM 1062 4.38 <0.01

SM 4865 G 203 MF SM 1062 0.50 1.00

Yellow-browed warbler (Phylloscopus

inornatus)

DF 6221 G 362 DF MF 1062 8.68 <0.01

MF 5302 G 602 DF SM 1062 4.32 <0.01

SM 5773 G 480 MF SM 1062 �4.36 <0.01
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to sing at higher dominant frequencies in more urbanized areas, the presence of a more complex vertical vegetation structure in habitats can

potentially slow down this upward trend. The presence of dense vegetation promotes sound isolation, highlighting the important function

that vegetation plays in the acoustic environment of birds.42 Abundant vegetation structure not only provides suitable habitats and foraging

areas but may also offer birds an improved acoustic environment, facilitating the propagation of their sounds and interspecies communica-

tion. Nevertheless, further investigation is required to determine whether birds in denser vegetation do not need to raise their frequencies in

response to anthropogenic noise, or if the influence of vegetation structure causes birds tomake lower-frequency sounds, which is in line with

the acoustic adaptation hypothesis.

The impact of urbanization on bird communities is manifested not only in noise pollution but also in habitat fragmentation and reduced

habitat functionality caused by urban development, directly affecting the foraging behavior of urban birds. Among the six common urban

bird species studied, chestnut bulbul, red-whiskered bulbul, and light-vented bulbul are omnivorous birds with lower vocalization

Figure 4. Effect sizes for explanatory variables are derived from the complete averaged coefficients of the model

The plot displays estimates usingmean values (depicted by blue boxes) and their corresponding 95% confidence intervals (shown as horizontal lines). Completely

blue boxes denote factors that exert a significant impact on the average model, whereas blank boxes indicate insignificance of impact.
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frequencies, while scarlet minivet, yellow-browed warbler, and common tailorbird are insectivorous birds with higher vocalization fre-

quencies (Table 2).43 This provides some clues for analyzing the reasons for the differences in dominant frequency changes and environ-

mental responses among different dietary groups. In our study, we observed a significant decrease in dominant frequency for insectivorous

birds in urban environments. Insectivorous birds are typically particularly sensitive to human disturbances such as habitat loss and fragmen-

tation.44,45 Some studies suggest that the vulnerability of these birds to various direct threats arises from their evolutionary feeding special-

ization and limited dispersal ability.46 Understory insectivores are an important focus of bird diversity conservation and research, as they are

highly responsive to environmental changes caused by human interference and can serve as sentinels for shifts in forest ecosystems.47 The

key findings of our study indicate that, compared to omnivorous birds, insectivorous birds exhibit greater frequency changes in response

to urban noise disturbances. Unlike a previous study which relied on evaluation metrics such as species richness and abundance,48 this

study suggests that monitoring changes in the vocalizations of insectivorous birds may be a potential indicator of their response to envi-

ronmental changes. Future research should be conducted on more representative lineages of insectivorous birds to both verify if frequency

adjustment is a general strategy among this dietary guild and assess whether the adjusted vocal frequency is beneficial for their adaptation

to habitat environments under human disturbance. Such research will contribute to a more comprehensive understanding of bird ecolog-

ical adaptability and behavioral responses, providing more specific guidance and recommendations for the conservation and management

of urban ecosystems.

This study indicates that differences in bird vocalization frequencies may influence their adaptability to environmental changes. Birds

with lower-frequency sounds, which propagate better in complex settings, can communicate effectively in noisy environments but are

vulnerable to low-frequency noise interference.49 In contrast, birds with higher-frequency sounds are less impacted by noise but more

affected by absorption in dense vegetation.24 Bird size correlates with vocalization frequency: larger species emit lower frequencies, while

smaller species have higher frequencies.50 In this study, larger birds like the chestnut bulbul and red-whiskered bulbul exhibited an average

vocal frequency increase by 230 Hz, while smaller birds like the yellow-browed warbler and common tailorbird showed increases up to

548 Hz, in urban environments. Notably, the common tailorbird’s frequency decreased by 912 Hz from less to more urbanized areas, a

more significant change compared to the red-whiskered bulbul’s smallest variation of 179 Hz. This suggests that birds with higher inherent

frequencies adapt their vocalizations more in response to urban noise.51,52 When shifting vocal frequencies, birds balance between mini-

mizing noise interference and adapting to vegetation. Lower frequencies are useful in complex areas but are noise prone, while higher fre-

quencies suit dense vegetation but run with the risk of absorbing energy. This difference reflects the behavioral responses and adaptability

mechanisms of birds in different environments, providing a deeper understanding of their survival and reproductive strategies in complex

ecosystems.

Our research results support the hypothesis that birds adapt to low-frequency noise interference by adjusting their sound frequencies,

among other strategies. Furthermore, we have validated the impact of habitat factors such as spatial configuration and vegetation structure

on the frequency selection of bird sounds, aiding in a better understanding of the complexity and adaptability of avian acoustic ecology. The

consideration of vegetation complexity in urban bird habitat conservation and restoration efforts should be prioritized, based on the findings

of this study. This will contribute to providing birds with suitable vocalization spaces and mitigating the adverse impact of urbanization on

avian biodiversity. This study demonstrates a significant elevation in the dominant frequency of bird calls in urban environments, correlating

with higher crown base height. These findings indicate that vegetation openness in understory spaces intensifies noise disturbance, which in

turn disrupts avian vocal communication.53 Therefore, in designing the external buffer zones of habitats, it is critical to consider mitigating

traffic, industrial, and other anthropogenic noise, for instance, by enhancing the spatial complexity of urban green space vegetation or by

using acoustic isolation structures to produce necessary noise buffers and provide a quiet acoustic environment. Simultaneously, in designing

the core areas of habitats, attention should be paid to creating open and semi-open spaces throughmethods like creating canopy gaps,54 to

improve the efficiency of bird call signal transmission. Protecting urban birds and restoring urban biodiversity will be aided by rethinking ur-

ban bird habitats from an acoustic perspective and offering a variety of acoustic settings.

Previous studies on animal acoustic behavior have primarily relied on linear scales, such as hertz or kilohertz, to measure frequency-related

parameters. However, in this study, a log-transformation approach has been employed for assessing the dominant frequency. This method

aligns more closely with how animals perceive sound frequencies and modulations in vocalization. Linear methods may potentially lead to an

overestimation of variations in high-frequency samples in comparison to low-frequency ones, particularly when making interspecies compar-

isons.55 Therefore, characterizing these distinctions using log-transformed frequencies, rather than linear scales, is more suitable. Employing

Table 2. Bird activity, feeding, and residence characteristics

Order Family Scientific name Common name Activities level Feeding group Residence type

Passeriformes Cisticolidae Orthotomus sutorius common tailorbird ground insectivore resident

Passeriformes Campephagidae Pericrocotus speciosus scarlet minivet canopy insectivore resident

Passeriformes Phylloscopidae Phylloscopus inornatus yellow-browed warbler canopy insectivore winter visitor

Passeriformes Pycnonotidae Pycnonotus jocosus red-whiskered bulbul canopy omnivore resident

Passeriformes Pycnonotidae Hemixos castanonotus chestnut bulbul canopy omnivore resident

Passeriformes Pycnonotidae Pycnonotus sinensis light-vented bulbul medium canopy omnivore resident
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log transformation in sound frequency analysis enhances statistical robustness and deepens our understanding of bird vocalizations,making it

a recommended approach in studies of animal communication and evolutionary behaviors.56

Limitations of the study

There are some limitations to be aware of. Firstly, our research focused on specific geographic regions and a limited number of bird species.

The results may not be applicable to other areas or bird communities with different ecological characteristics. Future studies could cover a

wider range of locations and bird species to enhance the generalizability of the findings. Secondly, the bird sound data in our study were

obtained through passive acoustic monitoring. The distance between the recording devices and singing spot of birds could not be

controlled, which prevented us from investigating the sound intensity of bird sounds. In future, we hope to improve the data collection

methods or sound intensity algorithms to address this limitation. Finally, the composition of environmental sounds is complex, and high-

frequency insect noise (such as cicadas) may also be one of the factors influencing bird vocalizations,57 which deserves further attention

in future research. While our study has made important progress in exploring the factors influencing bird sound in urban environments,

further research is needed to overcome the aforementioned limitations and gain a deeper understanding of the impact of urbanization

on bird vocal behavior.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Requests for further information or materials should be directed to and will be fulfilled by the lead contact, Yang Liu (liuy353@mail.sysu.

edu.cn).

Materials availability

This study did not generate any new unique reagents.

Data and code availability

� The datasets and analyses code from the current study have been deposited in a public repository. https://osf.io/976wn/.
� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The bird song data used in the study were all obtained through passive acoustic monitoring in the wild, therefore this study does not use

experimental models.

METHOD DETAILS

Field recordings

The study was conducted inGuangzhou, which serves as the capital of Guangdong Province. It is one of the four core cities in theGuangdong-

Hong Kong-Macao Greater Bay Area in southern China. The region is characterized by subtropical evergreen broad-leaved forests, with hills

andmountains covered by secondary forests and plantations. Over the past several decades, rapid urban growth has occurred in select areas

within the region. To examine the impact of urbanization on bird sounds, we selected forest parks located in three urbanization gradients as

study areas, namely Shimen Forest Park (suburban), Maofengshan Forest Park (peri-urban) andDafushan Forest Park (urban). And ShimenNa-

tional Forest Park (SM) wasmore than 5 km away from highways and 20 km away from urban area; Mafengshan Forest Park (MF) wasmore than

2 km away from highways and 5 km away from urban area, and Dafushan Forest Park (DF) was less than 1 km from highways and urban area

(Figure S1). In each gradient, we conducted passive acoustic monitoring in three urban forests, totaling nine monitoring points. This study

design enabled us to analyze the bird sounds within different urbanization contexts and assess the impact on various ecological factors

and dynamics. To validate hypotheses, we proposed three selection criteria based on all species observed during the study period: 1) The

selected species’ sounds must be recorded at all nine monitoring points. 2) Each bird species should have a minimum of twenty individuals

recorded. 3) The repertoire of vocalizations should remain consistent across different monitoring points. Based on these criteria, only the

following six species were included in the analysis (Table 2): Common Tailorbird, Scarlet Minivet, Light-vented Bulbul, Red-whiskered Bulbul,

Chestnut Bulbul, and Yellow-browed Warbler. In total, 1080 individuals from these six species were recorded at the nine monitoring points.

We placed a total of nine Song Meter SM4 in different urban forests along an urbanization gradient (Figure S1). Each gradient had three

devices. The recording setup involved capturing ambient sounds for 1 min every 10 min over a one-year period from October 19, 2021, to

October 9, 2022, which resulted in 1,296 daily samples for each device. To ensure comprehensive recordings of bird sounds and anthropo-

genic noise, we used a stereo setup with 16-bit audio and a 32 kHz sampling rate. The recording equipment was mounted on a healthy tree

with a DBH ofR10 cm to avoid ground reverberation. To minimize the impact of insect sounds, such as cicadas, as well as natural geophonic

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data and analysis scripts Open Science Framework osf.io/976wn

Software and algorithms

R 4.2.1 R Project https://www.r-project.org/

Python 3.10.9 Python Software Foundation https://www.python.org

Avisoft SASLab Pro Avisoft Bioacoustic https://www.avisoft.com/

scikit-maad scikit-maad development team https://scikit-maad.github.io/
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sounds like rain and wind, on bird sounds, we specifically chose audio files recorded during the dry season (from October to May of the

following year). The recordings were captured during periods of stable weather conditions and were specifically chosen for the analysis of

bird sounds in this study.

Sound analysis

Anthropogenic noise measurement

The sound pressure level (dB SPL) was utilized to compare the ambient noise level. 1) Sound pressure level measurement: the spl module in

scikit-maad, which is a collection of functions used to quantitatively measure the sound pressure energy of acoustic waves in Python. The

recording samples used for estimating the noise level were manually selected to avoid interference from other non-noise elements. In the

end, the durations of the noise files from DF, MF, and SM were 104 min, 96 min, and 47 min, respectively. Regarding the specific settings

for the acoustic recording unit (SM4) parameters, the microphone sensitivity was set to �35 dBV, the preamp and postamp gains were set

to 26 + 16 dB, and the voltage range of the analog-to-digital converter was set to 2. Furthermore, the sound pressure level was calculated

for eleven frequency ranges: 0–1 kHz, 1–2 kHz, 2–3 kHz, 3–4 kHz, 4–5 kHz, 5–6 kHz, 6–7 kHz, 7–8 kHz, 8–9 kHz, 9–10 kHz, and 10–11 kHz. These

calculations were performed to analyze the distribution of energy in anthropogenic noise.

Bird sounds detection and quantification

A one-step progressive representation transfer learning method for bird sound detection was proposed. This method integrates self-super-

vised representation and supervised classification learning into a two-branch network and uses a time-dependent loss weight transfer strat-

egy to transfer bird sound, and self-supervised representation learning to bird sound classification learning. This model emphasizes self-su-

pervised representation learning during the early stages of training to maximize the similarities among bird sounds across different data

augmentation versions. By utilizing the loss weight transfer strategy, the self-supervised bird sound representation learning transitions to su-

pervised bird sound classification learning, thus enabling themodel to acquire specific bird sound classification capabilities in the later stages

of training. The method achieved a recognition accuracy of 98.2% on a bird vocalization dataset namely ‘Birdsdata’. In contrast, this method

outperformed self-supervised classification learning (SSCL) by 1.3% and supervised classification learning (SCL) by 2.9%.58 In contrast to tradi-

tional bird behavior investigation methods, our approach (Figure S2), which combines passive acoustic monitoring and deep learning, min-

imizes the negative impact of observer activities on bird behavior during the sound collection process. Furthermore, it allows us to gather a

more extensive range of bird vocalization information across various time and spatial scales, which is crucial for revealing the intrinsic con-

nections between bird vocalizations and environmental changes.

Based on the aforementioned bird vocalization recognition model, we retained bird vocalization data with recognition confidence levels

higher than 0.8. As a result, we successfully detected vocalizations from 44 different bird species, with a total duration of 2,665 min. Adhering

to the three principles for selecting bird vocalizations, we ultimately identified vocalizations from 6 Passeriformes bird species as the subjects

of our study. The Avisoft SASLab Pro Version 5.3 (Avisoft Bioacoustic, Berlin, Germany) was used to extract the dominant frequency informa-

tion of bird vocalizations. The spectrogram settings were as follows: FFT length 1024 with 100% frame size and Hamming Window. We em-

ployed the automatic parametermeasurement function tomeasure the dominant frequency parameters. The purpose of utilizing this function

was to ensure consistency andminimize bias in measurements.18,59 In the configuration of the automatic parameter measurements, a specific

threshold (�10 dB) and hold time (25 ms) were applied to the spectrogram to identify the individual elements in the element separation func-

tion. For the analysis, we examined at least one vocalization for each individual included in this study. All vocalizations were measured indi-

vidually and then averaged for each individual. Before taking themeasurements, a cut-off frequency function was applied to the recordings of

avian vocalizations. The determination of the cut-off frequency for each bird sound file was achieved through visual inspection of spectro-

grams, considering the spectral characteristics of vocalizations across different species. This process facilitated the removal of extraneous

frequency ranges, thereby preserving the pertinent vocal components for subsequent analysis. Measurements of dominant frequency of

bird sounds were log10-transformed before statistics analysis.

Habitat structure parameters

Vegetation structure parameters

The terrestrial laser scanner (TLS) has been utilized to characterize the structural diversity of canopies and provide precise estimations of forest

structure indices.60–62 In this study, vegetation structure parameters were measured by a RIEGL VZ-400i terrestrial laser scanner (RIEGL Laser

Measurement Systems GmbH, Austria), which was mounted on a tripod. The VZ-400i operates at a wavelength of 1550 nm and has a laser

pulse repetition rate set to 1200 kHz. It captures four returns per outgoing pulse and can record data up to a range of 250 m. To ensure

comprehensive coverage, we utilized one central scanning position for each plot along with an additional four scanning positions (Step 1

of Figure S3). Each recording plot yielded high-resolution point cloud data spanning an area of up to 1,600 m2. Prior to analysis, the point

cloud data obtained from each scan RiSCANPro software’s automatic registrationmodule (developed by RIEGLHorn, Austria). Subsequently

by Green Valley Company in China) was employed for further pre-processing steps including subsampling (with minimum points spacing set

at 0.001), outlier removal (using neighbor points criteria: number = 10; multiples of standard deviations = 5), and ground point classification.

For accurate segmentation of forest point clouds into individual trees (Step 2 of Figure S3), we manually completed this task utilizing the

TLS seed point editor function within the TLS forest module available in LiDAR 360. And we employed quantitative structuremodels (QSM) to
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accurately measure the individual tree structures, enabling a nondestructive estimation of above-ground biomass that closely aligns with

reference values obtained through destructive sampling.63 The segmentation of individual trees within the nine recording plots was per-

formed using Lidar 360, followed by the calculation of single-number tree attributes from the quantitative structure models using

TreeQSM software in MATLAB.64 Previous findings suggest that individual tree parameters, such as tree height and crown base height,

may be key factors influencing bird diversity65,66 and noise propagation.67,68 Therefore, the aforementioned method primarily focuses on ex-

tracting individual tree height data, including tree height and crown base height. Subsequently, the height data of all individual trees within

each plot are averaged for facilitating comparisons between sample sites.

Vegetation density is a potential factor influencing the propagation characteristics of both bird diversity69,70 and urban noise.26 Therefore,

employing a voxel approach, we constructed a three-dimensional voxel information data frame (xyz) incorporating leaf area density (LAD)

values to characterize the vertical diversity and density of forest structure at different horizontal heights with a resolution of 0.5 m (Step 3

of Figure S3). This voxel-based representation allowed for an intricate depiction of horizontal components within forest layers. Based on

LAD values, Vegetation density at each sample site is determined by calculating the cumulative Leaf Area Density (LAD) across various

heights. Furthermore, point cloud data were pixelized and vegetation structure parameters were computed utilizing the leafR package71

in R language for analysis.

Urban structure parameters

The relative area of built-up (city) areawas assessedwithin a 200-meter radius around the recordingpoints. The previous research results suggest

that within a 200-meter radius in this study area, bird sound exhibit themost pronounced response to changes in land cover.72 Land-use informa-

tionwas acquired utilizing theGoogle Earth Engineplatformand Sentinel-2A L1C level data spanning from January 2021 toApril 2022. Following

cloud removal from the satellite images, the land-cover labeling process was conducted through visual interpretation. Specifically, 128 reference

points were employed for ’city’ to manually assign land-cover types to the corresponding samples. Subsequently, the labeled samples were

divided into training and validation subsets using a 70:30 split ratio, an essential step to prevent overfitting and ensure generalization. The

land classification model was developed using the ’smileRandomForest’ classifier from the Google Earth Engine’s ’ee.Classifier’ library, config-

ured with 5 decision trees. Training of the classifier incorporated the designated class property (’landcover’) and features extracted from the im-

agery within the training partition. Accuracy assessment was conducted, yielding anOverall Accuracy of 0.86 and KAPPA coefficient of 0.82. The

trained classifier was used to classify the selected image. The resulting categorical image denoted land cover classes. To compute class areas,

pixel areas were summed within each class using a grouped reducer, considering a specified geometry at 10-meter intervals.

QUANTIFICATION AND STATISTICAL ANALYSIS

One-way ANOVA was used to assess the differences in anthropogenic noise levels among three urbanization gradients (urban area, peri-ur-

ban area, and suburban area). The normality assumptionwas examined using the Shapiro-Wilk test (p > 0.05). The assumption of homogeneity

of variances was assessed using the Levene’s test, with a significance level of 0.05. To account for the occurrence of heteroscedasticity, the

Welch one-way ANOVA test was employed, followed by pairwise comparisons using the Games-Howell test. Boxplots were created to visu-

alize the distributional differences of noise levels across different frequency ranges. A two-way ANOVAwas performed to compare the prom-

inent frequencies of bird sounds across various levels of urbanization gradients. Normality, homogeneity of variances, and homogeneity of

covariances (p > 0.05) were confirmed prior to the analysis. The dominant frequency was treated as the dependent variable, while sites and

species were considered as independent variables in the two-wayANOVA. The interaction effect andmain effect of each variable were tested.

The statistically significant simplemain effect was followed by conductingmultiple pairwise comparisons between the species groups by site.

To interpret all possible pairwise comparisons, we employed Bonferroni correction and considered statistical significance of the simple main

effect analyses at a Bonferroni-adjusted alpha level of 0.025 (the current significance level of p < 0.05 divided by the calculated number of

simple main effects, which is 2). The statistical analyses were performed using the R packages ‘‘tidyverse’’,73 ‘‘ggpubr’’,74 and ‘‘rstatix’’,75

with a significance level (a) set at 0.05.

To allow hypothesis testing, we analyzed the variant effects of habitat variables on the dominant frequency of bird species using Linear

Mixed Models (LMMs). A normality test on the dependent variable, the dominant frequency of different birds, was conducted to ensure

that the residuals of the model adhered to a normal distribution, validating the assumptions underlying LMMs. In the LMMs, habitat variables

hypothesized to influence the birds’ dominant frequencywere treated as fixed effects. The dominant frequency of different birds was analyzed

as separate response variables, while recording points, potentially introducing variability in frequency measurements, were considered as

random effects. To avoid multicollinearity in model selection, a Pearson correlation matrix was utilized. If a pair of covariates exhibited sig-

nificant correlation (rhoS |0.7|), only the variablemore relevant according to the hypothesis was retained. Consequently, seven variables were

chosen as explanatory variables for subsequent analysis: City, Noise, Density, TreeHeight, CrownBaseHeight. All explanatory variables were

standardized for model parameter estimate comparisons. The effects of these habitat variables on the dominant frequency of different bird

species were assessed individually through a model selection procedure. Models with various combinations of habitat characteristics were

ranked based on the Akaike Information Criterion corrected for small sample sizes (AICc). Model averaging was employed for models

with a DAICc value less than 2.76 Explanatory variables that significantly influenced the dominant frequency in the best-supported models

were identified. The goodness-of-fit for the highest-ranked model was estimated using the fixed effect R2 (marginal R2), to understand the

variance in dominant frequency explained by the fixed effects. Statistical analyses were performed using the ‘‘lme4’’,77 ‘‘MuMIn’’,78 and ‘‘aicc-

modavg’’79 packages in R.

ll
OPEN ACCESS

iScience 27, 109056, February 16, 2024 13

iScience
Article


	ELS_ISCI109056_annotate_v27i2.pdf
	Anthropogenic noise and habitat structure shaping dominant frequency of bird sounds along urban gradients
	Introduction
	Results
	The energy distribution characteristics of ambient anthropogenic noise
	Dominant frequency differences between sites and species
	Dominant frequency responses to noise and habitat structure

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Field recordings
	Sound analysis
	Anthropogenic noise measurement
	Bird sounds detection and quantification

	Habitat structure parameters
	Vegetation structure parameters
	Urban structure parameters


	Quantification and statistical analysis






