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Abstract 41 

High-density probes allow electrophysiological recordings from many neurons simultaneously 42 
across entire brain circuits but fail to determine each recorded neuron’s cell type. Here, we 43 
develop a strategy to identify cell types from extracellular recordings in awake animals, opening 44 
avenues to unveil the computational roles of neurons with distinct functional, molecular, and 45 
anatomical properties. We combine optogenetic activation and pharmacology using the 46 
cerebellum as a testbed to generate a curated ground-truth library of electrophysiological 47 
properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We 48 
train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% 49 
accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The 50 
classifier’s predictions agree with expert classification on recordings using different probes, in 51 
different laboratories, from functionally distinct cerebellar regions, and across animal species. 52 
Our approach provides a general blueprint for cell-type identification from extracellular 53 
recordings across the brain. 54 

  55 
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The nervous system comprises many molecularly, anatomically, and physiologically defined cell 56 
types1–6. Powerful modern molecular techniques now have revealed multiple sub-types even 57 
within known anatomical cell classes7–13. Identification of cell type at multiple levels will be 58 
crucial to understand how the brain works and to develop selective, targeted therapeutics for 59 
brain dysfunction. Therefore, it is crucial to develop strategies to determine cell type and to 60 
cross-reference different formulations of cell type across levels of analysis3,5,6,12,14,15. 61 

With the advent of high-density multi-contact recording probes16,17, it is now possible to record 62 
from hundreds of neurons simultaneously and characterize their activity during specific, 63 
quantified behaviors. Simultaneous large-scale electrophysiological recordings coupled with 64 
cell-type identification in vivo would facilitate characterization of circuit-level processing in the 65 
service of behavior. Yet, identification of cell type is a particularly difficult challenge for 66 
extracellular recording technologies that cannot access the transcriptional or anatomical 67 
properties of neurons18. Efforts to classify neurons based on specific features of their spike 68 
waveform and firing statistics have not proven robust across laboratories19,20. Moreover, 69 
optogenetic approaches to cell-type identification21–24 currently are routine only in mice and 70 
bring the technical challenges of (i) off-target expression of opsins25, (ii) disambiguating direct 71 
responses versus those due to recurrent connectivity within circuits26, and (iii) the ability to 72 
target only one or two cell types at a time in a given preparation27.  73 

We assembled a collaboration of four laboratories with the single-minded goal of enabling cell-74 
type identification solely from extracellular recordings in awake animals by developing a 75 
strategy that could scale across labs, probes, species, and in the future maybe across brain areas. 76 
We chose to pioneer the strategy in the cerebellar cortex, which provides key advantages. 77 
Specifically, the cerebellum has a crystalline architecture with well-defined neuronal 78 
connectivity and a small number of anatomically-defined cell types1,28 that are consistent across 79 
species29,30, allowing direct comparison of recordings in monkeys, mice and other species. The 80 
cerebellum has a range of neuron sizes from among the smallest and most densely packed 81 
(granule cells) to the largest (Purkinje cells), allowing us to test the resolution of our recording 82 
approaches. The cerebellum has many spontaneously firing neurons31–33, some with high 83 
spontaneous rates, allowing us to extract rigorous information about their electrophysiological 84 
properties. Genetically-defined mouse Cre-lines are available for all major cell types in the 85 
cerebellum34–38, allowing us to leverage optogenetic strategies for cell-type identification21. 86 
Finally, the cerebellum has a long history of neurophysiological recording39, allowing us to 87 
reference our measurements and automated cell-type classifications against hard-won human 88 
expertise. Strategies to solve the challenges of cell-type identification in such a testbed should 89 
provide a roadmap for application to other structures, including the cerebral cortex, the 90 
hippocampus, and the basal ganglia.  91 

Our approach succeeded. We created a ground-truth library of identified cerebellar cell types 92 
recorded in unanesthetized mice by combining rigorous spike sorting and unit curation with 93 
identification through combined optogenetic activation and pharmacological synaptic blockade. 94 
We demonstrate that a semi-supervised deep-learning classifier accurately predicts cell type for 95 
the ground-truth library based on the waveform, discharge statistics, and anatomical layer of the 96 
recording. Importantly, the classifier identifies cell type with high confidence in a high fraction 97 
of expert-labeled cerebellar recordings from two different laboratories, in behaving mice and 98 
macaque monkeys.  99 
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Results 100 

General approach 101 
We start by creating a ground-truth library of extracellular recordings from neurons whose cell 102 
type is established unequivocally. The analysis and classification pipeline (Figure 1) begins with 103 
several data curation steps to ensure high-quality recordings and allow us to characterize with 104 
high confidence each neuron’s waveform, resting discharge properties, and anatomical location. 105 
We use well-characterized mouse Cre-lines to identify cell types by optogenetic activation of 106 
specific cell types in the presence of synaptic blockers. We then develop a semi-supervised deep-107 
learning classifier with performance evaluated with leave-one-out cross-validation. Finally, we 108 
use the classifier to predict the cell types of an independent dataset of recordings made in mice 109 
and macaque monkeys and we compare the performance of the classifier against cell-type 110 
identification by human experts. Below, we develop the details of our strategy one step at a time. 111 

Multi-contact probe recordings and data curation 112 
We develop and deploy the general strategy for cell-type classification (Figure 1) in the 113 
cerebellum, based on ground-truth recordings with Neuropixels probes in two laboratories 114 
(Häusser and Hull labs). In the cerebellar cortex, morphologically distinct cell types reside in 115 
different layers (Figure 2A). Purkinje cells comprise a monolayer and extend their planar 116 
dendrites through the molecular layer. Molecular layer interneurons reside across the extent of 117 
the molecular layer and include basket cells that innervate the Purkinje cell’s soma and stellate 118 
cells that innervate the Purkinje cell’s dendrites. The granule cell layer includes mossy fiber 119 
terminals, Golgi cells, and granule cells. Recent studies have identified other, less-common cell 120 

 

Figure 1: A strategy for cell type identification from extracellular recordings in neural circuits.   The 
strategy comprises three steps: data acquisition and curation to build a ground-truth cell type library, selection of 
features from the ground-truth library to train a machine-learning based classifier, and tests of the classifier using 
additional datasets, including from other species. The first step is to create a ground-truth library of cell types 
based on optogenetic activation of genetically-defined neurons during electrophysiological recordings in awake 
mice. Neurons in the ground-truth library must be activated directly, as confirmed by a combination of synaptic 
blocker pharmacology and electrophysiological criteria, followed by careful data curation. The second step is to 
identify features in the dataset that can be used to train a semi-supervised deep-learning classifier. The third step 
is to test the generality of the classifier by asking it to predict cell types in independent datasets of expert-
classified recordings from mice and monkeys. 
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types in the different layers37, but we have elected to focus on the main cell types from the 121 
cerebellar circuit (Figure 2A). 122 

     

 

Figure 2: Curation of Neuropixels recordings in the mouse cerebellar cortex. 
A. Schematic diagram of the canonical cerebellar circuit. 
B. Traces on the left show example simple spikes (light blue) and complex spikes (black) in a Purkinje cell. 

Histogram on the right documents a complex-spike-triggered pause in simple spikes.  
C. Example recordings from many channels of a Neuropixels probe with magenta, blue, black, and green used to 

highlight a single unit recorded in the molecular layer, a Purkinje cell’s simple spikes, the same Purkinje 
cell’s complex spikes, and a unit recorded in the granule cell layer. 

D. Comparison of example histology labeled with DiI and Hoechst to show the excellent agreement of 
histological determination of layers and the layers predicted by Phyllum from the electrical recordings. 
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Different colors on the Neuropixels schematic show: magenta, molecular layer; blue, Purkinje cell layer; 
green, granule cell layer; gray, unknown layer; black, outside cerebellar cortex.  

E. Autocorrelograms plotting a neuron’s firing rate as a function of time from one of its own trigger spikes for 
two neurons with very few refractory period violations (RPVs). Note that the spike counts in the 
autocorrelograms have been divided by the width of the bin so that the y-axis is in spikes/s.  

F. Analysis of quality of isolation as a function of time during a recording session. From top to bottom graphs 
show the percentage of refractory period violations, the estimated percentage of missed spikes, and spike 
amplitude. Horizontal dashed lines show thresholds for acceptance. Gray regions show periods that were 
rejected from analysis. Blue, green, and red symbols indicate spikes that came from intervals that had too 
many missed spikes, acceptable isolation, and too many refractory period violations. Marginal histograms on 
the right show the distribution of spike amplitudes to document clipping at the noise level in the blue 
histogram that would be cause for rejection of a time interval.  

G. Example recording traces and spatial footprint of a representative recording with a signal-to-noise ratio 
(SNR) of 9.33, with the waveforms numbered according to their channel. Asterisk (*) denotes the channel 
with the largest peak-to-trough amplitude, used to compute the SNR. 

H. Distribution of percentage of refractory period violations across neurons accepted to the ground-truth library. 
I. Distribution of estimates of percentage of spikes that were missed across neurons accepted to the ground-

truth library. 
J. Distribution of signal-to-noise ratios on the channel with the largest-amplitude waveform across neurons 

accepted into the ground-truth library. 
 123 
Purkinje cells are the one cell type in the cerebellum that allows ground-truth identification from 124 
its extracellular electrical signature. Purkinje cells show two types of action potentials (Figure 125 
2B, left panel): “simple spikes” that fire at high rates and “complex spikes” driven directly by 126 
climbing fiber input40–42. Complex spikes occur only at ~1 Hz, and trigger a characteristic 10-50 127 
ms pause in simple spikes43. Thus, Purkinje cells can be identified unequivocally, and admitted 128 
into the ground-truth library, if they show a pause in a complex-spike-triggered histogram of 129 
simple-spike firing (Figure 2B, right panel).  130 

Recordings with Neuropixels probes detect neural activity on many of the 384 channels and 131 
spike sorting yields many units including non-Purkinje cells. The magenta waveforms in Figure 132 
2C arise from a neuron in the molecular layer that would be a candidate to be a molecular layer 133 
interneuron. The green waveforms come from a neuron recorded in the granule cell layer that 134 
could be a mossy fiber, a Golgi cell, or a granule cell. The blue and black waveforms are the 135 
simple spikes and complex spikes of an identified Purkinje cell.  136 

Given that the soma of each cell type resides in one of the three different layers of the cerebellar 137 
cortex, the first step in our analysis pipeline was an objective procedure to identify the layer of 138 
each recording. The cerebellum is a foliated structure so that a single penetration with a 139 
Neuropixels probe usually records from neurons in multiple repetitions of each of the 3 layers of 140 
the cerebellar cortex. For example, the recording trajectory documented with DiI staining in 141 
Figure 2D crossed 3 molecular layers, 5 Purkinje cell layers, and 3 granule cell layers. We 142 
assigned each channel to a layer using Phyllum, a Phy plugin that analyzes recordings across the 143 
channels on a probe to infer the layer recorded by each channel (see Methods).  144 

The layer structure inferred by Phyllum agreed well with histological data based on simultaneous 145 
DiI and cell body staining (Figure 2D). We validated Phyllum across 21 histologically confirmed 146 
penetrations and found that its conclusions agree with the histology at 99, 95, and 98% of 776, 147 
367, and 1140 recording sites respectively in the molecular, Purkinje cell, and granule cell layers. 148 
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The layer assignments from Phyllum were also consonant with the finding from single electrodes 149 
of (i) clear complex-spike activity and well-isolated simple spikes in the Purkinje cell layer, (ii) 150 
relative silence and abundant dendritic Purkinje cell complex spikes44,45 in the molecular layer, 151 
and (iii) a jungle of high-intensity activity with many units in the granule cell layer.  152 

We next ensured that each unit we admitted for further analysis was a well-isolated single neuron 153 
with credible waveform and resting discharge properties, two of the three features we ultimately 154 
would use, along with layer, to classify units. We manually curated the output from Kilosort2 155 
with Phy and subsequently performed automated quality checks to ensure the quality of isolation 156 
and the veracity of the waveforms and resting discharge statistics of neurons that would become 157 
part of our ground-truth library. We strove to ensure that we neither missed many spikes from 158 
the neuron under study nor included electrical artifacts or spikes from neighboring neurons. 159 

● We analyzed the refractory periods from each isolated neuron to assess the level of 160 
contamination from other neurons or noise46. The examples of autocorrelograms in Figure 2E 161 
have vanishingly small numbers of refractory period violations and respectively represent the 162 
mean (0.25%) and median (0.01%) in our dataset. We rejected from the ground-truth library 163 
autocorrelograms with greater than 5% period violations (Figure 2F, red symbols and 164 
histogram). Almost all accepted neurons had fewer than 1% refractory period violations with 165 
a mean of 0.25% (Figure 2H).  166 

● We estimated the number of missed spikes by fitting the spike amplitude distribution with a 167 
Gaussian function and quantifying the fraction of the area under the curve that was clipped at 168 
noise threshold47,48 (Figure 2F). We estimated that few spikes were missed if the distribution 169 
of spike amplitudes for the entire recording was continuous and not clipped at noise 170 
threshold. In Figure 2F, we estimated that more than 5% of spikes were missed in the first 171 
~150 s of the recording (blue symbols and histogram), causing us to exclude those intervals 172 
from further analysis. Among the recordings we accepted, the percentage of missed spikes 173 
averaged 0.26% and almost all neurons showed fewer than 1% missed spikes (Figure 2I).  174 

The requirement for few violations of the refractory period and small numbers of missed spikes 175 
ensured that the units we accepted had high signal-to-noise ratios. The mean signal-to-noise ratio 176 
in our accepted sample, measured as the signal-to-noise ratio on the channel with the largest unit 177 
potential, was 9.3, almost identical to that of the example recording in Figure 2G. Over 90% of 178 
the neurons had signal-to-noise ratios larger than 4 (Figure 2J).  179 

We identified and resolved two other issues that impaired consistent and reliable estimates of 180 
waveform. The first issue is related to an on-board hardware high-pass filter on Neuropixels 181 
probes. The filter distorts the shape of waveforms and therefore hinders comparison across 182 
recordings made when the filter was on versus off. We used the technical description of the 183 
analog filter in the Neuropixels documentation to apply an equivalent digital filter to data 184 
recorded with the filter disengaged or using other probes in monkeys (Supplementary Figure 1). 185 
The second issue concerns temporal alignment of individual spikes, which is unreliable in 186 
Kilosort’s output when the signal-to-noise ratio is low to medium or when a unit drifts across 187 
channels during a recording session. We resolve the alignment issue with an iterative procedure 188 
we called “drift-shift-matching” to minimize waveform distortion from the averaging of 189 
individual action potentials (see Supplementary Figure 1 and Methods).  190 
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Combination of optogenetics and pharmacology for ground-truth cell-type identification 191 
For optogenetic activation, we combined genetic and viral approaches to cause expression of an 192 
opsin in a specific cell type, thereby allowing these neurons to be selectively activated by light 193 
and identified by photostimulation21. We added synaptic blockers to our experimental 194 
preparations to ensure that light activates an opsin-expressing neuron directly, and not indirectly 195 
by optogenetic activation of its pre-synaptic inputs. The standard criterion of short-latency 196 
activation by optogenetic stimulation49 (e.g., <10 ms) is inadequate on its own. We found ample 197 
examples of short-latency responses (some <5 ms) that disappeared with synaptic blockade21.  198 

We introduced Neuropixels probes into the lateral cerebellar cortex or the vermis of mice 199 
expressing opsins (usually Channelrhodopsin-2, ChR2) in specific cell types and allowed the 200 
probe to settle at a location where we recorded activity across much of its length. As illustrated 201 
in Figure 3A, we performed experiments with optogenetic stimulation in multiple phases. In a 202 
baseline phase, we recorded spontaneous activity. In a control phase, we applied light externally 203 
to the cerebellum to activate opsins in the cell types that expressed them. We also introduced a 204 
tapered optic fiber that ran alongside the recording probe in some experiments, to deliver light in 205 
closer proximity to cells that expressed opsins. In an infusion phase, we continued to deliver 206 
light to the cerebellum while we added synaptic blockers (see Methods) to the surface of the 207 
cerebellum. In the blockade phase, when the synaptic blockers had permeated well into the 208 
tissue, we assayed neurons for direct responses to optogenetic stimulation. The approach of 209 
applying synaptic blockers on the surface of the cerebellum, instead of trying to inject them deep 210 
into the tissue, has the advantage of preserving the integrity of the tissue but the disadvantage of 211 
relatively slow diffusion. 212 

We accepted neurons as activated directly by photostimulation only if we had strong evidence 213 
that they were within the locus of successful synaptic blockade and they continued to have 214 
reliable, short-latency responses to light. To determine whether synaptic blockade was effective 215 
at a given recording depth, we evaluated recordings at or below that depth and looked for any of 216 
the indications in the top row of Figure 3B:  217 

1. Loss during the blockade phase of responses to optogenetic stimulation present in the control 218 
phase (Figure 3B, top row, left). Neurons were excluded from the ground-truth library if they 219 
retained their response in the blockade phase but were outside the region of synaptic 220 
blockade (Figure 3B, bottom row, left).  221 

2. Putative mossy fibers with loss of negative afterwaves in the blockade phase (Figure 3B, top 222 
row, middle). Here, we rest partly on prior evidence that the negative afterwave is a post-223 
synaptic response of granule cells50,51 and that analogous negative afterwaves have been 224 
shown to correspond to post-synaptic responses in other brain regions52. Also, our finding of 225 
the effect of synaptic blockade on the negative afterwave in recordings from single putative 226 
mossy fibers provides the strongest evidence to date that the negative afterwave represents 227 
post-synaptic depolarization. 228 

3. Substantial changes in a neuron’s autocorrelogram or “coefficient of variation 2” (CV2), 229 
usually due to an increase in regularity caused by a shift from synaptically- and intrinsically-230 
driven spiking to purely intrinsically-generated spiking31 (Figure 3B, top row, right). 231 
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To illustrate our strategy, we provide detailed examples from one experiment in a transgenic 232 
mouse line that expresses ChR2 in mossy fibers37,53 (Thy1-ChR2 line 18). Here, some neurons 233 
lost their responses to optogenetic activation with synaptic blockade (Figure 3C), while others 234 
recorded nearby retained their responses (Figure 3D). We evaluated the effect of synaptic 235 
blockade along the electrode penetration that yielded these two units (Figure 3E, region above 236 
the dashed line on the Neuropixels schematic) to confirm that the neural responses in Figure 3D 237 
were activated directly by optogenetic stimulation. At sites near and deeper than the neuron in D, 238 
neurons lost their responses with synaptic blockade, indicating that they were within the region 239 
of successful blockade. Still deeper in the penetration, we recorded two putative mossy fiber 240 
waveforms that retained their negative afterwave with synaptic blockade, indicating that they 241 
were outside the region of successful blockade. Finally, the extracellular waveforms of the 242 
activated neuron were constant across the entire experiment (Figure 3F), indicating that we had a 243 
stable recording. Therefore, we concluded that the neuron in Figure 3D was an optogenetically-244 
activated neuron, namely a mossy fiber. 245 

 

Figure 3: Strategy for ground-truth identification of cell type.  
A. Schematic showing the sequential phases in an experiment designed to test for optogenetic activation in the 

presence of synaptic blockers. 
B. Examples of the results used to verify the region of synaptic blockade. Examples above versus below the 

horizontal dashed line were taken as evidence for versus against blockade at that site. From left to right, we 
assayed the effect of blockade on the response to optogenetic stimulation, the negative afterwave of a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.577845doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577845
http://creativecommons.org/licenses/by-nc-nd/4.0/


putative mossy fiber waveform, and the discharge statistics defined by autocorrelograms and the value of 
CV2.  

C. Raster and peri-stimulus time histogram for a neuron that lost its response to optogenetic stimulation with 
synaptic blockade. Trial numbers on the y-axis align with the cartoon showing the periods in the experiment 
to the right of D. Black versus orange histograms show responses before versus during synaptic blockade. 
Blue shading indicates the time of photostimulation. 

D. Same as C except for a neuron that retained its response to optogenetic stimulation during synaptic blockade.  
E. Example of how we determined whether the recordings in C and D were within the region of synaptic 

blockade. The cartoon schematizes a Neuropixels probe, the top histograms on the right show sites that were 
within the region of blockade because they lost their responses to optogenetic stimulation, and the lower 
waveforms show mossy fibers that were below the region of blockade because they retained their negative 
afterwaves. 

F. Spatial footprint of the neuron in D. Black, orange, and blue traces show the similarity of the waveforms 
recorded during the baseline period, during synaptic blockade without optogenetic stimulation, and during 
synaptic blockade with optogenetic stimulation.  

G. Distribution of neural response latencies to optogenetic stimulation of directly-activated neurons in presence 
of synaptic blockade. 

 246 
Ground-truth neurons generally responded to optogenetic stimulation with latencies shorter than 247 
5 ms (Figure 3G). However, we recommend against using latency as the sole criterion to accept 248 
or reject neurons as optogenetically-activated21. Latency is strongly dependent on illumination 249 
intensity and the density of opsin expression. We frequently observed short-latency responses to 250 
optogenetic stimulation that disappeared with synaptic blockade, for example the neuron in 251 
Figure 3C where the latency was less than 3 ms. Also, the neuron in the top row of Figure 3B 252 
responded to optogenetic stimulation with a latency shorter than 5 ms, but lost its response with 253 
synaptic blockade, indicating that it was driven by synaptic activation rather than direct 254 
optogenetic stimulation.  255 

Strategy to mitigate off-target expression in transgenic mouse lines 256 
To varying degrees, off-target expression is a common feature of transgenic mouse lines. Often, 257 
there is no ‘clean’ line available where expression is limited to a given cell-type of interest. Our 258 
strategy to obtain ground-truth cell-type identification despite off-target expression was to (i) 259 
characterize the anatomical specificity of opsin expression for all mouse lines under study and 260 
(ii) combine identification of the recording layer based on Phyllum with optogenetic activation in 261 
the confirmed presence of synaptic blockers to establish cell-type unambiguously.  262 

The problem of off-target expression was most pronounced in the GlyT2-Cre line used 263 
previously to image activity in Golgi cells35. The GlyT2-Cre line has substantial off-target 264 
expression in molecular layer interneurons and, very occasionally, Purkinje cells (Figure 4A, 265 
Supplementary Figure 2): the relative density of molecular layer interneurons was higher than 266 
that of Golgi cells (Figure 4B, 79 vs. 20%). Accordingly, we recorded neurons directly 267 
responsive to optogenetic stimulation in both the granule cell layer and the molecular layer 268 
(Figure 4C). We used Phyllum to identify the recording layers and labeled units in the granule 269 
cell layer that were directly activated by optogenetic stimulation as Golgi cells (Figure 4C, green 270 
PSTH). We labeled activated units in the molecular layer as molecular layer interneurons (Figure 271 
4C, magenta PSTH).  272 

 273 
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Figure 4: Analysis and mitigation of off-target expression in mouse optogenetic lines. 
A. Double stained section of cerebellum in the GlyT2-Cre line showing expression in both Golgi cells in the 

granule cell layer and molecular layer interneurons. Red arrows point to cells that express Td-Tomato. Blue 
cells express parvalbumin (PV). MoL, molecular layer; PCL, Purkinje cell layer; GCL, granule cell layer. 

B. Cartoon of cerebellar circuit and histogram showing density of TdT-positive somata in each of the three 
layers in a GlyT2-Cre mouse: GoC, Golgi cell; GrC, granule cell; PC, Purkinje cell; MLI, molecular layer 
interneuron; CF, climbing fiber; MF, mossy fiber. 

C. Representative recordings from a Neuropixels probe using optogenetics to activate neurons that express 
opsins in the GlyT2 line. Magenta, blue, and green waveforms on the right show the spatial footprint of 
neurons in the MoL, PCL, and GCL. Histograms below the voltage traces show that both the MoL and GCL 
layer neurons were activated by optogenetic stimulation at the time indicated by the blue shading.  
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D. Same as A, but for the Math1-Cre line. 
E. Table outlines how we used layer information to disambiguate cell types despite some off-target expression 

in certain Cre-lines.  
 274 
Other mouse lines also showed some off-target expression. For example, the Math1-Cre line 275 
used to label granule cells was generally specific (Figure 4D) but exhibited rare labeling of 276 
Purkinje cells. The c-kit-Cre line also labeled a small number of Golgi cells34, and the Nos1-Cre 277 
line exhibited occasional labeling of non-neuronal cells in addition to molecular layer 278 
interneurons (Supplementary Figure 2). By contrast, other lines we used were cleaner, such as 279 
the Thy1-ChR2-YFP line 18 and Pcp2-Cre lines used to label mossy fibers and Purkinje cells, 280 
respectively (Supplementary Figure 2). Crucially, we did not observe multiple labeled cell-types 281 
within a single cerebellar layer in any of our lines. Thus, the combination of an identified layer 282 
with direct optogenetic activation (Figure 4E) allowed us to disambiguate cell type for all 283 
experiments.  284 

The ground-truth library 285 
Across 188 Neuropixels recordings in two laboratories, we recorded a total of 3652 neurons that 286 
survived the spike-sorting and curation pipeline (Figure 5A). Of these, 562 exhibited a response 287 
to optogenetic stimulation but only 97 passed our rigorous criteria for direct rather than synaptic 288 
activation based on reliable, short-latency responses in the presence of synaptic blockade. We 289 
added the simple spikes and complex spikes of 62 Purkinje cells identified by a complex-spike 290 
triggered pause in simple spikes. We removed 6 units recorded in Cre-lines with off-target 291 
expression where the layer of the recording was ambiguous, and 13 units that, on final closer 292 
inspection, did not have sufficiently long baseline periods due to intervals that violated our 293 
missed/extra spikes criteria (Figure 2E, F). The resulting ground-truth library contained 202 294 
units: 69 Purkinje cell simple spikes, 58 Purkinje cell complex spikes recorded at the same time 295 
as the simple spikes, 27 molecular layer interneurons, 18 Golgi cells, and 30 mossy fibers. For 296 
comparison with previous reports20,54,55, Supplementary Figure 4 provides the 297 
electrophysiological signatures of different cell types in our ground-truth library of cell types 298 
using a range of metrics.  299 

In an attempt to obtain ground-truth recordings from granule cells, we made 82 recordings with 300 
Neuropixels probes in mice with the Math1-Cre or BACα6Cre-C lines either crossed to Cre-301 
dependent ChR2 (Ai32) or injected with AAV to confer ChR2 expression (see Methods). We did 302 
record multiple unit activity that was responsive to photostimulation in the region of confirmed 303 
synaptic blockade, but almost all putative single units found by KiloSort failed one or more of 304 
our criteria for good isolation (Figure 2). After careful curation, we retained zero likely granule 305 
cells from 32 recordings in the Hull lab and at most 3 from 50 recordings in the Häusser lab. The 306 
yield of fewer than 0.04 granule cells per recording was significantly lower than for the other cell 307 
types (Figure 5B). We conclude that it is challenging to record from granule cells using the 308 
current generation of Neuropixels probes; our sample is far too small to include them in the 309 
classifier we will develop next. A combination of factors may contribute to the inability to record 310 
regularly from granule cells: their comparatively small size56,57, the likelihood that they generate 311 
a spatially-restricted closed-field extracellular potential, and the low electrode impedance58 of 312 
Neuropixels16 (150 kOhms). 313 

  314 
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Figure 5: Selection criteria and properties of the ground-truth library of cerebellar cell types. 
A. Curation criteria used to decide which neurons to include in the ground truth library, including the numbers 

that were retained or deleted at each stage of the curation. 
B. Histogram showing the number of ground-truth units of each cell type normalized for the number of 

recordings: MLIs, molecular layer interneurons; GoCs, Golgi cells; MFs, mossy fibers; GrCs, granule cells. 
C. Superimposed waveforms for each cell type in the ground truth library. Abbreviations as in B, plus: PCSS, 

Purkinje cell simple spikes; PCCS, Purkinje cell complex spikes. The bold trace indicates the neuron that has 
an example 3D-ACG in Supplementary Figure 5. Waveforms are normalized and flipped to ensure the largest 
peak is negative (see Methods). 

D. Same as C but showing autocorrelograms of ground-truth neurons. Note that the spike counts in the 
autocorrelograms have been divided by the width of the bin so that the y-axis is in spikes/s.  

E. Failure of traditional measurements of waveform or discharge statistics to differentiate cell types. Each 
symbol shows Z-scored values of different features from a single neuron; different colors indicate different 
cell types, per the key in the upper right. Z-scores were computed separately for each feature but across cell 
types within each feature. Abbreviations as in B.  

Armed with a ground truth dataset, the next challenge was to develop an accurate classification 315 
method based on consistent differences in electrophysiological features across cell types59. To 316 
maximize the success of classification, we strove to use both waveform20,60,61 and discharge 317 
statistics62–64 as features for cell-type classification.  318 
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Waveform: We anticipated that the different cellular properties and morphology of different 319 
cell types would lead to different waveforms60,61,65,66. Patch clamp recordings in vitro 320 
confirmed that biophysical differences across neuron classes are manifest as consistent 321 
variations in the shape of the waveform (Supplementary Figure 3). Yet, as shown by the 322 
comparison of Figure 5B with Supplementary Figure 3, waveforms are much more variable 323 
in extracellular recordings in vivo than in vitro, and waveforms alone do not cleanly 324 
distinguish cell type.  325 

Discharge statistics: It is common for different cell types to have different discharge 326 
statistics throughout the brain67,68 and the same is true in the cerebellum of anesthetized 327 
animals62–64. In awake animals, discharge statistics are likely to vary across cerebellar regions 328 
and to depend on the specific behavior or sensory input20,69 . Therefore, a robust 329 
classification strategy should harness additional information that normalizes for the factors 330 
that contribute to variation in awake animals.   331 

Cell-type identification from a semi-supervised deep-learning classifier 332 
Our deep-learning classifier strategy takes advantage of the rich information contained in the 333 
diverse waveforms and firing statistics in the ground-truth library (Figure 5C, D), along with the 334 
layer information that also provides information about cell type. Rather than using a potentially 335 
biased set of investigator-chosen measurements from waveform and firing statistics, we chose to 336 
use raw data because they (i) contain richer information, (ii) provide unbiased inputs for cell-337 
type identification, and (iii) are likely to generalize across regions, tasks, and species. Further, 338 
Figure 5E and Supplementary Figure 4 reveal that it is difficult to guess which specific measures 339 
of waveform and firing statistics would be most informative to successfully distinguish cell types 340 
in awake animals.  341 

We represent spike waveforms as the full time-course of the average, drift- and shift-corrected 342 
waveform on the channel with the largest signal. We represent firing statistics as 343 
autocorrelograms (ACGs) that assess the firing rate of a neuron as a function of time relative to 344 
each spike. Because the traditional two-dimensional-ACG (2D-ACG) is subject to artifacts when 345 
neural firing rate varies across a recording session or in relation to behavior, we developed 346 
“three-dimensional autocorrelograms” (3D-ACGs) that normalize for firing rate (Figure 6A, see 347 
Methods). Supplementary Figure 5 shows example 3D-ACGs for each ground-truth cell type. 348 
We developed a strategy to avoid the potential issue of overfitting that is inherent in a deep-349 
learning classifier given the high dimensionality of the waveforms and 3D-ACGs and the 350 
relatively small number of training examples in the ground-truth library. To address the 351 
mismatch of training data relative to input dimensionality, we used an unsupervised dimension-352 
reduction technique70 that took advantage of 3090 unlabeled single units recorded with 353 
Neuropixels probes during the optogenetics experiments. We trained two variational 354 
autoencoders (Figure 6B), one each for waveforms and 3D-ACGs, to reduce the input 355 
dimensionality to 10 for both features (see Methods), thereby minimizing the number of 356 
parameters in the ultimate classifier that needed to be trained de novo.  357 

Our classifier (Figure 6C) consists of: (i) a multi-headed, normalized input layer that accepts the 358 
10-dimensional representations of the waveform and 3D-ACG produced by the variational 359 
autoencoders, along with a “one-hot” 3-bit binary code of the unit’s cerebellar layer; (ii) a hidden 360 
layer that processes the 3 normalized inputs, and (iii) an output layer with one output unit for 361 
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each of the 5 cell types. The value of the output units sums to 1 so that the output of the classifier 362 
is the probability that a given set of inputs are from each of the 5 cell types. We trained the 363 
weights in the classifier on the data in the ground-truth library using gradient descent with a 364 
leave-one-out cross-validation strategy.  365 

 

Figure 6: Performance of a deep-learning classifier on cell type identification for the ground-truth library.  
A. Method for normalizing effects of mean firing rate on firing statistics through three-dimensional 

autocorrelograms (3D-ACGs). Left graphs show the consensus ACG for an example neuron without regard 
for firing rate on top and 3 ACGs for different mean firing rates on the bottom. The heatmap on the right 
plots 10 rows that show 2D-ACGs as heatmaps for 10 different deciles of mean firing rate. Arrows indicate 
the row in the 3D-ACG for each 2D-ACG. 

B. Schematic of autoencoders used in unsupervised learning to reduce the dimensionality of the waveform and 
3D-ACG inputs to the classifier. 

C. Classifier architecture. Note that we ran the classifier with 10 different initializations for each of the 202 
ground-truth units, symbolized by the 202 pages in the classifier. 

D. Histograms showing the predictions of the classifier on 10 repetitions of training starting with different initial 
conditions to develop an estimate of confidence from the means of the probabilities assigned to each cell 
type.  

E. Percentage of units classified as a function of the ratio we chose as a threshold for confidence in the 
assignment of cell type. Different colors show data for different ground-truth cell types. 
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F. Confusion matrix showing the agreement between the predictions of the classifier on a single left-out testing 
unit and the ground-truth cell type of that testing unit. The numbers in each cell indicate the percentage of 
ground-truth cell types on the y-axis for each prediction of the classifier on the x-axis, where confidence was 
required to be greater than 2. The rightmost column shows the percentage of ground-truth neurons that 
received a confidence greater than 2.  

G. Same as F, but for neurons in the ground-truth library regardless of confidence, i.e. confidence threshold = 0.  
 366 
We evaluated not only the accuracy, but also the “confidence” of the output from the classifier. 367 
For each leave-one-out sample (n = 202 ground-truth units), we trained an ensemble of 10 368 
models with random initial conditions. We then averaged the classifier-predicted probability for 369 
each cell type across model instantiations. For the example illustrated in Figure 6D, the 370 
distributions of cell-type probability reveal repeated predictions that the held-out unit was a 371 
Purkinje cell simple spike. The average probability assigned to the simple spike was 0.89 while 372 
the average probability assigned to each of the other cell types was less than 0.1. However, that 373 
need not have been the case: if the data for a given unit were compatible with more than one cell 374 
type, then the classifier might classify the unit as highly-probable to be cell type #1 in one model 375 
instance and highly-probable to be cell type #2 in another instance: the average probabilities 376 
across 10 runs of the classifier might be similar and therefore closer to 0.5 for these two cell 377 
types, indicative of low classifier confidence. 378 

We quantified the classifier confidence for each neuron with the “confidence ratio”, computed as 379 
the ratio of the mean probability of the most-likely cell type to the mean probability of the 380 
second-most-likely cell type. As expected, the percentage of ground-truth units that could be 381 
classified decreased as a function of the value of the confidence ratio we chose as the confidence 382 
threshold (Figure 6E). Classifier confidence in general was higher for Purkinje cell simple 383 
spikes, Purkinje cell complex spikes, and mossy fibers compared to Golgi cells or molecular 384 
layer interneurons. Higher confidence thresholds increase the likelihood that cell-type 385 
classification is correct, but also decrease the number of units that get classified. We chose a 386 
confidence threshold of 2 in the remainder of our analysis because it allowed the majority of 387 
neurons to be classified while providing excellent cross-validated classification performance. 388 

The classifier showed impressive accuracy when applied to the units in the ground-truth library. 389 
For each held-out neuron that exceeded the chosen confidence threshold, we assigned it the cell 390 
type that had the highest probability, averaged across the 10 classifier runs. The classifier 391 
assigned cell types to 78% of ground-truth molecular layer interneurons and 74% of ground-truth 392 
Golgi cells at a confidence threshold of 2 (rightmost column of Figure 6F), almost all correctly 393 
as demonstrated by the values of 100% along the diagonal of the confusion matrix (Figure 6F). 394 
The classifier exceeded the confidence threshold for more than 90% of mossy fibers, Purkinje 395 
cell simple spikes, and complex spikes and again it classified nearly all such units correctly. The 396 
accuracy of the classifier degraded without a confidence threshold, but still performed quite well: 397 
it exceeded 90% accuracy on all cell types (Figure 6G). The fact that the classifier was more 398 
accurate when we required higher confidence means that 1) the classifier has a good internal 399 
model of true neuron classes and 2) the choice to set a confidence threshold improves the 400 
performance of the classifier. We note that there is some confusion between neurons in different 401 
layers despite the use of layer as an input because their waveforms and/or autocorrelograms look 402 
ambiguous to a classifier that makes a statistical prediction based on multiple inputs.The 403 
classifier performed less well without layer information, mainly because of greater conflation of 404 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.30.577845doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.30.577845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Golgi cells and molecular layer interneurons (Supplementary Figure 6). Molecular layer 405 
interneurons exhibited two distinctly different waveforms with either a small or a large 406 
repolarization phase. The latter were nearly indistinguishable from the waveforms of Golgi cells. 407 
The two types of waveforms in molecular layer interneurons do not map onto the known 408 
subtypes of molecular layer interneurons71.   409 

Classifier validation of expert-labeled datasets 410 
We next evaluated how well the ground-truth classifier (Figure 7A) generalized by attempting to 411 
predict the cell type for neurons in a sample of expert-classified, non-ground-truth recordings 412 
from mice (Medina lab) and from the monkey’s floccular complex (Lisberger lab).  413 

 

Figure 7: Ground-truth classifier performance on expert-classified datasets from mice and monkeys.  
A. Schematic of the ground-truth classifier, repeated from Figure 6C, but now making predictions based on non-

ground-truth data from mouse or monkey. The n = 2020 instantiations of the classifier arise from training the 
classifier 10 times with different initial conditions for each of 202 left-out ground-truth units: 10 x 202 = 
2020.  
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B. Probability as a function of cell type for expert-classified neurons from mice, divided according to the cell 
type assigned the highest probability by the classifier. From left to right, the highest-probability cell type was 
a Purkinje cell simple spike (PCss), Purkinje cell complex spike (PCcs), molecular layer interneuron (MLI), 
Golgi cell (GoC), and mossy fiber (MF). Colored versus gray traces represent neurons that exceeded versus 
failed the confidence threshold of 2. Probability was averaged across runs with 2020 different forms of the 
classifier (see Methods).  

C. Same as B, but for expert-classified neurons from monkey floccular complex of the cerebellum.  
D. Correspondence matrix showing the agreement between the predictions of the classifier on the x-axis and the 

expert-labeled cell type from unclassified recordings in mice. The numbers in each cell indicate the 
percentage of expert-classified cell types on the y-axis as a function of the predictions of the classifier on the 
x-axis. The rightmost column shows the percentage of expert-classified neurons that received a confidence 
greater than 2 from the classifier.  

E. Same as D, for expert classified neurons from monkey floccular complex.  
F. Confusion matrices showing good agreement between the output from the classifier and the ground-truth 

identification in mice and monkeys of Purkinje cell simple spikes and complex spikes from the presence of a 
complex-spike-triggered pause in simple spike firing.  

 414 
Confidence is a particularly important metric for non-ground-truth data. We took advantage of 415 
the large number of differentially trained and instantiated models from the ground-truth cross-416 
validation analysis to improve our computation of confidence in the expert-classified datasets. 417 
The ground-truth cross-validation of the ground-truth library resulted in 2020 versions of our 418 
classifier (202 ground-truth units with 10 instantiations per cross-validation). For each unit in the 419 
expert-classified datasets, we averaged the cell-type probabilities predicted by the 2020 420 
instantiations of the classifier and created plots of the probability assigned by the classifier as a 421 
function of cell type (Figure 7B, C). Units appear in exactly one of 5 different plots, chosen 422 
according to the cell type assigned by the classifier as the highest probability, not according to 423 
the expert-assigned cell type. For example, the leftmost graph reports probability versus cell type 424 
for all units that were classified as most probable to be simple spikes of Purkinje cells, colored 425 
according to whether the confidence ratio was below or above 2 (gray versus colored lines).  The 426 
collection of confidence plots in Figures 7B and C underscores the points of confusion for the 427 
classifier, perhaps due to subtle differences in the properties of probes, the behaviors performed 428 
by the animals, or the cerebellar sites of recording. For both the mouse data and the monkey data, 429 
classifier confidence was greater than 2 for the majority of units, except that only 45% of the for 430 
units classified by the experts as molecular layer interneurons in the monkey data were classified 431 
“correctly”. The gray curves in Figure 7C suggest that the classifier often conflated molecular 432 
layer interneurons and simple spikes in the monkey data, resulting in lower confidence for these 433 
neurons. 434 

The ground-truth classifier agreed with the human experts about the cell types in mice and 435 
monkeys of almost all units that were above confidence threshold, as demonstrated by the large 436 
percentages along the diagonal in the correspondence matrices of Figure 7D and E. Further, the 437 
ground-truth classifier was quite confident about the cell-types in the non-ground-truth data, as 438 
illustrated by the high percentage of units above a confidence threshold of 2 in the rightmost 439 
columns of Figure 7D and E. Here, it is important to explain a subtle difference in the numbers in 440 
Figures 7B and C versus Figures 7D and E. The leftmost graph of Figure 7C indicates that 75% 441 
of the monkey units classified as simple spikes exceeded confidence threshold. Because the units 442 
included in Figure 7C are not necessarily classified by experts as simple spikes, 75% is not 443 
inconsistent with the 37.9% of expert-classified simple spikes that were below confidence 444 
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threshold in Figure 7E. The difference in the numbers results from analysis of the space across 445 
orthogonal axes.  446 

 

Figure 8: Multiple forms of evidence for the similarity of waveforms and resting discharge statistics of 
different cell types across the ground-truth library and the expert-labeled data from mouse and monkey.  
A. Comparison of percentage of classified units as a function of confidence threshold for 3 preparations. Faint 

colored traces show the same curves for the ground-truth library, from Figure 5E. Bold black and gray traces 
show results for unclassified mouse and monkey data, respectively.  

B. Congruence of the output from the autoencoders for identically labeled ground-truth versus expert-classified 
neurons across preparations. Each row corresponds to a single ground-truth identified neuron. Each column 
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corresponds to a single classifier-identified neuron from mouse (left) or monkey (right). Colors at the 
intersections for each row and column indicate the cosine similarity of the concatenated outputs from the 
autoencoders for waveform and autocorrelograms, where redder colors indicate greater similarity. 

C. Waveforms of different cell-types across laboratories and species. In the first row, waveforms are divided 
according to ground-truth cell type in mice. In the second and third rows, cell types are divided according to 
classifier predictions of cell type for non-ground-truth neurons recorded in mice and monkeys.  

D. Same as C, except showing 2D-autocorrelograms. Note that the spike counts in the autocorrelograms have 
been normalized by the width of the bin so that the y-axis is in spikes/s.  

 447 
The ground-truth classifier identified correctly, with confidence greater than 2, the mouse and 448 
monkey Purkinje cell simple spikes and complex spikes from recordings with a complex-spike-449 
triggered pause in simple spikes (100/86.9% and 100/100% in mice/monkeys for simple and 450 
complex spikes, respectively. Figure 7F). “Unknown” units, defined as those not identified 451 
definitively as Purkinje cells, were distributed across cell-types by the classifier, as expected 452 
given that they included recordings from all cell types. 453 

Similar properties within cell types across species and cerebellar regions 454 
Three additional analyses indicate that the success of the ground-truth classifier on the expert-455 
classified data is based on true statistical similarity of the waveforms and firing statistics of each 456 
cell type across datasets. First, the percentage of units that we classified with confidence 457 
decreased similarly as a function of the confidence threshold for the two samples of expert-458 
classified cells (Figure 8A, thick gray and black traces) and the ground-truth data set (Figure 8A, 459 
colored traces). Second, analysis of the output of the classifier’s autoencoders revealed excellent 460 
agreement between the reduced-dimension representation of expert-classified and ground-truth 461 
data (Figures 8B). Here, the neurons in the ground-truth library plot along the y-axis and the 462 
expert-classified neurons plot along the x-axis. Warmer colors in the heatmap indicate greater 463 
alignment of the 20-dimensional vectors defined by the concatenated outputs of the two auto-464 
encoders in the classifier. Third, inspection of the waveforms (Figure 8C) and the 2D-ACGs 465 
(Figure 8D) reveals impressive similarity across the ground-truth data, the non-ground-truth 466 
mouse data, and the monkey recordings. Here, we have included only the neurons that were 467 
classified with confidence greater than 2. The only real exception to the visual impression of 468 
similarity is a few of the 2D-ACGs for the ground-truth Golgi cells. The similarity of resting 469 
discharge properties across preparations also appears in the 3D-ACGs (Supplementary Figure 4).  470 

The large fraction of non-ground-truth neurons that can be classified with confidence, and the 471 
agreement with the experts, is unexpected evidence that the properties of different cerebellar cell 472 
types are consistent across species and cerebellar regions. It certainly was possible, a priori, that 473 
a different outcome might have emerged because of genuine differences in waveform or 474 
discharge statistics across species and cerebellar regions, differences in data collection and 475 
analysis across labs, or a failure of rigor in our procedures for curating the ground-truth and 476 
expert-classified data. We anticipate that Figure 8 will serve as a useful resource for other 477 
cerebellar labs to be confident of their own rigor as they assign cell types in their own data. 478 

 479 
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Discussion 480 

Identification of cell type from in vivo extracellular recordings is a fundamental issue in systems 481 
neuroscience5,6,20,55,60,62,63,68,72–75. Our approach delivers a highly-reliable ground-truth library of 482 
the electrophysiological properties of cerebellar cell types in awake mice based on identification 483 
through optogenetic stimulation in the presence of synaptic blockers. The ground-truth library 484 
consists of the waveform of the electrical recording, the statistics of the spike train, and the layer 485 
of the cerebellum where we recorded each unit, information that comes from well-isolated neural 486 
recordings using high-density multi-contact probes. Our semi-supervised deep-learning classifier 487 
performs well in identifying the cell types in the ground-truth library, while also reporting its 488 
confidence in each identification. The internal representations in the classifier reveal similar 489 
statistics in the ground-truth library and in independent datasets of expert-classified recordings 490 
from the mouse and monkey cerebellum. The cell types predicted by the classifier for the mouse 491 
and monkey data agree with the experts’ assessments. We are encouraged by the accuracy and 492 
precision of our classifier and expect that it will be possible in the future to align the cell type 493 
obtained from extracellular recordings with that obtained from other levels of analysis, including 494 
anatomical and molecular fingerprints.  495 

The strategy we developed may be more useful and important than the exact classifier. Our goal 496 
at the outset of our project was to achieve cell-type identification from extracellular recordings in 497 
the cerebellar cortex across laboratories and species. We think that the strategies inherent in our 498 
classifier, and the classifier itself, can be used with confidence by any cerebellar recording lab 499 
that is curating their electrophysiological data with sufficient rigor. However, we also point out 500 
that a failure of rigorous curation will lead to noisy and unnecessarily variable inputs to the 501 
classifier and will contaminate the cell-type identifications provided as its output61. 502 

Others have attempted to identify the distinct signatures of discrete populations of cerebellar 503 
cortical neurons20,62–64,76,77. Past attempts identified either (i) neurons of interest by qualitative 504 
agreement with spiking signatures found in vitro64 or (ii) recordings in anesthetized preparations 505 
with neurons identified anatomically via juxtacellular labeling20,58,62,63,76,77. Our recordings in 506 
awake and behaving mice demonstrate large variance in the discrete metrics used for 507 
summarizing spiking activity both within and across ground-truth classes (Figure 5E, 508 
Supplemental Figure 4). Thus, classification schemes reliant on a finite set of specific features 509 
probably will not well generalize to other tasks or regions60, or from anesthetized to behaving 510 
preparations20. We think our approach is more likely to generalize because it leverages the 511 
informativeness of the full waveform60,61 and 3D-ACG to classify cell types across a wide range 512 
of behaviors and stimulus-driven responses.  513 

Several features of the strategy embedded in our classifier were critical to its success:  514 

● Raw waveforms and 3D-ACGs. Raw features are an unbiased input60 and allow the classifier 515 
to take advantage of extensive information in waveform60,61 and discharge statistics. 3D-516 
ACGs normalize for variations in firing rate and create a statistic that can be compared across 517 
cerebellar areas, experimental tasks, and species. Similarly, the choice to use single-channel 518 
waveforms allows the classifier to generalize across electrode types. We think our strategies 519 
are likely to generalize because they use raw features that can be measured readily in other 520 
brain areas.  521 
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● Mitigation of overfitting. We developed a semi-supervised78–80 deep-learning strategy (see 522 
Methods) to train the classifier with a relatively small number of ground-truth neurons. The 523 
unsupervised training of variational autoencoders reduces the chances of overfitting81. The 524 
use of a large unlabeled dataset to train the autoencoders also reduces the chances of 525 
overfitting by ensuring that their architecture was designed independently from the ground-526 
truth dataset. Successful predictions of cell type that agree with two expert-classified datasets 527 
supports the generalizability of the classifier on other data. Our choice of how to mitigate 528 
overfitting should allow our strategy to generalize to other datasets where the dimensionality 529 
of the inputs is high and the number of ground-truth neurons is comparatively small.  530 

● Confidence. We were particularly cognizant of making our classifier trustworthy. To do so, 531 
we established confidence by training multiple models on the same data82 and by using a 532 
Bayesian method to calibrate confidence at the single model level83,84 (see Methods). By 533 
requiring confidence above a given threshold85,86, we improved the accuracy of the model on 534 
the ground-truth data as well as for non-ground-truth recordings. The ability to choose a 535 
confidence threshold allows the user to balance whether to include all neurons even if some 536 
cell type assignments might be incorrect or to include fewer neurons with greater certainty in 537 
the cell type assignment.    538 

The classifier was more successful when it included layer information as an input. With layer 539 
information, it classified a higher percentage of the units and, in the ground-truth data, classified 540 
them with greater accuracy. However, the use of layer as an input does not make classification 541 
trivial. Rather, it creates a platform that will become even more useful as we are able to achieve 542 
ground-truth identification of other cell-types in the cerebellum, for example of granule cells 543 
with improved recording probes. Also, because waveform and firing statistics are necessary to 544 
distinguish cells that are in the same layer, the classifier makes a statistical decision about cell 545 
type rather than relying solely on layer for cell identification87. Layer is defined in a specific way 546 
for the cerebellum1, but we think of layer information more generally as a specific example of 547 
“local electrical properties”. We imagine that there are other ways to quantify those properties, 548 
for example LFPs and current-source-density analysis88,89, that will work in brain areas without a 549 
laminar structure.  550 

The biggest challenge, and our bigger goal, is to see deployment of the strategy outlined here in 551 
other brain areas. The use of layer information to improve classification should be relevant to 552 
other structures – cerebral cortex90, hippocampus91, superior colliculus92 – that have layers with 553 
measurable local electrical properties. We also think that the strategies used in our classifier 554 
enable generalization by showing how to reduce the dimensions of raw data used as inputs while 555 
mitigating the challenges of small numbers of neurons in training sets. We hope that application 556 
of our strategy in other brain areas will enable cell-type identification from extracellular 557 
recordings, a key element in our collective long-term goal of understanding how neural circuits 558 
work and how they generate behavior.  559 

Limitations of the study 560 
One class of limitations is related to our procedures for data collection and curation. While we 561 
were scrupulous about spike sorting and criteria for data inclusion, we relied on indirect 562 
measures and logic to determine whether a recording was within the region of synaptic blockade. 563 
Any errors might have allowed inclusion of certain mis-identified cell types due to off-target 564 
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opsin expression. We assessed off-target expression thoroughly, revealing, for example, 565 
extensive off-target expression in the GlyT2 line35,93,94. Less obvious off-target expression could 566 
have escaped our histological analysis and introduced a small fraction of incorrectly-identified 567 
cells, for instance in the Math1 line95.  568 

A second class of limitations is related to the ground-truth classifier’s performance for labeling 569 
neurons outside of those we focused on in this study. While we trained the classifier on 5 570 
identified cell types, other neuronal subtypes exist in the cerebellar cortex28. We may have 571 
recorded from the rare cell types in our expert-labeled datasets. Were they misclassified as one of 572 
the 5 cell types in our ground-truth library? Or were they correctly recognized as “other” cell 573 
types and relegated to the ~15-20% of neurons that failed to reach confidence threshold? In due 574 
course, we expect to be able to augment our ground-truth library with unipolar brush cells96, 575 
candelabrum cells97,98, and other Purkinje layer interneurons99,100 as ever more specific Cre lines 576 
and viruses become available. We anticipate that advancements in recording probes with higher 577 
impedance and/or more dense recording sites will enable reliable recordings from granule cells. 578 
If waveforms, firing properties, and layer prove insufficient to segregate identity as other cell 579 
types are incorporated, we anticipate that additional information about synaptic and electrical 580 
connectivity can further improve the accuracy of our classifier. 581 

A third possible limitation is related to the electrophysiological features we chose as inputs for 582 
our classifier. Because our goal was to identify cell type based on extracellular recordings with 583 
increasingly popular high-density probes, we used waveform, discharge statistics, and layer as 584 
inputs. The use of discharge statistics might be problematic in structures with little or no 585 
spontaneous discharge in some cell types, although 3D-ACGs enable assessment of discharge 586 
statistics from firing related to sensory inputs or behavior. Also, our use of physiological 587 
characteristics as inputs to the classifier limits our ability to align electrophysiological cell-type 588 
identifications with those provided by single-cell RNAseq101–103, juxta-cellular labeling62,63, or 589 
combinations of in vivo recording and single-cell imaging104. For example, extracellular 590 
electrophysiology cannot ‘mark’ recorded cells for post-hoc analysis of molecular identity using 591 
approaches such as RNAseq. However, our approach affords several advantages over recording 592 
methods that are compatible with genetic profiling but sacrifice experimental throughput, tissue 593 
accessibility, temporal resolution, and/or the number of cell-types that can be simultaneously 594 
recorded and identified. Thus, it is necessary to weigh the trade-offs of different strategies for 595 
cell-type identification according to the particular experimental question at hand. 596 

Despite its limitations, our study demonstrates a strategy that allows different cell types to be 597 
identified robustly and reliably, even when analyzing independently collected data. Thus, the 598 
strategy should be of great value to the growing community of cerebellar researchers using high-599 
density silicon probes. Furthermore, our strategy provides a template for principled semi-600 
automated detection of cell type, based on assembly of a ground-truth library, that can be applied 601 
across other neural circuits in the brain.   602 
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Methods 603 

We conducted experiments in four laboratories and on two species, mice and macaque monkeys. 604 
All mouse procedures in the Häusser lab were approved by the local Animal Welfare and Ethical 605 
Review Board at University College London and performed under license from the UK Home 606 
Office in accordance with the Animals (Scientific Procedures) Act 1986 and in line with the 607 
European Directive 2010/63/EU on the protection of animals used for experimental purposes. 608 
Mouse procedures in the Hull and Medina labs were approved in advance by the Institutional 609 
Animal Care and Use Committees at Duke University and the Baylor College of Medicine, 610 
respectively, based on the guidelines of the United States’ National Institutes of Health. Monkey 611 
procedures in the Lisberger lab were approved in advance by the Institutional Animal Care and 612 
Use Committee at Duke University. Every effort was made to minimize both the number of 613 
animals required and any possible distress they might experience. 614 

Mouse experimental procedures 615 
Mouse lines. All transgenic mice were maintained on the C57BL/6J background. Both male and 616 
female mice were used and results were pooled.  617 

● Häusser: Mice expressing Channelrhodopsin-2 (ChR2) in various cerebellar cell types were 618 
generated primarily by crossing Cre lines to a Cre-dependent ChR2-eYFP reporter line105  619 
(Ai32, B6.Cg-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J), or, in a subset of 620 
experiments, by injecting Cre-dependent ChR2 virus (AAV1.CAGGS.Flex.ChR2-tdTomato 621 
[UPenn]). Cre lines were: BAC-Pcp2-IRES-Cre (B6.Cg-Tg(Pcp2-cre)3555Jdhu/J), intended 622 
to label Purkinje cells36; Nos1-Cre (B6.129-Nos1tm1(cre)Mgmj/J), intended to label 623 
molecular layer interneurons106; Glyt2-Cre (Tg(Slc6a5-cre)1Uze), intended to label Golgi 624 
cells35; and Math1-Cre (B6.Cg-Tg(Atoh1-cre)1Bfri/J), intended to label granule cells95. In 625 
addition to the transgenic crosses and viral ChR2 expression, we used the Thy1-ChR2 line 18 626 
(B6.Cg-Tg(Thy1-COP4/EYFP)18Gfng/J) to express ChR2 in mossy fibers37. Recordings 627 
using each strategy were performed as follows: L7-Cre x Ai32 – 1 recording (1 mouse), Nos1-628 
Cre x Ai32 – 40 recordings (34 mice), Nos1-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 3 629 
recordings (3 mice), GlyT2-Cre x Ai32 – 32 recording (31 mice), GlyT2-Cre + 630 
AAV1.CAGGS.Flex.ChR2-tdTomato – 3 recordings (3 mice), Math1-Cre x Ai32 – 47 631 
recording (38 mice), Math1-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 3 recordings (3 632 
mice), and Thy1-ChR2 line 18 – 26 recordings (22 mice). The specificity of opsin expression 633 
in the cerebellum of our Cre transgenic crosses was further investigated by crossing the listed 634 
Cre lines to a Cre-dependent tdTomato reporter line, Ai9 (B6.Cg-Gt(ROSA)26Sortm9(CAG-635 
tdTomato)Hze/J)107, so that we could evaluate expression specificity through cytosolic, rather 636 
than membrane-bound, fluorescence. 637 

● Hull: Mice expressing ChR2 or the inhibitory opsin GtACR2 were generated by either 638 
crossing the c-kitIRES-Cre, intended to label molecular layer interneurons34 or BACα6Cre-C, 639 
intended to label granule cells108, to Ai32105 or a Cre-dependent ArchT-GFP reporter line, 640 
Ai40 (B6.Cg-Gt(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J)109. Alternatively, we injected 641 
the same lines with Cre-dependent viruses: (AAV1.CAGGS.Flex.ChR2-tdTomato [UPenn] 642 
and AAV1.Ef1a.Flex.GtACR2.eYFP [Duke]). In addition, we used the Thy1-ChR2 line 18 to 643 
express ChR2 in mossy fibers. Recordings using each strategy were performed as follows: c-644 
kitIRES-Cre + AAV1.CAGGS.Flex.ChR2-tdTomato – 8 recordings (2 mice), c-kitIRES-Cre x Ai40 645 
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– 3 recordings (1 mouse), c-kitIRES-Cre + AAV1.Ef1a.Flex.GtACR2.eYFP – 11 recordings (6 646 
mice), BACα6Cre-C x Ai32 – 22 recordings (12 mice), BACα6Cre-C + 647 
AAV1.CAGGS.Flex.ChR2-tdTomato – 10 recordings (4 mice), and Thy1-Chr2 line 18 – 13 648 
recordings (4 mice). 649 

● Medina: All experiments were performed in C57BL/6J mice of at least 10 weeks of age, 650 
obtained from Jackson Laboratories. 651 

Experimental preparation. To prepare mice for awake in vivo recordings, in all labs they were 652 
implanted with a headplate/headpost under isoflurane anesthesia in sterile conditions. Pre-653 
operative and post-operative analgesia were administered, and mice were allowed to recover 654 
from surgery for at least one week before being habituated to head-fixation and prepared for 655 
recordings. Lab-specific details are as follows: 656 

● Häusser: We installed a custom-made aluminum headplate with a 5 mm long and 9 mm wide 657 
oval inner opening over the cerebellum. Mice received a steroid anti-inflammatory drug at 658 
least 1 hour before surgery (Dexamethasone, 0.5 mg/kg), followed by an analgesic NSAID 659 
(Meloxicam, 5mg/kg) immediately before surgery. Anesthesia was induced and maintained 660 
with 5% and 1-2% isoflurane, respectively. The headplate was positioned over the lobule 661 
simplex of the left cerebellar hemisphere, angled at approximately 26° with respect to the 662 
transverse plane, and attached to the skull with dental cement (Super-Bond C&B, Sun-663 
Medical). Post-operative analgesia (Carprieve, 5 mg/kg) was given for 3 days. After several 664 
days of habituation on the recording apparatus, a 1 mm-diameter craniotomy and durotomy 665 
were performed to allow access for Neuropixels probes into the lobule simplex (3 mm lateral 666 
to the midline, anterior to the interparietal-occipital fissure). Before the craniotomy, a conical 667 
nitrile rubber seal (Stock no. 749-581, RS components) was attached to the headplate with 668 
dental cement to serve as a bath chamber. The exposed brain was then covered with a humid 669 
gelatinous hemostatic sponge (Surgispon) and silicone sealant (Kwik-Cast, WPI) until the 670 
experiment was performed (1-2 h after recovery). At the beginning of the experiment, mice 671 
were head-fixed, the silicone sealant was removed, and physiological HEPES-buffered saline 672 
solution was immediately applied to keep the craniotomy hydrated. 673 

● Hull: We installed a titanium headpost (HE Palmer, 32.6x19.4 mm) to the skull and a 674 
stainless-steel ground screw (F.S. Tools) over the left cerebellum, both secured with 675 
Metabond (Parkell). Mice received dexamethasone (3 mg/kg) 4-24 hours before surgery and 676 
an initial dose of ketamine/xylazine (50 mg/kg and 5 mg/kg, IP) and carprofen (5 mg/kg) 20 677 
min before induction with isoflurane anesthesia. Isoflurane was administered at 1-2% 678 
throughout surgery to maintain appropriate breathing rates and prevent toe pinch response, 679 
which were monitored throughout the duration of the surgery. Body temperature was 680 
maintained with a heating pad (TC-111 CWE). Mice received buprenex and cefazolin (0.05 681 
mg/kg and 50 mg/kg respectively, subq) twice daily for 48 hours after surgery and were 682 
monitored daily for 4 days. After 2+ weeks of recovery, mice received dexamethasone (3 683 
mg/k) 4-24 hours before recordings. Craniotomies (approx. 0.5-1.5 mm) were opened over 684 
vermis or lateral cerebellum (relative to bregma: between -6.0 and -7.0mm AP, and between 685 
1.0 and 2.8mm ML) on the first day of recording, under 1-2% isoflurane anesthesia, and were 686 
sealed between recordings using Kwik-Cast (WPI) covered by Metabond. Craniotomies 687 
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could be re-opened for subsequent recordings under brief (<30 min) 1-2% isoflurane 688 
anesthesia. 689 

● Medina: Preoperative analgesia was provided (5g/kg meloxicam, subq, 0.02mL 0.5% 690 
bupivacaine and 2% lidocaine, subq) and surgery was carried out under sterile conditions. 691 
Mice were anesthetized with isoflurane (5% by volume in O2 for induction and 1-2% by 692 
volume for maintenance; SurgiVet) and kept on a heating pad to maintain body temperature. 693 
The skull was exposed and leveled to match the stereotaxic plane before two stainless steel 694 
screws were implanted (relative to bregma: AP -0.3mm, ML ±1.4mm) to anchor the whole 695 
preparation. A custom-made stainless steel headplate was placed over the screws and the 696 
whole preparation was secured to the skull with Metabond cement (Parkell). Additionally, a 697 
craniotomy was performed (relative to bregma: AP -5.5mm) consisting of a 5x2 mm section 698 
of bone removed to expose the cerebellar vermis and the right anterior and posterior lobes. A 699 
chamber was then built with Metabond to cover the exposed bone around the craniotomy, the 700 
dura was protected with a thin layer of biocompatible silicone (Kwik-Cast, WPI) and the 701 
whole chamber sealed with silicone adhesive (Kwik-Sil, WPI). Mice were monitored until 702 
fully recovered from anesthesia and analgesia was provided during the three days following 703 
the surgical procedure.  704 

Recording procedures. All labs followed the same general procedures for mouse cerebellar 705 
recordings. Mice were progressively habituated to head fixation prior to Neuropixels recordings. 706 
Recordings from the cerebellar cortex were made using Neuropixels 1.0 probes. Probes were 707 
coated with DiI, DiO, or DiD (Cat.Nos.V22885, V22886, and V22887; Thermo Fisher 708 
Scientific) by repeatedly moving a drop of dye along the probe shank using a pipette until a dye 709 
residue was visible along its entire length (~20 passes). Probes were inserted into the brain at a 710 
speed of 1-4 µm/s while monitoring electrophysiological signals. The recording chamber 711 
surrounding the craniotomy was bathed in ACSF, with or without blockers. After each recording, 712 
the probe was removed and soaked in Tergazyme, then soaked in distilled water, and finally 713 
washed with isopropyl alcohol. After the last recording session, the brains of most mice were 714 
fixed and processed for histology to verify recording locations. 715 

In all three laboratories, Neuropixels data were acquired using SpikeGLX 716 
(https://github.com/billkarsh/SpikeGLX). Following data acquisition, automated spike sorting 717 
was performed using Kilosort 2.017,110 and manual curation was performed using Phy 718 
(https://github.com/cortex-lab/phy). Across all labs, signals were digitized at 30 kHz. Onboard 719 
filtering was turned on in some but not all cases.  720 

Optogenetic stimulation and pharmacology. The same general procedures were followed for 721 
optogenetic stimulation in both the Häusser and Hull labs. This procedure consisted of four parts: 722 
(1) a baseline recording period without stimulation or drug block, (2) a period of optogenetic 723 
stimulation without drug block, (3) a period during which synaptic blockers were applied and 724 
diffused into the brain, and (4) a period of optogenetic stimulation with blockers present. The 725 
details of the procedures for ground-truth identification of cell-type varied slightly between the 726 
two labs. 727 

● Häusser: Optogenetic stimulation was performed using 1 or 2 blue LEDs (470 nm, Thorlabs 728 
M470F3) and in some experiments a blue laser for surface illumination (Stradus 472, 729 
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Voltran). Surface illumination was performed by coupling the laser or the LED via a patch 730 
cable (M95L01, Thorlabs) to a cannula (CFMXB05, Thorlabs) positioned in contact with the 731 
brain surface near the probe. In some experiments a second illumination source - a tapered 732 
fiber (Optogenix 0.39NA/200μm) glued directly to the head of the Neuropixels probe - was 733 
inserted into the brain. Total power at the fiber tip (surface fiber) and coupling cannula 734 
(tapered fiber) was 1-6.9 mW. Each recording session consisted of: (1) a 20 minute baseline 735 
period of spontaneous activity, (2) a set of 50 optogenetic stimuli (stimulation duration: every 736 
10 seconds, 1 stimulation of 250 ms or a train of 5 stimulations of 50ms at 5 Hz, depending 737 
on the experiment), (3) an application of a synaptic blocker cocktail (Gabazine 0.2-0.8 mM, 738 
NBQX 0.8 mM, APV 1.6 mM, MCPG 0-1.3 mM) to the surface of the cerebellum followed 739 
by a 20 minute incubation, and (4) a second set of 50 optogenetic stimuli in the presence of 740 
synaptic blockers. We note that we did not record any neurons in the ground-truth library 741 
with the blue laser as a source of photostimulation.   742 

● Hull: Neurons expressing ChR2 were activated and neurons expressing GtACR2 were 743 
inhibited using a 450 nm laser (MDL-III, OptoEngine) using a 400 micron optic patch fiber 744 
(FT400 EMT, Thorlabs) that was positioned 4-10 mm from the brain surface. Power at the 745 
brain surface was approximately 2-30 mW and was calibrated for each experiment to 746 
produce neuronal responses with minimal artifact. Laser stimulations lasted 50 or 100 ms and 747 
were delivered at 0.1 Hz throughout the recording after the 20 minute baseline period, with 748 
brief pauses to replenish ACSF or apply blockers (Gabazine 0.2-0.8 mM, NBQX 0.6-1.2 749 
mM, AP-5 0.15-0.6 mM, MCPG 1-2.5 mM). 750 

Histology 751 
● Häusser: Mice were deeply anesthetized with ketamine/xylazine and perfused transcardially 752 

with PBS followed by 4% PFA in PBS. The brains were dissected and post-fixed overnight 753 
in 4% PFA, then embedded in 5% agarose (for electrode tract reconstruction) or sectioned at 754 
100 μm (for immunohistochemistry). To reconstruct electrode tracts, we imaged full 3D 755 
stacks of the brains in a custom-made serial two-photon tomography microscope coupled to a 756 
microtome111, controlled using ScanImage (2017b, Vidrio Technologies) and BakingTray 757 
(https://github.com/SainsburyWellcomeCentre/BakingTray, extension for serial sectioning). 758 
The entire brain was acquired with the thickness of physical slices set at 40 µm and that of 759 
the optical sections at 20 µm (2 optical sections/slice) using a piezo objective scanner 760 
(PIFOC P-725, Physik Instrumente) in two channels (green channel: 500–550 nm, ET525/50; 761 
red channel: 580–630 nm, ET605/70; Chroma). Each section was imaged in 1025 x 1025 µm 762 
tiles at 512x512-pixel identification with 7% overlap using a Nikon 16x/0.8NA objective. 763 

After slicing, samples for immunohistochemistry were blocked with 2.5% normal donkey 764 
serum / 2.5% normal goat serum / 0.5% Triton X-100/PBS for 4-6 hours at room 765 
temperature, primary antibodies for 4-6 days at 4°C, and secondary antibodies overnight at 766 
4°C. Antibodies were diluted in blocking solution. The following antibodies were used: rat 767 
anti-mCherry (1:250, ThermoFisher M11217), Mouse anti-Parvalbumin (1:1000, Millipore 768 
MAB1572), Donkey anti-Rat-Alexa 594 (1:1000, Invitrogen), and Goat anti-Mouse-Alexa 769 
633 (1:1000, Invitrogen). Neurotrace 435/455 (1:250, ThermoFisher N21479) was added to 770 
the secondary antibody solution. Sections were mounted and imaged on a Zeiss LSM 880 771 
using a 20x objective in 425x425 µm tiles at 1024x1024-pixel identification. 772 
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● Hull: After the last day of recording, mice were deeply anesthetized with ketamine/xylezine 773 
(350 mg/kg and 35 mg/kg, IP) and perfused with PBS followed by 4% PFA in PBS. Brains 774 
were extracted and post-fixed in 4% PFA in PBS overnight, then sectioned at 100 mm using 775 
a vibratome (Pelco 102). Before sectioning, some brains were encased in a 2% agar block for 776 
stability. Slices were either stained with DAPI (DAPI, Dihydrochloride, 268298, EMD 777 
Millipore) and then mounted with mounting medium (Fluoromount-G, Southern Biotech) or 778 
were mounted with a DAPI-containing mounting medium (DAPI Fluoromount-G, Southern 779 
Biotech). Electrode tracts were visualized using a confocal microscope (Leica SP8). 780 

● Medina: After perfusion with 4% PFA in PBS, brains were extracted, post-fixed in the same 781 
solution for at least 12h and then cryoprotected in 30% sucrose solution in PBS for 48h. The 782 
brains were aligned so the coronal sections would match the track angle and sectioned at 50 783 
µm on a cryostat (Leica CM1950). Free floating sections were recovered in PBS and 784 
incubated in Hoechst solution for 3 minutes (Hoechst 33342, 2µg/mL in PBS-TritonX 785 
0.25%, Thermo Fisher Scientific). Sections were then washed in PBS three times using 786 
fluorescence protectant medium (ProLong Diamond Antifade, Thermo Fisher Scientific). 787 
Epifluorescence was acquired at 10x magnification on an Axio Imager Z1 microscope 788 
(Zeiss), track reconstruction and measurements were made on specific microscopy analysis 789 
software (ZEN software, Zeiss). 790 

Validation of ChR2 specificity. To identify the classes of cerebellar neurons that expressed 791 
optogenetic actuators, we determined the layer in which fluorescent neurons were present and 792 
whether they expressed parvalbumin (PV), which should be present in all molecular layer 793 
interneurons and Purkinje cells112. The location of cerebellar layers in each image were identified 794 
in the Neurotrace (fluorescent Nissl) channel. The soma locations of neurons expressing 795 
tdTomato (as a proxy for Cre expression) and PV were marked manually in grayscale images 796 
using Fiji (NIH). Neurons were deemed to express both tdTomato and PV if their somatic 797 
locations were less than 5 µm apart, and the layer of each neuron was determined by overlaying 798 
the Neurotrace laminar mask to cell locations.  799 

Macaque experimental procedures 800 
Recordings in non-human primates were conducted in the Lisberger lab on three male rhesus 801 
monkeys (Macaca mulatta) weighing 10-15 kg. A portion of the primate dataset reported here 802 
have been published previously along with corresponding detailed methods113. Briefly, monkeys 803 
underwent several surgical procedures under isoflurane in preparation for neurophysiological 804 
recordings. In succession, we (i) affixed a head-holder to the calvarium, (ii) sutured a small coil 805 
of wire to the sclera of one eye to monitor eye position and velocity using the search coil 806 
technique114 and (iii) implanted a recording cylinder aimed at the floccular complex. Analgesics 807 
were provided to the monkeys after each surgery until they had recovered.  808 

Each day, we acutely inserted either tungsten single electrodes (FHC) or, for the majority of our 809 
data, custom-designed Plexon s-Probes into the cerebellar floccular complex. Plexon s-Probes 810 
included 16 recording contacts (tungsten, 7.5 µm diameter) spaced in two columns separated by 811 
50 µm. Adjacent rows of contacts were also separated by 50 µm. Once we had arrived in the 812 
ventral paraflocculus, we allowed the electrode to settle for a minimum of 30 minutes. We 813 
recorded continuous wideband data from all contacts at a sampling rate of 40 kHz using the 814 
Plexon Omniplex system. We used a 4th order Butterworth low-pass hardware filter with a cutoff 815 
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frequency of 6 kHz prior to digitization to eliminate distortion of the recorded signal by the 816 
electrical field produced by the eye coils. All recordings were performed while the monkey 817 
tracked discrete trials of smooth motion of a single black target (0.5° diameter) on a light grey 818 
background in exchange for liquid reward. All analyses of the primate neurons utilized the entire 819 
recording period and were not contingent on the animal’s behavior. 820 

Data processing and analysis 821 
Assignment of layers with Phyllum. For recordings in the mouse, we assigned each channel of 822 
the Neuropixels probe to a layer using Phyllum, a custom-designed plugin for the curation 823 
software Phy. The algorithm for layer identification in Phyllum starts by automatically setting 824 
'anchor' channels whose recorded layer can be unambiguously identified by the presence of 825 
Purkinje cell units with simple and complex spikes (Purkinje layer anchor), mossy fiber units 826 
with triphasic waveforms (granule layer anchor), or low 1-2 Hz frequency units with wide 827 
waveforms indicative of dendritic complex spikes (molecular layer anchor). Then, Phyllum fills 828 
in the layer of the remaining channels via an iterative procedure based on (1) proximity to the 829 
nearest Purkinje cell anchor and (2) allowed layer transitions. Every channel assigned to the 830 
Purkinje cell layer must contain at least a Purkinje cell recording within 100 μm, but the channel 831 
may also contain additional units located in the neighboring granule or molecular layers. If none 832 
of the channels between two consecutive Purkinje cell anchors contain another anchor unit, their 833 
layer is set to ‘Unknown’. On average, Phyllum assigns 82% of all the channels on the 834 
Neuropixels probe to a specific layer. Histological reconstruction of 21 recording tracks 835 
confirmed that for channels that are assigned a specific layer, the assignment is highly accurate: 836 
>99% for molecular layer channels, >98% for granule layer channels, and >95% for Purkinje 837 
layer channels. 838 

Curation procedures 839 
● Mouse: After automated sorting with Kilosort and initial manual curation with Phy, we 840 

implemented checks to ensure that the resulting clusters selected for further analysis 841 
corresponded to single units with physiological waveforms, good isolation properties, and 842 
few or no refractory period violations. Rigorous curation was especially important for our 843 
long recordings, which could have periods of good isolation intermixed with periods of drift 844 
or poor unit isolation. We divided our recordings into overlapping segments (30 seconds 845 
segments computed every 10 seconds) and computed the ‘false-positive’ and ‘false-negative’ 846 
rates in each segment. False positives were defined as spikes that fell within the refractory 847 
period of a unit (± 0.8 ms from a given spike) and termed refractory period violations 848 
(RPVs). The proportion of false-positives was estimated as the quotient between the RPV 849 
rate and the mean firing rate46. False negatives were defined as spikes that were not detected 850 
because they fell below the noise threshold of the recording. They were estimated by fitting 851 
each unit's spike amplitude distribution with a Gaussian function47,48 and quantifying the 852 
fraction of area under the curve clipped at the noise threshold. A 30-second segment was 853 
deemed acceptable if it had less than 5% of false positive rate and less than 5% of false 854 
negative rate. Acceptable intervals were concatenated and used for subsequent classifier 855 
training. A unit was required to have 3 minutes of acceptable isolation during the baseline 856 
period to be included in the sample. 857 

● Monkey: Following each recording session, individual action potentials were assigned to 858 
putative neural units using the semi-automated “Full Binary Pursuit” sorter115, designed to 859 
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distinguish temporally and spatially overlapping spikes from different neurons. Following 860 
automated sorting, we manually curated our dataset, removing neurons with significant 861 
interspike interval violations or low signal-to-noise ratios. The majority of units in our 862 
primate dataset significantly exceeded the metrics used for automated curation of the mouse 863 
data, which potentially biases our sample of primate units towards those that are easier to 864 
record. 865 

Data harmonization. To achieve consistency of data acquired across labs and setups, we 866 
implemented several procedures (Supplementary Figure 1):  867 

1. We reprocessed the wideband voltage recordings from monkeys and mice where the 868 
SpikeGLX acquisition filter was off with a causal first-order Butterworth high-pass filter 869 
(300 Hz cutoff) to agree with the hardware filter used by Neuropixels probes. Following 870 
filtering, we used a drift- and shift-matching algorithm to generate mean waveforms for each 871 
recorded unit.  872 

2. We sought to remove one source of waveform variability by flipping the waveform, if 873 
necessary, so that the largest peak was always negative. We did so with the knowledge that 874 
the polarity of the action potential waveform depends on a number of factors including the 875 
proximity of the recording electrode to the dendrites, soma, and axon88,116 and relative 876 
orientation of the recording contact and the reference.   877 

3. We preprocessed all waveform templates by selecting the mean waveform from the highest 878 
amplitude channel, resampling it to 30 kHz (if necessary), aligning it to the peak, and 879 
inverting it if necessary (see #2 above) to ensure the most prominent peak in the waveform 880 
was always negative. We used the harmonized waveforms to compute summary statistics 881 
(Figure 5, Supp Figure 4), which have been previously used to classify cerebellar 882 
neurons19,20,62,63. 883 

4. We sub-sampled the spikes of each neuron by grouping waveforms with a similar amplitude 884 
on the principal channel, and therefore the same drift-state (i.e. position of probe relative to 885 
the recorded neuron): “drift-matching”.  886 

5. We re-aligned the spikes in time by maximizing the cross-correlation of each spike to a high 887 
amplitude template: “shift-matching”. After alignment, the individual spikes were averaged, 888 
resulting in the final mean waveform for the neuron under study. Neuropixels data processing 889 
(non-manual curation, filtering, drift-shift-matching) was performed using the NeuroPyxels 890 
library117. 891 

Identification of units directly responsive to optogenetic stimulation 892 
Units recorded during optogenetic activation experiments were deemed to be directly 893 
responsive to photostimulation if they met the following conditions: (1) their firing rate increased 894 
(ChR2) or decreased (GtACR2) more than 3.3 standard deviations from the pre-stimulus baseline 895 
within 10 ms of stimulation onset in the 'post-blocker' trials (computed using 0.1 ms bins 896 
smoothed with a causal Gaussian filter with a standard deviation of 0.5 ms), (2) they were 897 
recorded at a depth at which pharmacological blockade was confirmed, and (3) the spike 898 
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waveforms evoked in the 'post-blocker' optogenetic stimulation trials matched those recorded 899 
during the pre-stimulation 'baseline' period. 900 

Construction of 3D autocorrelograms  901 
All recordings were performed in awake animals that were either head-fixed but otherwise free 902 
to move on a wheel (mice) or performing discrete trials of smooth pursuit (primates), so that 903 
firing rates modulated across the experimental session. To account for the impact of changes in 904 
firing rate on measures of firing statistics, we constructed “three-dimensional autocorrelograms” 905 
(3D-ACGs). At each point in time, we estimated the instantaneous firing rate of the neuron as the 906 
inverse interspike interval118. We smoothed firing rates using a boxcar filter (250 ms width) and 907 
evaluated the smoothed firing rate at each spike. Finally, we determined the distribution of firing 908 
rates from all interspike intervals in a recording, stratified firing rate into 10 deciles, and 909 
computed separate 2D-ACGs for the spikes in each decile. We visualized the resulting 3D-ACGs 910 
as a surface where the color axis corresponds to the probability of firing, the y-axis stratifies the 911 
firing rate deciles so that each 3D-ACG contains 10 rows, and the x-axis represents time from 912 
the trigger spike. Note that the spike counts in the autocorrelograms have been divided by the 913 
width of the bin so that the y-axis or color map is calibrated in spikes/s.  914 

As input to the classifier, we used log distributed bins relative to t=0 in contrast to the linearly 915 
spaced bins shown in the Figures and Supplemental material. 916 

Human expert labeling of cerebellar units 917 
● Mouse. We used Phyllum to identify the layer of each recording. Most Purkinje cells were 918 

identified by the presence of both simple spikes and complex spikes and complex-spike-919 
triggered histograms that showed a characteristic pause in the simple spike firing rate 920 
following the complex spike. We identified a number of recordings as Purkinje cells by the 921 
presence of simple spikes without a complex spike, location in a Purkinje cell layer, and 922 
regular firing rate resulting in characteristic “shoulders” present in the autocorrelogram. 923 
Putative molecular layer interneurons were identified by their presence in a molecular layer 924 
with firing rates above 5 spikes/s, incompatible with the firing properties of the dendritic 925 
complex spikes. A subset of putative molecular layer interneurons yielded a properly timed 926 
spike-triggered inhibition of an identified Purkinje cell simple spike. Putative mossy fibers 927 
were in a granular cell layer and some displayed a characteristic triphasic shape due to the 928 
negative afterwave recorded near the glomerulus50,51. Putative Golgi cells were in the 929 
granular cell layer and had broad waveforms and relatively regular firing rates. In addition, 930 
some pairs of putative Golgi cells showed a double peak in the millisecond range in their 931 
cross-correlograms, indicative of gap-junction coupling119. 932 

● Monkey. We classified recordings as ground-truth Purkinje cells if they demonstrated the 933 
characteristic post-complex-spike pause in simple-spike firing. Units that exhibited known 934 
characteristics of Purkinje cell simple spikes but lacked a complex spike were treated as 935 
“putative” Purkinje cells and used in the comparison of classifier-predicted and expert-936 
predicted labels. We included molecular layer interneurons only if they showed spike-937 
triggered inhibition of an identified Purkinje cell’s simple spikes at short latency, leaving 938 
some potential molecular layer interneurons out of our sample. We included units as putative 939 
mossy fibers only if the waveform showed a negative after-wave, characteristic of recording 940 
near a single glomerulus50,51. We note that our classification of mossy fibers is highly 941 
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conservative and likely leaves a large subset of mossy fiber recordings not near a glomerulus 942 
as unlabeled. Putative Golgi cells were identified by their presence in the granule cell layer, 943 
broad waveforms, and highly regular firing, consistent with previous recordings63. Expert 944 
labeling of units in the monkey were performed before collection and analysis of the ground-945 
truth units in the mouse. 946 

Cross-validated cell-type classification 947 
We began the design of our cell-type classifier by selecting the feature space passed to the 948 
model, the model class, and model characteristics such as number of units and learning rate, 949 
collectively the features that define the model’s “hyperparameters”. Our decision to select 950 
hyperparameters independently from the ground truth dataset was critical to ensure 951 
generalizability by minimizing overfitting120. To construct an unbiased feature space to train the 952 
model, we decided a priori that the model’s inputs would be anatomical location, extracellular 953 
waveform, and firing statistics. We elected not to use summary statistics because they provide an 954 
impoverished set of information compared to the inputs we selected. We optimized the model’s 955 
architecture fully independently from our ground truth dataset by leveraging n=3,090 curated but 956 
unlabeled units that were recorded in the experiments used to create the ground-truth library but 957 
were not activated optogenetically. We trained variational autoencoders to reconstruct the 958 
waveforms and 3D-ACGs of the unlabeled units, and optimized the architecture of the 959 
autoencoders based on the quality of the reconstruction, independently from the ground truth 960 
dataset. In the final classifier, we used encoder networks of the two autoencoders to reduce the 961 
dimensionality of the waveforms and 3D-ACGs of the ground-truth library. The output of the 962 
autoencoders, along with the layer of each neuron, served as inputs used to train the final 963 
classifier on the ground truth dataset. Thus, no aspect of the model’s feature space or architecture 964 
was chosen based on the model’s performance on the ground truth dataset. 965 

Our classifier is a “semi-supervised” model because the variational autoencoders were tuned and 966 
trained with unsupervised learning on a set of unlabeled neurons while the complete classifier 967 
was trained with supervised learning on a separate set of ground-truth identified neurons. We 968 
derived our strategy from the “M1” model121. 969 

Variational autoencoder pre-training on unlabeled data 970 
We trained two separate autoencoders to reconstruct the waveforms and log-scaled 3D-ACGs of 971 
our unlabeled units. Ultimately, the encoder networks of the autoencoders, trained on our 972 
unlabeled data, compressed the input data into two 10-dimensional ‘latent spaces’ for the 2 input 973 
features: 3D-ACG and waveform. The training objective of the variational autoencoders was the 974 
‘Evidence Lower Bound’ loss70 modified to include a β term to encourage disentanglement of the 975 
latent space (Higgins et al. 2016). During training, we employed a Kullback–Leibler divergence 976 
annealing procedure to enhance model stability and convergence122. Both variational 977 
autoencoders were trained through gradient descent with the Adam optimizer, complemented by 978 
a cosine-annealing learning rate strategy with periodic warm restarts123. 979 

To both facilitate model convergence and yield high-quality reconstructions, we manually 980 
adjusted variational autoencoder parameters to adapt the model to our specific data 981 
characteristics and improve its performance in subsequent tasks. This procedure did not rely on 982 
the ground truth dataset, so we could adjust hyperparameters freely without overfitting to the 983 
classification task. 984 
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● The final waveform variational autoencoder consisted of a 2-layer multilayer perceptron 985 
(MLP) encoder with Gaussian Error Linear Units (GeLU) non-linearities124 and a 2-layer 986 
MLP decoder also with GeLU non-linearities. It was trained for 60 epochs with η=1e-4, β=5 987 
and a mini-batch size of 128.  988 

● The final 3D-ACG variational autoencoder consisted of a 2-layer convolutional neural 989 
network (CNN) encoder with average pooling after convolutions, batch normalization, and 990 
rectified linear unit (ReLU) non-linearities, and a 2-layer MLP decoder with ReLU non-991 
linearities. It was trained for 60 epochs with η=5e-4, β=5 and a mini-batch size of 32. 992 

The analysis described in Supplementary Figure 7 ensures that our trained variational 993 
autoencoders accurately captured the variance in our data. 994 

Semi-supervised classifier 995 
The final classifier model consisted serially of: (1) the waveform and temporal feature 996 
“variational autoencoders” pretrained on unlabeled data to reduce the dimensionality of the input 997 
features; (2) a multi-headed input layer that accepted the latent spaces of the waveform and 3D-998 
ACG variational autoencoders, along with a “one-hot-encoded” 3-bit binary code of the unit’s 999 
cerebellar layer; (3) a single fully-connected hidden layer with 100 units that processed the 3 1000 
normalized inputs; (4) an output layer with one output unit for each of the 5 cell types (Figure 1001 
6C). The value of the output units sums to 1 via a softmax function so that the output of the 1002 
classifier is the probability that a given set of inputs is from each of the 5 cell types. Between the 1003 
input (2) and fully-connected (3) steps, we applied batch normalization87 to equate the 1004 
contributions of waveform, discharge statistics, and layer. The fully-connected hidden layer had 1005 
a Gaussian prior that encouraged each network unit to have activation values across the training 1006 
set with zero mean and unit variance. We trained the weights of the complete classifier on the 1007 
data in the ground-truth library using gradient descent with a leave-one-out cross-validation 1008 
strategy. We trained the models until convergence or for 20 epochs, whichever came first, with 1009 
η=1e-3, a mini-batch size of 128 and the AdamW optimizer123. We allowed the weights in the 1010 
pre-trained variational autoencoders to change during optimization to allow fine-tuning that 1011 
caused a small improvement in performance on the downstream classification task. 1012 

Finally, we took several steps to ensure that our models are robustly trained and capable of 1013 
generalizing well across datasets: 1014 

1. To account for “class imbalance” created by the different number of neurons in each cell 1015 
type, we performed random oversampling of the under-represented cell types for every 1016 
model after splitting into testing and validation data125. 1017 

2. We assessed the performance of all models through leave-one-out cross-validation, which 1018 
has a lower bias and comparable variance to other cross-validation methods126,127 and has 1019 
been used in the past to model small datasets such as ours20. Thus, leave-one-out cross-1020 
validation is better than other cross-validation methods but worse at estimating the 1021 
generalization error than having an independent test set. We note that our models seemed to 1022 
perform well on independent “expert-classified” test sets. 1023 
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3. We did not tune the hyperparameters of the final semi-supervised classifier or of its training 1024 
procedure. We used only predefined heuristic values and trained until convergence. 1025 

4. We adopted a strategy to prevent confidence miscalibration, the tendency of deep neural 1026 
networks to exhibit over-confidence in their predictions128. We corrected the overconfidence 1027 
of each model instance by applying a last-layer Laplace approximation to the output 1028 
layer83,84. Further, for each leave-one-out sample, we created a “deep ensemble”129 by 1029 
training an ensemble of 10 models with random initial conditions. We then averaged the 1030 
probability for each cell type across model instantiations. Each model generated an average 1031 
prediction probability for each cell type, yielding a set of 5 values (for the 5 classes) that 1032 
summed to 1. To quantify classifier confidence, we averaged the predicted probability for 1033 
each cell type across the 10 instantiations of the model and computed the confidence ratio as 1034 
the ratio of the highest- to second-highest predicted cell-type for the input features from each 1035 
cell in our samples. We chose a confidence ratio of 2 as the confidence threshold here, but 1036 
higher thresholds could be applied to increase confidence in each prediction of cell type. 1037 

Generalization of prediction to unlabeled mouse and macaque cerebellar neuron cell type 1038 
We predicted the cell type of mouse (Medina) and macaque (Lisberger) cerebellar neurons that 1039 
were not involved in the classifier training procedures using an ensemble classifier that utilized 1040 
all ground truth neurons and initial conditions (202 x 10 = 2020 models in total). Each of the 1041 
2020 models was slightly different from the others due to the combination of the 10 initial 1042 
conditions and the 'leave-one-out' procedure used to train them and produced slightly different 1043 
results. The predicted cell-type of each neuron in the unlabeled sample was chosen as that with 1044 
the maximum average prediction across the 2020 models. We applied the confidence ratio and 1045 
confidence threshold as we had for the ground-truth library. 1046 

  1047 
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Data availability 1051 
The data that support the findings of our study will be made publicly available at the time of 1052 
publication. 1053 

Code availability 1054 
The custom analysis code used in our study will be publicly available on Github at the time of 1055 
publication for major packages. Other code will be available from the corresponding author upon 1056 
request. 1057 
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