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Frequent Gain and Loss of Functional
Transcription Factor Binding Sites
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Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may
result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory
code. The identification of functional divergence in cis-regulatory sequences is therefore important for both
understanding the role of gene regulation in evolution and annotating regulatory elements. We have developed an
evolutionary model to detect the loss of constraint on individual transcription factor binding sites (TFBSs). We find that
a significant fraction of functionally constrained binding sites have been lost in a lineage-specific manner among three
closely related yeast species. Binding site loss has previously been explained by turnover, where the concurrent gain
and loss of a binding site maintains gene regulation. We estimate that nearly half of all loss events cannot be explained
by binding site turnover. Recreating the mutations that led to binding site loss confirms that these sequence changes
affect gene expression in some cases. We also estimate that there is a high rate of binding site gain, as more than half
of experimentally identified S. cerevisiae binding sites are not conserved across species. The frequent gain and loss of
TFBSs implies that cis-regulatory sequences are labile and, in the absence of turnover, may contribute to species-
specific patterns of gene expression.
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Introduction

Changes in gene regulation have been found in a wide
range of species and can have a meaningful impact on cell
and organismal phenotypes [1,2]. A significant fraction of
regulatory variation can be attributed to changes in cis-
regulatory sequences [3-7]. Changes in cis-regulatory sequen-
ces have been tracked to transcription factor binding sites
(TFBSs), insertion of transposable elements, and variation in
tandem repeats, e.g., [8-12]. Although changes in trans-acting
factors are also important, e.g., [13-15], the molecular basis of
changes in gene regulation will often require a dissection of
cis-regulatory sequence evolution.

A major challenge in studying the evolution of cis-
regulatory sequences is translating divergence in cis-regu-
latory sequences to divergence in regulatory function.
Although conservation of sequence is a strong indicator of
conservation of function, cis-regulatory sequences that have
maintained their regulatory function can diverge to the
extent that they are unalignable [16-19]. On a finer scale,
experimentally identified TFBSs are not always conserved
across species [20-22], even in cases when expression is
known to be conserved [23]. The complex relationship
between divergence in sequence and divergence in function
[24] implies that the evolution of cis-regulatory sequences
cannot be understood without investigating the evolution of
individual TFBSs.

The turnover of TFBSs provides a simple explanation for
divergence in cis-regulatory sequences without a change in
regulatory function. Under the binding site turnover model,
the chance gain of a new binding site creates redundancy and
can lead to loss of either the new or original site [21,23,25].
Evolutionary models suggest that many novel binding sites
can be created by a stochastic mutational process and can
potentially lead to the loss of existing sites [22,26-29].
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Empirical evidence suggests that binding site turnover may
be common. For example, the change in the position and
orientation of binding sites within the even-skipped (eve) stripe
2 enhancer produces no change in embryonic patterns of
expression between species, but chimeric enhancers com-
posed from different species result in mis-regulation [23].
Furthermore, many experimentally identified binding sites
have credible counterparts at close but not orthologous
positions in other species [20-22]. Thus, the gain and loss of
TFBSs is directly relevant to understanding conservation and
divergence in cis-regulatory sequences in relation to their
function.

Models of TFBSs must account for sequence variations that
have no affect on function or fitness [30,31]. Sequence
variability within binding sites can arise as a consequence
of a lack of specificity at certain positions or as a consequence
of multiple sequences having the same binding energy. The
specificity or binding probability of transcription factors for
different DNA sequences has been modeled using both
statistical mechanics [30] and information theory [32].
However, the relationship between binding probability and
function or fitness is often not known. The simplest
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assumption is that both function and fitness are linearly

related to the probability of being bound, which is approx-
imately a step function of binding energy [30,33,34].

The distinction between sequences that can function as a
binding site and sequences that cannot is critical to
identifying the gain, loss, or turnover of TFBSs. The use of a
cutoff, even one based on binding probability, is problematic
when trying to classify sequences close to the cutoff [35]. One
solution is to compare the likelihood of evolution under a
model of neutral evolution to a model of a conserved binding
site. Given a collection of known binding sites, the position-
specific equilibrium base frequencies can be used to measure
the strength of selection [36] and calculate the likelihood of
evolution under a binding site model [28,37]. By combining
models of neutral evolution with those for conserved binding
sites, the frequency of conserved binding sites relative to
those that have been gained or lost can be estimated [35].

Because the gain or loss of binding sites in nonfunctional
sequences is common [22,26-29], it is difficult to identify
which gain or loss events are functional and affect fitness
without additional data. One approach is to examine the gain
and loss of experimentally identified binding sites. A previous
study in Drosophila melanogaster found that 5% of Zeste
binding sites, identified by chromatin immunoprecipitation,
have been lost or gained across Drosophila species, based on
deviations from a conserved binding site model [38].
However, nonfunctional sequences may often be bound
without affecting gene expression [39], and changes in gene
expression may not always affect fitness [40,41].

A phylogenetic approach provides a means of identifying
loss of functional binding sites based on significant con-
servation in some species but loss of constraint in others. This
approach was used to identify cis-regulatory sequences
around single-minded 2 (SIM2) that were conserved in some
but not all mammalian species [42]. Here, we have used a
phylogenetic approach to examine the frequency at which
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functional TFBSs have been lost across the genomes of four
Saccharomyces species. These species are sufficiently different
that even the three closest species provide enough signal to
identify individual binding sites by sequence conservation
alone [43]. Using a probabilistic model of TFBS evolution [35]
for 91 different transcription factors [44], we found a
substantial fraction of binding sites are not conserved
between species, and that these sequence changes, at least
in some cases, affect gene expression.

Results

A Model to Identify Semiconserved Transcription Factor
Binding Sites

To identify semiconserved TFBSs, we used a probabilistic
model of sequences evolving under a neutral and conserved
binding site model. We define semiconserved sites as those
that have been constrained along some lineages and uncon-
strained along others (Figure 1). Within this framework,
semiconserved sites can be identified by their patterns of
substitution rather than by their similarity to a binding site or
a position weight matrix (PWM) representation of binding
sites [45]. Additionally, semiconserved sites can be distin-
guished from conserved sites and neutrally evolving sequen-
ces by comparing the likelihood of a neutral model, a
conserved binding site model, and a semiconserved model.

The likelihood of a set of aligned sequences under a neutral
model or a conserved binding site model is a function of the
substitution rate under each model. Under a binding site
model, the substitution rate depends on position-specific
functional constraints imposed by the sequence specificity of
a transcription factor. At equilibrium, the expected fre-
quency of a nucleotide base is a function of the strength of
selection on the base relative to the other bases [36]. Thus, the
equilibrium frequency of bases from a collection of binding
sites can be used to estimate the intensity of selection and the
expected rate of substitution at each position [46]. To
compare the likelihood of evolution under a neutral and
conserved binding site model, we used synonymous sites to
estimate the neutral substitution rate and PWMs to estimate
the equilibrium base frequencies within binding sites and
derive position-specific substitution rates (see Methods).

The likelihood under a semiconserved model depends on
which lineages have evolved under a neutral model and which
have evolved under a binding site model. The semiconserved
model can, in theory, detect both the loss and gain of binding
sites. However, constraint on only a single lineage is typically
indistinguishable from neutral evolution. Thus, we limited
our analysis to loss of constraint on a single lineage and we
did not consider loss events on the outgroup lineage. Since
the lineage and time at which loss of constraint occurred is
unknown, we calculated the likelihood under the semi-
conserved model by integrating over a large number of loss
events evenly distributed over all lineages excluding the
outgroup lineage, an approximation of the method used by
Mustonen and Lassig [35].

The Frequency of Semiconserved Binding Sites in Four
Saccharomyces Genomes

To estimate the frequency of semiconserved relative to
conserved binding sites, we used 91 TFBS models [44] and 1.7
megabases of noncoding sequences from 3,761 multiple
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Figure 1. Evolutionary Models for Transcription Factor Binding Sites

Three different evolutionary models are considered in this study: a
neutral model of evolution, which assumes no functional constraint (A), a
conserved TFBS model, which uses site-specific substitution matrices
representing the varying constraints on each nucleotide position of a
binding site (B), and a semiconserved model, which combines the neutral
and TFBS models to identify sequences showing loss of constraint,
indicated by the asterisk, (C). We also considered the case of loss in
combination with gain, i.e., turnover (D), where the loss of an ancestral
binding site (black oval) is accompanied by the gain of a compensatory
binding site (red oval).

doi:10.1371/journal.pcbi.0030099.g001

sequence alignments of S. cerevisiae, S. paradoxus, S. mikatae, and
S. bayanus [47]. Rather than test every position in the genome
alignments, we calculated the likelihood under each model
for the 2,000 positions with the highest-scoring sequence
match to each binding site model in any two of the four
species (see Methods).

We used expectation maximization to obtain an overall
estimate of the frequency of sites evolving under each model.
We found that 55% of the sites are best explained by the
conserved binding site model, 31% are best explained by the
semiconserved model, and 14% by the neutral model. The
frequency of neutral sites is arbitrary since we did not test all

@ PLoS Computational Biology | www.ploscompbiol.org

Transcription Factor Binding Site Gain and Loss

positions within the alignments. Of the non-neutral sites,
one-third are better explained by a model that allows for loss
of constraint along one lineage. However, this estimate
includes many sites that are reasonably explained by all three
models. Sequences that don’t provide a close fit to the
conserved or semiconserved model may be evolving under a
similar, yet unknown, model and may be incorrectly
annotated as a semiconserved binding site.

Figure 2A shows the posterior probabilities for 2,000
putative Rox1 sites present in the yeast genome alignments.
Because the posterior probabilities sum to one, sites with a
high likelihood under the semiconserved model but not the
neutral or conserved model are shown in the bottom left
corner, and sites with a high likelihood under the conserved
model but not the neutral of the semiconserved model are
shown in the upper left corner. The distribution of
probabilities suggests that quite a few sites are equally well
explained by each model.

To estimate our confidence in identifying individual sites
that have evolved under a conserved or semiconserved model,
and to eliminate sequences that may be evolving under a
similar model, we generated null distributions for each model
using computer simulations. Figure 2B shows the posterior
probabilities for 2,000 sites simulated under a neutral model
and 2,000 sites simulated under a model of a conserved Rox1
binding site. Three cutoffs were used to generate the high-
confidence set of conserved and semiconserved sites (Figure
2B). The first cutoff delineates sites with a low probability
under the neutral model (p(neutral) < 0.005). The second and
third cutoffs delineate sites with a high probability under the
conserved model and the semiconserved model, respectively.
The second cutoff is set such that fewer than 1% of neutral
sites show a higher likelihood under the conserved model.
The third cutoff is set such that fewer than 1% of conserved
sites show a higher likelihood under the semiconserved
model.

Out of 2,000 putative Roxl1 sites, 292 were inconsistent with
a neutral model (cutoff 1, Figure 2A). Of these 292 sites, 242
sites were defined as conserved (cutoff 2) and 11 as
semiconserved (cutoff 3). Out of 2,000 neutral simulations,
two were defined as conserved and three were defined as
semiconserved based on our cutoffs. Out of 2,000 conserved
binding site simulations, 1% passed the semiconserved cutoff,
suggesting that 292%¥1% =~ 3 of the semiconserved sites are
false positives. This data translates into a false discovery rate
of 21242 (1%) for conserved sites and 6/11 (54%) for
semiconserved sites. The false discovery rates indicate that
our cutoffs do not exactly produce a high-confidence set of
semiconserved sites. However, simulations of semiconserved
sites show the power to detect semiconserved Rox1 sites is
only 16.4%, and increasing the stringency would reduce the
power further (Figure 2C).

Using 91 TFBS models [44,48,49], we estimated the fraction
of semiconserved sites for each. In total, we found 19,264 sites
showed evidence of non-neutral evolution (p < 0.005 under
the neutral model). Of these non-neutral sites, we classified
15,399 as conserved (p > 0.99 for the conserved model), and
982 as semiconserved model (p > 0.99 for the semiconserved
model) (Table 1). In total, of the significantly conserved or
semiconserved binding sites, 6.0% have been lost in a lineage
specific manner. Semiconserved binding sites were identified
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Figure 2. |dentifying Conserved and Semiconserved Binding Sites

(A) The distribution of posterior probabilities for 2,000 putative Rox1
binding sites present in yeast intergenic sequences.

(B) The distribution of 2,000 Rox1 sites simulated under a neutral model
(red) or a conserved binding site model (blue) as shown.

(C) The distribution of 2,000 Rox1 sites simulated under a semiconserved
model, where loss of constraint occurred at a random location on the
phylogenetic tree, excluding the outgroup.

The Log, posterior probability of the neutral model is plotted on the x-
axis, the posterior probability of the conserved model is plotted on the y-
axis. Since the three probabilities sum to one, p(semiconserved | data) =
1 — x — y. Conserved and semiconserved sites were classified by three
cutoffs (lines), defined in the text, and determined by the simulations.
Sites passing cutoff one and two are annotated as conserved. Sites
passing cutoff one and three are annotated as semiconserved. The three
sites tested experimentally are shown in pink.
doi:10.1371/journal.pcbi.0030099.9002

for 85 out of 91 binding site models, and more than five loss
events were found for 60 of the 91 models.

To estimate the rate of false positive classification of
conserved and semiconserved sites, we simulated 2,000
neutral and 2,000 conserved binding sites for each model.
Classifying these simulated sequences, we found 224 neutral
sequences passed our cutoffs for a conserved site and 242
neutral sites passed our semiconserved cutoffs. Thus, the rate
of falsely classified conserved sites is just over 1% (224/
15,399). By definition, 1% of the simulated conserved sites
passed the semiconserved cutoff. Thus, the overall false
discovery rate for semiconserved sites is 44% (19,264 * 0.01 +
224)1982.

Characterization of Semiconserved Sites

The classification of sequences into conserved and semi-
conserved sites supposes that all sequences bound by the
same protein evolve under the same functional constraints.
However, for any given transcription factor, there may be
certain sites in the genome that are selected for high binding
energy and other sites that are selected for lower binding
energy [33,35,50]. Selection for low-energy sites may produce
the appearance of semiconserved sites if analyzed using a
model based on high-energy sites.

To investigate whether semiconserved sites may be low-
energy binding sites, we examined the binding energies of
conserved and semiconserved sites. We used the likelihood
ratio score of a sequence under a binding site model
compared with a model of background sequences as a proxy
for binding energy [31]. The distribution of scores shows that
semiconserved binding sites tend to have higher binding

Table 1. Number of Conserved and Semiconserved Binding Sites

Class of Binding Site Number of Sites  Turnover
Tested 182,000

Not neutrally evolving 19,264

Conserved in four species 15,399

Semiconserved 982

Loss in S. cerevisiae 216 107

Loss in S. paradoxus 29 16

Loss in S. mikatae 649 390

Loss in S. cerevisiae/S. paradoxus ancestor 88

doi:10.1371/journal.pcbi.0030099.t001
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Figure 3. Distribution of Binding Site Scores from Neutral, Conserved,
and Semiconserved Sites for 91 Binding Site Models

We use the log-odds score of a sequence given a PWM relative to the
genome-wide nucleotide frequencies as a proxy for binding energy. The
semiconserved category (black bars) only includes sites from species
where functional constraint has been maintained. The loss category
(diagonally striped bars) shows sites from species where functional
constraint has been lost. The neutral category (grey) shows sites
generated by neutral simulations.
doi:10.1371/journal.pcbi.0030099.9003

energy than the completely conserved sites on the lineages in
which they have been conserved. In the lineage showing loss
of constraint, the binding energies are much closer to
background sequences (Figure 3). Additionally, the substitu-
tion rate within semiconserved sites is indistinguishable from
that of conserved sites, excluding those lineages showing loss
of constraint (Table 2). These comparisons suggest that
semiconserved sites cannot be explained by a class of low-
energy sites.

Evolution of Semiconserved Sites

Two models can explain the lineage-specific loss of TFBSs.
First, some species may experience new environments where
certain regulatory elements are not needed, or are selected
against, resulting in a change in gene regulation. Second, the
gain of one or more redundant binding sites within a
promoter enables the loss of a previously constrained site
(Figure 1D). Under the second model, the turnover of
function from one binding site to another conserves the
regulatory control but enables divergence within regulatory
sequences.

The binding site turnover model predicts that binding site
loss will be accompanied by the gain of a site elsewhere in the
promoter. We tested this prediction by looking for the
presence of a species-specific binding site for the same
transcription factor in the promoter showing loss of
constraint. We defined species-specific binding sites as a
sequence that matches a PWM in one species, but whose
orthologous sequences do not match the same weight matrix.
To define a match to a PWM, we used a log-odds score cutoff
from the tenth percentile score of conserved binding sites for
each binding site model. Using this cutoff, 57% (513/894) of
the species-specific loss events can be explained by turnover
(Table 1). In comparison, species-specific sites are present
within 50% of promoters with conserved sites and 47% of
promoters with semiconserved sites, excluding lineages with
loss. Using a more stringent cutoff score derived from
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Table 2. Substitution Rates in Conserved and Semiconserved

Sites

Class of Binding Site Substitution Rate dXx/ds®
Conserved in all species 0.18 0.12
Semiconserved—all branches 0.44 0.30
Semiconserved (constrained portion)® 0.14 0.11
Loss in S. cerevisiae 0.26 1.10
Loss in S. paradoxus 0.13 1.00
Loss in S. mikatae 0.33 1.00

2dX/dS is the ratio of the substitution rate in each class, X, to the synonymous rate
estimated from coding sequence.

PConstrained portion refers to the lineages that remain functionally constrained in a
semiconserved binding site.

doi:10.1371/journal.pcbi.0030099.t002

information theory [45], 38% of the loss events can be
explained by turnover.

Binding site turnover is not due to any one lineage or
binding site model. The rate of turnover is similar across
lineages, with 50% of sites showing turnover in S. cerevisiae,
55% in S. paradoxus, and 60% in S. mikatae. Although the rate
of turnover varies across binding site models, most of this
variation can be explained by the information content of the
models and the size of the promoter sequences within which
semiconserved sequences lie, consistent with previous work
[28].

Natural selection may also result in lineage-specific loss of
TFBSs. If the fitness effects of binding sites differ between
species, bind sites may be lost without consequence or they
may be selected against. However, it is also possible that
semiconserved sites arise from compensatory changes that
are more complicated than those described by a simple
binding site turnover model. For example, binding site
turnover may also occur between sites bound by different
but functionally related transcription factors. Distinguishing
between these two possibilities is not easy.

If some but not all species have undergone a substantial
shift in selective pressures, binding site loss may show high
rates on specific lineages. In contrast, if binding site loss is the
result of turnover, loss should be a simple function of
sequence divergence. The number of loss events on each
lineage is heterogeneous (Table 1). Scaled by the synonymous
substitution rate along each lineage, S. mikatae shows the
greatest amount of loss, 66% of the loss events but only 40%
of the total evolutionary distance, and S. paradoxus shows the
least, 3% of the loss events but 16% of the evolutionary
distance. However, simulations of semiconserved sites with
loss events evenly distributed over the tree shows that the
power of detecting binding site loss is the lowest on the
shortest lineages, since these lineages have the fewest
informative substitutions. One way to control for the
confounding effects of power is to identify binding sites that
show lineage-specific rates of loss that differ from the average
lineage-specific rate across all binding site models.

Using the average rates of lineage-specific loss across all
binding sites as a control (Table 1), we tested 29 binding site
models with at least ten loss events for a heterogeneous
distribution of binding site loss across lineages. We found
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Figure 4. Semiconserved Binding Sites That Were Tested Using Gene
Expression Assays

The sequence logo representing the PWM and the alignment of each
semiconserved binding site are shown for Rox1 (A), Ndt80 (B), and Msn2/
4 (C). The binding site in S. cerevisiae is outlined in grey. The sequence
changes shown in red were made in the S. cerevisiae promoter to test the
predictions of the semiconserved binding site model.
doi:10.1371/journal.pcbi.0030099.9g004

significant heterogeneity in the loss of both Spt23 and Rirl
binding sites (X2 3 df, p=3X 107 for Spt23 and p =4 X
107" for Rlrl). Spt23p stimulates Tyl transposition and is a
suppressor of Tyl-induced promoter mutations [51]. For
Spt23 sites, the largest amount of loss was found on the
lineage leading to S. paradoxus (14 loss events observed, 3.5
expected). Rlrl is involved in transcription associated hyper-
recombination between direct repeats [52]. For RIrl, the
largest amount of loss was found on the lineage leading to the
ancestor of S. cerevisiae and S. paradoxus (38 loss events
observed, 14.6 expected). The lineage-specific rate of loss of
Spt23 and Rlrl sites suggests that the loss of these sites may
not have been a stochastic process.
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Substitutions Resulting in Binding Site Loss Cause
Changes in Gene Expression

In the absence of binding site turnover, the semiconserved
model predicts that the substitutions resulting in binding site
loss should cause changes in gene expression. To experimen-
tally determine whether semiconserved sites are functional
and whether substitutions predicted to cause binding site loss
are functional, we recreated the loss of three Roxl, two
Ndt80, and six Msn2/4 semiconserved binding sites. These
semiconserved sites were picked from 11, 14, and 27
semiconserved binding sites predicted using the Roxl,
Ndt80, and Msn2/4 binding sites models, respectively.

For each semiconserved site, we used a beta-galactosidase
reporter construct to compare the expression of the wild-
type S. cerevisiae promoter with a mutated S. cerevisiae
promoter containing the same substitutions predicted to
cause change of function (Figure 4). Expression was measured
in two strains of S. cerevisiae, one with and one without the
transcription factor predicted to bind the site of interest.

Mutations in five of the 11 semiconserved binding sites
affected levels of gene expression (Table 3). If these changes
in expression are caused by the transcription factor predicted
to bind the site, they should be absent in strains lacking the
transcription factor. Using transcription factor deletion
strains, we found that in only three of the five cases were
these effects dependent on the presence of the transcription
factor predicted to bind the site. Out of three semiconserved
Rox1 binding sites, the site in the SUTI promoter showed a
Rox1-dependent effect on gene expression. The three
substitutions resulted in a 1.6-fold increase in gene expres-
sion, consistent with Rox1 being a transcriptional repressor
in the presence of oxygen [53].

Both of the semiconserved Ndt80 binding sites produced a
significant effect on gene expression (Table 3). However, only
in the HST4 promoter is the effect dependent on Ndt80. The
two substitutions in the HST4 promoter led to a 1.7-fold
decrease in gene expression during sporulation, consistent
with Ndt80's role as activating the middle sporulation genes
[54]. In the NAMS promoter, a single substitution caused a 3-
fold increase in expression during vegetative growth, in-
dependent of Ndt80.

Out of the six semiconserved Msn2/4 binding sites, the
substitutions affected expression in two cases. Yet, of the two
functional sites, only the one in the MDHI promoter affected
expression in an Msn2-Msn4 double mutant (Table 3).
Interestingly, this effect was only present during nitrogen
starvation and not during heat shock.

Limited Conservation of Experimentally Identified
Transcription Factor Binding Sites

At equilibrium, the rate of binding site gain should be
comparable to that of binding site loss. We previously showed
that two Ndt80 binding sites, which show no conservation in
other species, affected gene expression in S. cerevisiae [43].
Although the gain of a binding site that affects gene
expression levels may be inconsequential to fitness, and thus
susceptible to loss, the frequency at which functional binding
sites are gained is relevant to understanding the evolution of
gene regulation.

To estimate the rate of binding site gain across multiple
transcription factors, we obtained a list of documented
binding sites from the Yeastract database [55]. Because this
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Table 3. Substitutions Leading to Binding Site Loss Affect Gene
Expression

Binding Promoter Fold Change Fold Change
Site in $288¢® in TF Deletion
Rox1° GPR1 0.86

Rox1 SUT1 1.64 ** 1.15

Rox1 ECM37 0.95

Ndt80°¢ HST4 0.60 ** 0.90

Ndt80 NAM8 2.78 ** 4.10 **
Msn2/4% YALOOSW 1.19

Msn2/4 YPC1 0.66

Msn2/4 MDH1 0.62 ** 1.10

Msn2/4 GSP2 1.07

Msn2/4 DPB3 1.32

Msn2/4 IML2 0.85 * 1.41 **

A student’s t-test on five replicate experiments was used to assess significance.

The ROX1 sites were measured during mid-log phase growth.

“The NDT80 sites were measured after overnight growth in sporulation media.

%The MSN2/4 sites were measured after heat shock and nitrogen starvation. The maximum
expression change is shown.

* p < 0.05; *, p < 0.01

doi:10.1371/journal.pcbi.0030099.t003

database does not contain exact coordinates for each binding
site, but rather transcription factor-promoter pairings, we
limited our analysis to the 654 binding sites for 61 tran-
scription factors where there was only a single high-scoring
sequence match to the PWM in the promoter of interest. For
each binding site, we tested its conservation across the four
Saccharomyces species. We found that 303 (46.3%) of the
Yeastract sites fit the conserved model, and seven (1.1%) fit
the semiconserved model. Thus, a substantial fraction of
experimentally identified binding sites appear to be species-
specific or only weakly conserved across species, implying
that binding site gain may be common.

Discussion

Transcriptional regulatory sequences are expected to play
an important role in molecular evolution. However, distin-
guishing functional from nonfunctional divergence within
regulatory sequences continues to be a challenge. In this
work, we have used a phylogenetic model to identify loss of
constraint on individual TFBSs. Applying this model to four
closely related Saccharomyces species, we found a substantial
number of binding sites that show lineage-specific loss. In
three out of 11 semiconserved sites tested, substitutions
predicted to result in binding site loss affected gene
expression levels in S. cerevisiae. Although a number of
improvements can be made to models of TFBS evolution,
there is considerable evidence for a continuous fine-scale
rewiring of the transcriptional regulatory network at the level
of individual promoters.

The Rate of Binding Site Gain and Loss

The frequency of experimentally identified binding sites
that are not conserved across species suggests a high rate of
binding site gain. We found that more than half of the
binding sites extracted from the Yeastract database [55] are
not conserved. This is consistent with studies in other
organisms. Between 30% and 50% of experimentally identi-
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fied binding sites lie outside of conserved blocks in Drosophila
[20], 40% of human and mouse TFBSs are species-specific
[22], 5% of Zeste binding sites are not conserved among
closely related Drosophila species [38], and 5% of CRP binding
sites show presence and absence at orthologous positions in
two bacterial genomes [35]. However, the biological relevance
of these unconserved sites is not always known. Sites that are
bound and affect gene expression may in some cases be lost
without any fitness or downstream phenotypic consequences,
except for a change in gene expression. In comparison, a
binding site that has been conserved in some species but lost
in others suggests that the site is relevant to fitness, at least in
those species in which it was conserved.

The frequency of binding site loss may be quite high, but is
difficult to estimate. Using expectation maximization, we
estimated that one-third of all non-neutral sites are no longer
constrained on some lineages. However, this estimate does
not account for sequences that may have evolved under
functional constraints other than the binding site model
being tested. Using a number of statistical cutoffs to eliminate
ambiguous sites, we found that 6% of the high-confidence
binding sites fit the semiconserved model. This is similar to
other estimates of the frequency of functional binding sites
that are not entirely conserved across species [35,38].
Although some of these sites may be false positives, the true
number of semiconserved sites could be higher, given that we
estimated our power to detect semiconserved sites to be low,
less than 20% for most models.

The Effect of Binding Site Loss on Gene Expression

In the absence of binding site turnover, binding site loss
results in species-specific changes in gene regulation. This
model predicts that changes in gene expression should result
from either making substitutions that result in loss in the
species with a conserved site, or from making substitutions
that recreate the binding site in the species showing loss. We
tested the former of these two predictions using 11 different
predictions of binding site loss. In three cases, we found that
the substitutions predicted to result in loss of function
altered the expression of the downstream gene. Although
suggestive, these experiments do not address whether the
substitutions that occurred on the lineage showing loss
resulted in a species-specific change in gene regulation.

The eight of 11 semiconserved sites that showed no affect
on gene expression are difficult to interpret. One explanation
is that the semiconserved sites only affect gene expression
under specific environmental conditions. Although possible,
the gene expression assays were carried out under conditions
where the semiconserved sites were likely to function.
Another explanation is that our assays were not sensitive
enough to detect small changes in gene expression. Finally,
the predictions rest on the false positive rate of the model as
well as on its assumptions. While it is difficult to distinguish
between these possibilities, several pieces of evidence suggest
that the assumptions of the model may not always be correct.

Model Assumptions

Our predictions of binding site loss rest on a number of
assumptions. The main assumptions are that the alignments
are correct, the binding site models are correct, and that
sequences that appear to be semiconserved binding sites are
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not functionally constrained for some other reason. We
discuss each of these assumptions separately.

Alignments. The incorrect alignment of one of the four
species could make some conserved sites appear as though
they were semiconserved. While incorrect alignments may
occur, there are a number of reasons to believe that their
impact in this dataset is negligible. Simulation studies show
that the Saccharomyces species fall within the range where
alignment algorithms perform well [56]. Additionally, realign-
ing the ClustalW aligned sequences with Mlagan [57] leads to
only 2% of the semiconserved sites being reannotated as
conserved binding sites. Finally, we used local realignments
surrounding the binding sites to eliminate mis-inference of
loss caused by small insertion or deletion events (see
Methods). It is also possible that turnover could be the result
of misalignment. However, 54% of the turnover events occur
in opposite orientation, making it unlikely to be the result of
alignment error. Based on these data, we believe that the
effects of alignment error in our analysis are likely to be
small.

Position weight matrices. The identification of binding site
loss assumes that the binding site model is correct.
Inaccuracies in the degeneracy of a binding site, or in the
width of the binding site, will affect our results. One
particular concern is that an overly specific binding site
model will overestimate the rate of loss. PWMs are typically
estimated from a subset of the true binding sites, and as a
result of this sampling, a position might be defined as 90% A,
when in actuality, A is only slightly favored over a T. As a
result, an A to T substitution may result in a false prediction
of binding site loss.

Three observations suggest that semiconserved sites cannot
be completely explained by inaccuracies in the binding site
model (see Protocol S1 for the methods). First, the distribu-
tion of lineage-specific substitutions that result in loss are
evenly distributed across the nondegenerate positions within
binding sites. Second, PWMs rebuilt to include nucleotide
counts of both the conserved and semiconserved data still
annotate half of the semiconserved sites as semiconserved,
suggesting that these loss events cannot be explained by
errors in the binding site model. Third, we repeated our
analysis using a second set of binding site models [58] and
estimated that 7.9% of the binding sites have been lost in a
lineage-specific manner. These analyses further suggest that
the exact PWMs used could be an important source of both
false positives and false negatives, but that slight errors in the
binding site models are unlikely to explain all of the loss
events we have observed.

Functional overlap. A third assumption is that the sequence
conservation observed in a TFBS is the result of the
constraints required to maintain the binding site rather than
some other functional constraint. For example, conserved
binding sites may appear to be semiconserved under similar
binding site models. The observation that predictions of
conserved binding sites often overlap [43] suggests that
sequences may often be conserved for reasons other than
the model used to identify them. In two of the eleven sites
examined experimentally, we found changes in gene expres-
sion independent of the transcription factor predicted to
bind them. This suggests that these noncoding sequences are
functional cis-regulatory sequences, but are not bound by
Ndt80 or Msn2/4. Overlapping predictions are unlikely to
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explain all of the semiconserved sites, as 75% of the
semiconserved binding sites do not overlap any other known
binding site model. Yet, we cannot rule out that other
functional noncoding sequences, regulatory or otherwise,
could be the basis of the functional constraint.

The Molecular Evolution of cis-Regulatory Sequences

Although functional divergence in cis-regulatory sequences
may be common, in relatively few cases have the nucleotide
substitutions been identified [59]. TFBSs provide a useful
starting point to dissecting sequence divergence that under-
lies regulatory divergence. The semiconserved model we have
used in this analysis provides an efficient way to identify loss
of constraint on a putative binding site sequence. Although
several good candidate loss events were identified, there is a
considerable false positive and false negative rate associated
with the approach. Additional comparative information
should help eliminate false positives, and methods that
account for uncertainty in the binding site model should
improve our ability to reliably detect functional divergence in
cis-regulatory sequences.

Materials and Methods

To distinguish neutral sequences from conserved and semi-
conserved binding sites, we used a model for the evolution of neutral
sequence and functional TFBSs [35,37], calculated the likelihood of
the data under three different evolutionary models, and used
computer simulations to generate our statistical confidence in each
model.

Evolutionary models. For each model, we assume that nucleotide
sequences are evolving under a discrete-state, continuous-time
Markov process, positions within an alignment evolve independently
of one another, and the substitution rate is a product of the
population size, N, mutation rate, L, fixation probability, f, and time, ¢,
measured in generations. We also assume that the mutational process
is the same under each model and is governed by five parameters [60]:
four parameters for the equilibrium nucleotide frequencies (1, T, T,
m,) and one parameter for the rate of transitions relative to
transversions (K).

The probability of fixation is different between the models. Under
the neutral model, the probability of fixation is the same for all
mutations. Under the binding site model, the relative probability of
fixation between any two bases is:

)

where s is the selective advantage of base y relative to base x [61]. The
strength of selection can be estimated from the equilibrium base
frequencies [36,62]. Given a collection of sites evolving under the
same model, at equilibrium, the flux from base x to base y is equal to
the flux from base y to x:

2N foy = 2NT L frx (2)

where 7, is the equilibrium frequency of base x, {1 is the mutation rate,
and fis the fixation probability. Using the approximation of Equation
1, which assumes Ns > 1, and Equation 2, the equilibrium base
frequencies are a simple function of the relative strength of selection
and mutation:

Tyl 2N (3)
Ty ny

Substituting Equation 3 into Equation 1, the probability of fixation
is:

In (ﬁ)
Ty
Sy = Tty (4)
2 (1-7)

In the binding site model, the fixation probability is position-specific
and derived from PWMs, as described below. Assuming the effective
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population size is constant, no estimate of N is needed since it is the
same across all positions and all types of nucleotide changes.

Calculating the likelihood. We calculated the likelihood of the data
under the neutral and conserved binding site model using transition
probabilities derived from the expected rate of substitution under
each model and using the pruning algorithm to integrate over all
possible ancestral states [63]. To estimate the expected rate of
substitution, we estimated k from substitutions in synonymous sites
in coding sequences (K = 4), the © parameters from the genome-wide
nucleotide frequencies (A = 0.3, G = 0.2, C = 0.2, T = 0.3) for the
neutral model and from PWMs for each TFBS model. We estimated
the mutation rate and time, together, for each branch of the
phylogeny from synonymous sites using PAML [64]. Given these
branch-specific substitution rates, we calculated the transition
probability under each model by exponentiating the rate matrix, P
=2 where 0 is a matrix of substitution rates of the form 2Npnft.

For a pair of sequences, x and y, the likelihood of an aligned
binding site, S, of width W, is given by:

w
P(S|T,Q) = IT > p(Xila, Tax Q)b (Yila, Tay Quy v (5)

" a€AC,G,T

Here, a represents the nucleotide in the ancestral sequence A. Tx
is the branch length from the ancestor to species X. Qj,x is the
substitution rate from base a to base X in position i. Q can be either
the neutral model of evolution (in which case it is position-
independent), or the binding site model. v, is the frequency of base
a in ancestral sequence. For neutral sequence, this is the genome
average frequency, m, For the binding site model, this is the
frequency of @ in position i of the PWM. Equation 5 can be expanded
to multiple sequences by recursively calculating the left and right
branches of each node in the phylogenetic tree starting at the root
[63].

To calculate the likelihood under the semiconserved model, we
integrated over many loss events evenly distributed across the entire
tree, excluding the outgroup. By re-rooting the tree at the time-point,
t, where constraint was lost, we split the tree into two subtrees, with
one subtree containing all sequences preceding ¢, and the other
subtree with all sequences following ¢. The likelihood of the left and
right subtrees was then calculated under the binding site model and
the neutral model using the pruning algorithm and Equation 5. Thus,
the likelihood under the semiconserved model is:

D
L(data|semiconserved) = Z p(loss|t)p(S

=0

TN Qbmdingsilk)p (3 ‘ T — Th Q;mu/ml)

(6)

where D is the total evolutionary distance, S is the aligned binding
site, T; is the portion of the tree evolving under the binding site
specific model of evolution, T'— T, is the neutrally evolving portion of
the tree. Because very recent loss events are indistinguishable from
the conserved binding site model, we do not test for loss events
occurring within 0.1 substitutions per site of the extant species. We
used the maximum-likelihood estimate of the location of the loss
event to determine on which branch the loss of constraint occurred.
Pseudocode can be found in Protocol S1.

Maximum-likelihood estimate of the frequency of semiconserva-
tion. To estimate the fraction of sites that are evolving under a
semiconserved model of evolution, we used a maximum-likelihood
approach. Using expectation maximization, we maximized the
likelihood equation:

Sites
L(data) = Z p(conserved|site;)p(conserved) (7)
=1
X p(semiconserved|site;)p(semiconserved)

X p(neutral|site;) p(neutral)

D (conserved | site;) and p(neutral | site;) were calculated using the pruning
algorithm and Equation 5. p(semiconserved | site;) was calculated using
Equation 6. p(conserved), p(semiconserved), and p(neutral) are the free
parameters that were maximized.

Statistical cutoffs to distinguish between the models. To distin-
guish between the three models, we compared the posterior
probability of each model. While the maximum-likelihood estimates
suggested that the probabilities of the three models are unequal, we
used flat priors for simplicity. The choice of priors did change the
overall annotations slightly, but the general conclusions are un-
changed.

Computer simulations of neutral and conserved sequences were

@ PLoS Computational Biology | www.ploscompbiol.org

Transcription Factor Binding Site Gain and Loss

used to set statistical cutoffs for distinguishing each model and to
estimate the power of detecting binding site loss. For each simulation,
we evolved a sequence from the root of the tree to each nodeltip
using the transition probabilities specific to each model. For both
simulations, we generated sequence at the root from the nucleotide
frequencies defined by the PWM.

We used 10,000 neutral simulations to generate the neutral cutoff
(#1 in Figure 2B), such that less than 0.5% of sites show a lower
posteriori probability under the neutral model. The same data were
used to generate the conserved cutoff (#2 in Figure 2B), such that less
than 1% of neutral sites show a higher posteriori probability under
the conserved model. We used 5,000 conserved binding site
simulations for each transcription factor to generate the semi-
conserved cutoff (#3 in Figure 2B), such that less than 1% of sites
show a lower probability under the conserved model.

To control the false discovery rate and computational time, we
tested only the 2,000 highest-scoring binding sites for each tran-
scription factor. To identify these sites, we ranked each putative
binding site by the sum of the two highest-scoring sequences from the
four species examined by their log-odds score, see below. The choice
of 2,000 sites is arbitrary, but as most transcription factors are
expected to regulate fewer than a few hundred genes, this should not
exclude any functional binding sites from our analysis.

A summary table of the data for all 91 transcription factors can be
found in Table S1. The genomic coordinates of all conserved and
semiconserved binding sites are provided in Table S2.

Applying the model to the Saccharomyces genomes. Alignments.
ClustalW intergenic sequence alignments of S. cerevisiae, S. paradoxus, S.
mikatae, and S. bayanus [47] were filtered to remove any alignments
containing greater than 50% insertions or deletions in any one
sequence or those containing greater than 20% missing data (N and .
characters). After applying these filters, global alignments of 3,761
intergenic sequences from four species were used in all subsequent
analysis. 1,539 coding sequence alignments were used to estimate the
synonymous and nonsynonymous substitution rates [64]. To account
for insertion or deletion events within aligned binding sites, we
generated local realignments by using the highest-scoring binding
site in each species from the binding site and =5 bp of it, excluding
gaps.

TFBS models. We used the TFBS models defined by Harbison et al.
[44], with the addition of a model for Ndt80 [48] and CSRE [49], as
these well-studied motifs were not included. We filtered the dataset to
remove dubious or redundant motifs, and used 91 out of 104
reported binding site models (see Table S1).

Defining TFBS turnover. We define binding site turnover as the
presence of a species-specific binding site in the promoter of the
species showing loss. To identify species-specific binding sites, we
used the log-likelihood ratio score of the sequence given a PWM:

w
Score = Zlog(ﬁ) (8)
i=1 Py

where 1y, is the frequency of base b at position ¢ of the binding site as
defined by the PWM, and p,, is the genomic frequency of base b, and W
is the width of the binding site. To determine the cutoff score for a
sequence match to the PWM, we used the distribution of scores in
sites identified as significantly conserved. For each transcription
factor, we enumerated the scores from all four species for each
conserved binding site and used the tenth percentile of these scores
to define a match to the PWM. To estimate the expected number of
turnover events, we calculated the percentage of promoters contain-
ing a species-specific binding site for each transcription factor. We
also used the default cutoff score of the Patser program [45] for
comparison.

Beta-galactosidase assays. Beta-galactosidase activity driven by
both a wild-type and mutant promoter sequence was measured to
determine the effect of the binding-site loss on gene expression. For
each putative loss event, the entire S. cerevisiae intergenic sequence
was cloned by PCR with gap-repair or restriction digests into the
YEp357r yeast-bacteria shuttle vector [65]. Mutations were made in
the binding site to mimic the substitutions that occurred between
species using stitching-PCR and were confirmed by sequencing. The
constructs were transformed into the S. cerevisiae strain BY4743 or the
appropriate homozygous deletion strain, obtained from the yeast
deletion collection, for the transcription factor of interest [41]. The
msn24msn44 double-deletion strain was generated from a cross
between the two single-deletion strains and confirmed by PCR.

To measure gene expression driven by either the S. cerevisiae
binding site or the mutated binding site, yeast cultures were grown
overnight in complete minimal medium minus uracil and diluted to a
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starting ODggy of 0.05. Each construct was measured in selective
media during mid-log phase growth. The Ndt80 binding sites were
also measured after 10 h in 1% potassium acetate. The Msn2/4
binding sites were also measured following a heat shock of 1 h at 37
°C, or 8 h in media with no nitrogen source.

The 11 sites tested were selected before the final statistical tests
were applied. As a consequence, two of the 6 Msn2/4 binding sites, in
YALOOSW and GSP2, had a posteriori probability under the neutral
model of 0.005 < p < 0.01.

Yeastract data. We downloaded the set of documented S. cerevisiae
binding sites from the Yeastract database [55]. Because only
transcription factor promoter pairings are reported (e.g., tran-
scription factor X regulates gene Y), we limited the analysis to the
654 promoters with only a single high-quality match (greater than the
25th percentile of the log-odds scores of the conserved binding sites)
to the transcription factor’s binding site.

Supporting Information

Protocol S1. Additional Methods and Pseudocode
Found at doi:10.1371/journal.pcbi.0030099.sd001 (49 KB DOC).
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