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Abstract: Influenza viruses have affected the world for over a century, causing multiple pandemics.
Throughout the years, many prophylactic vaccines have been developed for influenza; however,
these viruses are still a global issue and take many lives. In this paper, we review influenza viruses,
associated immunological mechanisms, current influenza vaccine platforms, and influenza infection,
in the context of immunocompromised populations. This review focuses on the qualitative nature
of immune responses against influenza viruses, with an emphasis on trained immunity and an
assessment of the characteristics of the host–pathogen that compromise the effectiveness of immu-
nization. We also highlight innovative immunological concepts that are important considerations for
the development of the next generation of vaccines against influenza viruses.

Keywords: influenza virus; trained immunity; mRNA vaccine; sex-mediated antiviral response

1. Introduction

This review provides an overview of influenza viruses and how they have remained a
global public health concern since the 1918 influenza pandemic (the Spanish flu), which
was caused by the H1N1 influenza A virus, and essentially introduced the influenza virus
to the world [1]. Mechanisms in both the influenza virus and the host’s immune system
can result in viral evasion and infection of the host. A vaccination is the most common
method to prevent diseases associated with influenza viruses. However, current influenza
vaccination strategies have substantial limitations. Vaccines represent an opportunity to
optimize the way in which the host’s immune system will respond to pathogens, in both the
magnitude and the qualitative nature of the response. There are important considerations
in host immune responses to influenza infection and vaccination, which have been largely
ignored in vaccine design and recent developments in the immunology field; they should
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be investigated further to optimize vaccine efficacy. This review will discuss qualitative
aspects of host immunity against influenza viruses that have received less attention in
comparison to quantitative features, and how they may play a role in the effectiveness
of the protection against influenza conferred by the vaccination. We also briefly review
the importance of messenger ribonucleic acid (mRNA)-based vaccines (as a recent vaccine
platform), and how some studies focus on the design and development of mRNA vaccines
against influenza.

2. Types of Influenza Viruses

Influenza viruses are members of the family Orthomyxoviridae, which comprises
enveloped viruses with varied antigenic characteristics. Influenza viruses are spherical or
filamentous; the genome contains segmented negative-sense single-stranded RNA. The
segmented RNA genome of the influenza virus family accelerates antigenic variability [2].
There are four main genera in this family: types A, B, C, and D. Types A and B are clinically
relevant to humans and are responsible for most of the flu outbreaks, while type C normally
causes a milder upper respiratory infection in humans [3,4]. In addition to humans, the
influenza A virus (IAV) is able to infect a number of animals, including pigs, dogs, horses,
and birds [5]. Type D influenza virus has not been shown to cause illness in humans [1].
Therefore, this review will mainly focus on type A and B influenza viruses.

Hemagglutinin (HA or H) and neuraminidase (NA or N) are the two major gly-
coproteins on the surface of the influenza virus, playing key roles in pathogenesis of
the infection [6]. Genetic and antigenic characteristics of HA and NA determine several
subtypes for this virus. There are 18 HA (H1–H18) and eleven NA (N1–N11) subtypes
described thus far [1]. The nomenclature follows a H(x)N(y) pattern in which the host, geo-
graphical location of the first isolation, strain number, and year of isolation are mentioned
when they are identified [7,8].

The influenza B virus has a similar viral structure to type A, but it is not further
divided into subtypes. Some minor antigenic variations have been reported since 1970 in
this virus, which has led to two antigenically detectable lineages, Victoria and Yamagata [9].

Antigenic shifts and antigenic drifts take place when there are major or minor changes
in the characteristics of surface glycoproteins in type A and B influenza viruses. Antigenic
shifts are associated with the epidemics and pandemics of IAV, whereas antigenic drifts
are responsible for more localized outbreaks [10]. Antigenic shifts occur when there is an
exchange in genomic segments at the time of a simultaneous infection of a cell by two
different influenza A viruses. This in turn might bring about a selective advantage of the
new virus compared to the parent viruses. An example is the occurrence of the influenza
A/H2N2 subtype in 1957, which overthrew the subtype that was dominant at the time
(influenza A/H1N1 virus) [10]. In the case of type B influenza viruses, variations also
occur through mechanisms, such as insertion and deletion [11,12]. Influenza C virus is the
third human influenza virus type and consists of seven genome segments. The surface
of the influenza C virus is characterized by a single spike protein named hemagglutinin-
esterase-fusion glycoprotein [13], which conveys both receptor-binding and -destroying
functions [14]. Hemagglutinin-esterase-fusion glycoprotein is also present in influenza D
viruses, where it plays a major role in binding to trachea sections from human, swine, and
bovine origin [15].

3. Antigenic Drift in Influenza Virus

Influenza infections arise in the human population through seasonal epidemics, oc-
curring during various cyclical periods in different regions across the globe. Currently,
approved influenza vaccines rely on the immune system to target immunity against the
viral HA protein. Seasonal vaccines are critical in protecting the population against in-
fluenza and in-depth analyses and redesign must be performed regularly to keep up with
the constantly evolving circulating influenza stains. The fast-paced changes in circulating
strains are due to antigenic drift.
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Antigenic drift is the result of mutations occurring in the surface proteins and other
viral proteins due to error-prone viral RNA-dependent RNA polymerase lacking the ability
to proofread during viral replication [16,17]. These amino acid changes in both the HA and
the NA surface glycoproteins are key factors in antigenic drift, as these substitutions lead to
immune evasion of the virus and allow the virus to propagate in a population and emerge
as a novel epidemic strain [18]. These continuous changes in the virus lead to the virus
existing as quasispecies. Mapping and sequencing analysis of the surface glycoproteins
of escape mutants has helped define five antigenic sites on the HA glycoprotein, named
A–E [19]. Of the surface proteins, the HA glycoprotein is considered the primary focus of
antigenic drift, which may be an area of oversight in vaccine evaluation and formulation as
it is the primary focus in vaccine design.

With each viral particle entering a host cell for replication, these changes at the amino
acid level result in the gradual accumulation of mutations, brought upon by selective
pressure of the host immune system or antiviral drugs. Since the discovery of the A/Hong
Kong/1/1968 (H3N2) influenza A virus, there has been a redesign of the seasonal vaccines
at least once a year, from November 1998 to April 1999 [20], to the 2021–2022 [21] quadriva-
lent vaccine. Furthermore, antigenic drift in influenza A/H3N2 has illustrated how some
amino acid substitutions can result in little to no escape variants, while some substitutions
can create the emergence of new subspecies that have the potential to cause an epidemic.
The influenza A/H3N2 stain from 2005 to 2006 showed a single point-mutation at position
31 of the M2 protein, a transmembrane ion channel that equilibrates pH across the viral
membrane upon entry into a host cell [22]. This mutation to the M2 protein resulted in a
drastic increase in amantadine resistance, from 2 to 12% to greater than 91%, rendering
the antiviral inadequate in inhibiting influenza replication [23]. These escape mutants will
not be the dominant emerging pandemic strain during each season, but they have the
possibility of gaining a single mutation that could escape the host’s immune system as
well as antiviral treatments and vaccines. The association between antigenic drift and the
influenza vaccine design occurs through natural evolution of the virus and the decisions
by global public health officials.

4. Antigenic Shift in Influenza Virus

One major challenge for the development of influenza vaccines is the persistent
alterations in the virus. Antigenic transformation occurs in influenza viruses through
two processes, called antigenic drifts and antigenic shifts, which occur in the surface
glycoproteins. Both mechanisms help the virus evade host immune responses, which
results in complications for vaccination efficacy [24]. Contrary to antigenic drift, which is
accompanied by minor gradual changes, an antigenic shift is the exchange of the entire
genes that encode HA and/or NA [25]. The segmented nature of the influenza virus
genome provides the possibility for gene segment exchange between viruses when a single
cell is infected simultaneously with diverse viral particles [24,26]. In other words, an
antigenic shift is the reassortment and presentation of new HA, NA, or both gene segments
from different strains of influenza viruses that circulate among humans and animals [27].

Antigenic shift occurs exclusively in IAVs due to their genomic variations across multi-
ple animal species, which serve as the sources of viruses with different antigenicity [28]. On
the other hand, influenza B viruses do not undergo antigenic shifts because non-human an-
imal hosts have not been identified for these viruses [24]. Overall, the process of antigenic
shift leads to the emergence of novel IAVs in human populations that would have limited
immunity and can cause problems in vaccination efficacy as well as elevated transmission,
which has the potential to lead to a flu pandemic, as has been the result in the past.

5. Cross-Species Transmission of Influenza Virus

The emergence of pandemic influenza virus strains and new seasonal viruses have
drawn the attention of scientists to the issue of cross-species transmission. There is a need
to advance the understanding of how bird and animal influenza viruses can cross the
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species barrier and expand their host-range. Prevention of outbreaks of human influenza is
dependent on strategies for controlling the disease in birds and animals, which can spread
the virus to humans (especially considering the difficulty in obtaining complete protection
against the numerous IAV variants). Therefore, slowing or blocking the virus spillover
across species through vaccination is more achievable than designing a vaccine against all
rapidly mutating viruses. As an example of controlling the disease in birds, Hajam et al.
recently reported on the generation of protective immunity against avian influenza viruses
in chickens with an mRNA vaccine packaged in chitosan nanoparticles [29].

The emergence of new zoonotic diseases arose with the beginning of the agriculture
revolution and animal domestication [30]. It was accompanied by the significant growth in
population size and an increasing the contact rate between humans and livestock. These
events were the keystone of infectious disease spillover across species, including IAV
infection of humans and a broad range of animals. Wild aquatic birds are considered the
major reservoirs of IAV [31]. They do not appear to show the clinical signs of the disease,
but they transmit the infection to more susceptible birds or mammals.

The transmission of IAVs among species relies on several host, viral, and epidemiolog-
ical factors affecting virus–host cell interplay. For instance, due to the lack of exonuclease
proofreading activity of RNA polymerase, RNA virus replication is error-prone [32], and
this characteristic accelerates the mutation rate of RNA viruses including influenza and
generates a heterogeneous population of mutated viruses [33]. Subsequently, genetic diver-
sity increases the flexibility of the virus for adaptation to new hosts. The genetic changes
are usually exerted by the selective pressure of the host immune system. However, the
replication efficiency of the virus in a new host is dependent on the engagement of the
virus by its specific cell surface receptors.

5.1. Intermediate Hosts
5.1.1. Terrestrial Birds

Wild waterfowl bird viruses are considered the origin of all mammalian IAVs [31].
However, mutation of the virus in an intermediate host appears to be essential for the
adaptation of avian strains to infect humans. Terrestrial birds, such as chickens, quail, and
turkeys, can serve as intermediate hosts for avian-to-human adaptation [34,35].

5.1.2. Pigs

Pigs have been long identified as the most likely intermediate hosts for adaptation
of the avian influenza virus [36–49]. As per the hypothesis of ‘mixing vessel’, pigs can
serve as a host for genetic reassortment among avian, swine, and human influenza strains.
Accordingly, all of these viruses can replicate and complete their life cycles in pigs co-
infected by two or more IAV strains and generate new variants of the virus. Several studies
imply that the H3N2, H1N1, H3N1, and H1N2 subtypes are “reassortant” strains that
emerged from pigs [40,50–62]. The 2009 H1N1 pandemic strain created through the mixing
vessel mechanism is a complex virus containing RNA segments from influenza strains of
avian, swine, and human origin [63,64]. Adaptation of IAV to humans can be mediated
in pigs without any reassortment events [48,65,66]. Since pigs are recognized as the main
source of the cross-species transmission of IAV, more research emphasis should be placed
on developing effective vaccines for swine, to promote human health and safety.

5.1.3. Horses

Horses were the source of continuous transmission of H3N8 and H7N7 influenza
outbreaks in 1872 [65], 1956 [66], and 1963 [67], in which the viruses originated from an
avian-like influenza strain, as well as other IAVs. In addition to isolation of H3N8 equine
influenza virus from camels [68] and pigs [69], it was established for the first time in dogs
in 1999 [70]. Since then, multiple H3N8 equine-to-canine host-jump incidences have been
reported worldwide [71–74]. Indeed, some reassortment also occurred between equine
H3N8 and H7N7 strains in the 1960s, which quickly disappeared during the 1970s [75].
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5.1.4. Dogs

Two well-known canine influenza viruses, H3N8 and H3N2, originated directly from
equine and avian strains, respectively. Although no reassortment has been observed
between H3N8 canine and other influenza viruses, it has been seen with H3N2 canine
influenza viruses [76–78]. Furthermore, H3N8 canine influenza virus transmission to
horses has not been verified. Based on some studies, cats [79] and ferrets [80,81] have been
infected with canine strains. Nevertheless, given the self-limiting nature of the virus and
the close relationship between dogs and people, the spread of the canine influenza virus to
humans, particularly H3N2, is a matter of potential concern.

5.1.5. Bats

Currently, bats are recognized as a source of new infectious viruses due to their poten-
tial role in the coronavirus disease 2019 pandemic. To date, studies show that bat IAVs are
phylogenetically distinct from their mammal-derived counterparts. It had been concluded
that they are unlikely to serve as a notable reservoir for influenza virus transmission to
mammals [82,83]. However, more recent research has identified that bat influenza viruses
could infect cells from a variety of species by using major histocompatibility complex II
molecules as entry receptors [84]. Specifically, it was shown that cells from humans, pigs,
chickens, and mice were susceptible to infection. This reopens the debate about whether bat
influenza viruses could promote novel reassortants with the potential to infect humans. An
influenza virus that causes disease in humans and that uses a molecule unique to antigen-
presenting cells to gain entry could be particularly dangerous as it could potentially impair
the induction of adaptive immune response.

5.2. Molecular Determinants of Species Specificity

Generally, mammalian-adapted influenza viruses are known as species-specific viruses.
However, antigenic drift generates new epitopes or glycosylation sites, which can alter the
viral tropism. For example, in the 1968 Hong-Kong pandemic, E→ L and G→ S amino acid
substitutions at residues 226 and 228, respectively, of the HA protein switched the receptor-
binding preference of the H3 subtype of the virus from avian receptors (α2,3-linked sialic
acid) to human receptors (α2,6-linked sialic acid) [85–87]. Likewise, replacement of glutamic
acid by aspartic acid (E→ D substitution) at residue 190 was associated with an alteration
of receptor-binding affinity of the H1 strain from avian to swine and human cells [86,87].
Antigenic shift by exchanging the large RNA segments among two or more subtypes of
IAVs could also lead to the emergence of novel strains that gain the ability to replicate
efficiently within new host species that were not previously susceptible [31,68,88–98]. It is
an accepted notion that the last three pandemics of IAVs are reassorted descendants of the
1918 H1N1 strain [99].

The number and position of glycosylation sites in HA proteins are other factors de-
termining the host range of the virus. The presence of one N-linked oligosaccharide at
position 63 in human lineage viruses and the absence of one or two glycosylation sites in
the mouse-adapted H3 strain are examples of different patterns of glycosylation altering
the IAV receptor tropism [43]. Length and amino acid sequence of NA are correlated with
pathogenicity and species specificity of the IAV, as well [71,100,101]. Viruses with a short NA
stalk, such as the highly pathogenic avian influenza H5N1, show more virulence [102,103].
Interestingly, modifications of HA and NA often occur simultaneously, providing suitable
conditions for the effective replication of the virus in the new host.

Polymerase complex [100,101] and internal proteins [70,98,104,105] can also determine
the host tropism of the virus. The temperature of the replication site, mutation at key
residues of the proteins, and their interaction with host cell components are factors that
can affect the species specificity of IAV.

Some competitive inhibitors can restrict the cross-species transmission of IAV.
α2-macroglobulin, a conserved effector molecule of the innate immune system of mammals,
interferes with the infection of Madin–Darby canine kidney cells by the human H3 strain
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of influenza virus [106]. Similarly, SA residues on porcine surfactant protein D restricts
the human-to-swine transmission of influenza viruses [107]. These components can be
deployed for designing new vaccines to protect mammals and birds against the disease
and concurrent spread of the virus between species.

6. Current Influenza Vaccines

The immune system encompasses an array of potent effector mechanisms. For many
people, their natural immune responses are sufficient at clearing viral infections. The large
spectrum of innate and adaptive effector cells and molecules can often prevent influenza
or limit it to a mild, transient disease. This concept of naturally acquired immunity has
been extensively reviewed elsewhere [104,105,108,109], although the constant emergence
of novel variants renders natural immunity largely irrelevant after a relatively short period
of time. Some individuals are inherently at risk of moderate to severe (and, especially,
potentially fatal) influenza. This includes elderly individuals experiencing immunosenes-
cence, very young individuals whose immune systems are still maturing, and those who
are immunosuppressed. This is why vaccines represent an excellent strategy to confer
some degree of protection.

The most important targets for influenza vaccines have been the viral membrane
surface proteins, HA and NA. Hemagglutinin enables initial binding of the virus to the
host cell by attachment to sialic acid, as well as fusion of the virus and host membranes
for the release of the viral core into the host cell for viral replication. The HA protein
is composed of a head and a stalk domain. The head domain is the primary target of
antibodies (Abs) that confer immunity to influenza viruses by inhibiting their binding to
host cells [110]. Neuraminidase removes sialic acid from viral proteins and is important in
the detachment and spread of the virus. Antibodies to NA cause an aggregation of viral
particles on the cell surface, reducing their ability to spread [110].

Like any other infection, innate immunity is critical in suppressing viral infections.
However, inactivated vaccines are weak in their ability to elicit an innate immune re-
sponse [111]. That being said, it has been shown that ultraviolet-inactivated avian influenza
virus can trigger the activation of interferon (IFN)-inducible genes and cytokine production
upon binding to human cells [112]. The primary immune response to immunization with
the inactivated influenza virus is the production of Abs against surface proteins, such as
the head domain of the HA protein and the NA protein. The former is thought to be the pri-
mary mediator of the immunity conferred by the current inactivated vaccines. As a result,
the HA content of the inactivated vaccines is accurately measured and standardized [1].
Unlike HA, NA content of such vaccines is not quantified, and only a subset of NA Abs
with a specific epitope have been studied [1]. The fact that NA can elicit protective Abs,
some of which can even confer cross-reactive immunity [113], warrants the need for more
research into the better use of this protein in vaccines.

Three types of influenza vaccines are currently licensed for use worldwide: inactivated
vaccines, live attenuated vaccines, and recombinant HA vaccines. In each dose of the
seasonal influenza vaccine, influenza A (H3N2), A (H1N1), and influenza B strains or
their HA proteins are included, with the vaccine seed viruses replaced periodically to try
to closely match the antigenicity of the virus currently circulating in the public [1,110].
The vaccines that include the two IAV strains and one of the influenza B strains are called
trivalent vaccines. Due to issues with the influenza B strain in the vaccine not corresponding
to the circulating strain, quadrivalent vaccines that contain components of both influenza
B strains were designed. Although there has been concern over the safety and efficacy of
quadrivalent vaccines compared to trivalent vaccines. A study investigated this issue by
examining the antibody responses before and after immunization with either the trivalent
or quadrivalent influenza vaccines, as well as the seroprotection, seroconversion, or adverse
effects following the vaccination. It was observed that both vaccine platforms provided
seroprotection and seroconversion and had similar adverse effects. Both vaccine platforms
also met the requirements of the Committee for Human Medicinal Products for influenza
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vaccines [114]. Currently both vaccine platforms are used annually; however, there are
different recommendations for different groups of people (e.g., recommendations based on
age group) [115].

The most widely used of the three vaccine platforms are inactivated vaccines, which
include whole-virion, split-virion, and subunit vaccines, in the order of the complex-
ity of the viral component used. Immunization with inactivated vaccines can begin at
6–12 months of age [1], with the need for an annual booster. Live attenuated vaccines cause
a weakened infection and can elicit both immunoglobulin (Ig)A in the upper respiratory
tract and IgG in tissues and serum. Live viruses have to replicate to induce immunity, and
their rate of replication is affected by the recency of a previous infection with a related
strain in the host [116]. These vaccines mimic natural infection and usually induce robust
immunity, but are not recommended for children younger than two years old, pregnant
females, or immunocompromised people due to concerns of the state of their immune
systems [1,116]. Finally, recombinant HA vaccines depend on a protein expression system
using insect cells and baculovirus [117]. They have a similar mode of action to inactivated
vaccines but are faster to manufacture and more scalable in production [1,113].

A number of manufacturers currently make and distribute influenza vaccines, in-
cluding Sanofi (Fluzone), GlaxoSmithKline (Fluarix), Seqirus (Fluad), and MedImmune
(FluMist). According to the Centers for Disease Control and Prevention (CDC), the seasonal
influenza vaccine effectiveness has varied yearly from 2009 to 2020 with the lowest and
highest being 19% and 60%, respectively [115]. Surprisingly, there is no upward trend in
vaccine effectiveness in this 10-year timeframe. Several factors could be contributing to the
varied and unpredictable vaccine effectiveness from year to year, including mismatching
of the strains used in the vaccines from the circulating strain, unpredictable antigenic drift
or shift that generate new circulating strains that deviates from the vaccine strains, and
random cross-species transmission. In an older study by Osterholm et al., an extensive
literature search led to the identification of 31 statistically and scientifically rigorous studies,
which showed the pooled efficacy of trivalent inactivated vaccines to be 59% in adults aged
18–65 years (no data for other age groups), and that of live attenuated influenza vaccine
(LAIV) to be 83% in children between 6 months and 7 years old [118].

mRNA vaccines represent a new class of technology based on messenger RNA, and
mRNA vaccines targeting the spike protein of severe acute respiratory syndrome coron-
avirus 2 were the first widely used mRNA vaccines in human. The pandemic that was
declared for the coronavirus disease that emerged in 2019 (COVID-19) and the urgency for
a fast, scalable, and low-cost vaccine brought this class of vaccines to the front line.

One of the main features that makes mRNA vaccines an intriguing technology for
control and prevention of IAV (as an RNA virus with high mutation rate) is the accurate yet
flexible antigen design [119,120]. Antigenic drift and antigenic shift result in new IAV vari-
ants that can promote evasion from previous vaccine-induced immunity. mRNA vaccine
technology can facilitate easier stockpiling where unformulated mRNA or low-volume
libraries of plasmid can be stored for many years, and when required, this unformulated
RNA can be prepared quickly for urgent uses. In addition, mRNA vaccines for influenza
prevent mutation and, therefore, antigenic drift, during the process of virus replication
in embryonated eggs [121]. Developing mRNA vaccines does not need pathogen growth
and is a completely pathogen-free and non-infectious process [122]. Among currently used
influenza vaccines, most of them are manufactured based on chicken eggs or cell substrates.
Normally, this process is time consuming and depends on the accessibility of adequate
pathogen-free embryonated eggs. Approximately six months is required to produce a first
vaccine series and protect the highest risk subpopulations to prevent outbreaks and epi-
demics. This incompatibility between the pace of vaccine production and epidemic growth
highlights the necessity of an alternative vaccine platform that that can be manufactured
faster than conventional vaccines [123].

Immunogenicity of an unmodified mRNA vaccine encoding several influenza anti-
gens, proved to be comparable to conventional inactivated vaccines [124], and induced
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a reasonably effective antibody-mediated immune response [125]. High antibody titers
have been demonstrated in a human phase 1 clinical study in individuals who received an
mRNA-based influenza vaccine [120,123]. The current COVID-19 mRNA vaccines have
demonstrated the potential production speed of influenza mRNA vaccines. However, since
this technology is new and was rolled out so quickly for COVID-19, extra vigilance should
be practiced before widespread application in the context of influenza by conducting exten-
sive safety, pharmacokinetic, and biodistribution analyses. Since mRNA vaccines cause
transfected cells to transiently manufacture the target antigen(s), the implications of the
immune system attacking some self-cells needs to be investigated very closely.

7. Original Antigenic Sin and Influenza

One of the barriers in developing a universal influenza virus vaccine is a phenomenon
known as “original antigenic sin” (OAS). OAS was first described by Thomas Francis in
the 1960s and refers to the concept that an individual’s first encounter with an influenza
virus results in an immunological imprint. This imprinting governs Ab responses during
subsequent influenza virus infections [126]. In general, Ab responses to influenza viruses
are highly cross-reactive. However, OAS causes biased production of Abs against previ-
ously encountered epitopes rather than development of immunity to new epitopes [127].
This poses an issue when developing vaccines for influenza viruses, which rapidly and
frequently mutate.

HA is a membrane protein on influenza viruses that consists of a globular head
that differs substantially between strains, and a stalk domain that has more conserved
epitopes [128]. Arevalo et al. investigated OAS priming of the HA stalk Abs in ferrets
and humans and suggested that individuals exposed in childhood to H1N1 or H3N2 may
have strong immunological memory against group 1 HA stalks or group 2 HA stalks,
respectively [128]. Heterosubtypic infections with viruses of a different antigenic group
than the viruses encountered in childhood could lead to recognition of HA stalk and
production of Abs that fail to bind and protect against the boosting antigen [128]. An
additional study by Meade et al. showed similar findings of back-boosting in a Nicaraguan
household transmission study. The participants were assessed following infection with
H1N1 [129]. They found that children under the age of six had a relatively narrow response
to H1 HAs that are closely related to the HA strain that caused infection and did not induce
cross-reactive Abs. In contrast, adults had much broader responses, including a boost in
Abs to various seasonal group 1 subtype HAs in an OAS-like fashion [129]. These finding
demonstrated that immunological imprinting has long-term effects on subsequent immune
responses following vaccination or infection, which could be taken advantage of in vaccine
design, and represents an opportunity to optimize peoples’ immune responses.

Another surface protein that is under investigation for OAS patterns is NA. Rajendran
et al. investigated the immune responses to a panel of N1, N2, and influenza B virus
NAs in different age groups and observed similar response patterns as those to HAs. The
NA-specific Ab titers increased with age and were generally highest against strains that
circulated during the individual’s childhood [130]. Adults and elderly people had high
titers of anti-influenza B virus NA Abs, while children were almost non-reactive, possibly
because they were not yet exposed to that strain of virus [130]. Similar results were also
seen by Mendez-Legaza et al., which looked at NA-specific Abs following various H1N1
infections. The study’s participants exhibited different Ab responses that corresponded
to viruses that likely primed their immune system upon the first infection [131] and the
observations provide further evidence of OAS patterns in response to NA.

In summary, numerous studies have contributed to the understanding of OAS. Interest-
ingly, it has been proposed that antigenic sin can be turned into antigenic ‘blessing’ through
orchestration of the first encounter with influenza virus via a vaccine that delivers multiple
strains’ epitopes simultaneously [132]. This would produce a diverse immune response
and broad protection to subsequent influenza virus infections. As well, considering recent
findings, it would be crucial to have these vaccines include epitopes that induce Ab responses
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to both HA and NA to overcome OAS. Further research is required to investigate if other
influenza virus antigens can also cause sub-par immune responses against novel strains due
to OAS and include those into the development of a universal influenza virus vaccine.

8. Naturally Acquired Immunity to Influenza Viruses

In the host, IAV will first face the respiratory system’s defense mechanisms includ-
ing antimicrobial peptides and collectins [133]. Surfactant protein-A, -B, and mannose
binding lectin are all a part of the collectin family and are pathogen recognition receptors
(PRRs) that assist in IAV clearance and the attenuation of inflammation caused by IAV
infection [134]. The complement lectin, L-ficolin, has been observed to bind to HA and NA
of IAV and can protect hosts from IAV infection in murine models [135]. HA on IAV binds
sialic acid on surfactant protein-A, and results in virus neutralization and has been demon-
strated to assist in the clearance of IAV infection and reduction of pulmonary inflammation
in murine models [136]. When the host’s lungs are exposed to IAV, innate leukocytes
such as neutrophils, produce various antimicrobial peptides, such as human cathelicidin
LL-37 [137], human neutrophil peptide-1, and human neutrophil peptide-2, which neutral-
ize IAV [138]. Moreover, neutrophils produce human neutrophil peptide-1, which can in-
hibit protein kinase C (PKC) [139]. IAV replication in the host requires the hijacking of host
human ribonucleoprotein complexes, which are regulated by the PKC family [140]. PKCβII,
an isoform of PKC, is necessary for IAV infection and replication in host cells [139]. It has
been observed that when PKCβII activity is inhibited, IAV infection is obstructed [141].

Reaching the mucosa of the host, sialic acid α2,6-galactose sialyloligosaccharide
linkages of the epithelial cells in the respiratory system are the preferred target of influenza
viruses [142]. The virus will fuse to the host cell, allowing it to enter the cell in an endosome.
Endosomes have a low pH which allows for the virus to uptake protons via the M2 channel
and results in the uncoating of the virus and release of the virus’s ribonucleoproteins [143].
IAV can be detected by host cells by multiple PRRs. Toll-like receptors (TLRs) are types of
PRRs that exist on the surface of cells and in endosomes. As such, IAV can be recognized
by TLRs in the endosomes. TLR3 [144,145] and TLR7 [146] can both recognize the RNA of
IAV and initiate a signaling cascade that involve various components. Both TLR pathways
result in the activation of transcription factors that promote the expression of type I and
type III IFNs [142].

Another PRR for IAV detection is an RNA helicase called retinoic acid inducible gene 1
(RIG-1) that can recognize the viral RNA of IAV in the cytosol of hosT-cells [147]. This initiates
a signaling pathway that involves the activation of mitochondrial antiviral signaling protein
and results in the promotion of pro-inflammatory and antiviral activity [147–149]. The RIG-1
and TLR pathways both result in the production of IFN responses [143,146,148–153].

IAVs also have protective mechanisms, including methods to reduce IFN signaling [151].
IAV has also been observed to activate another family of PRRs called nucleotide oligomer-
ization domain (NOD)-like receptors (NLRs), specifically NOD-like receptor family pyrin
domain containing 3 (NLRP3) [154,155]. IAV has been demonstrated to activate NLRP3
inflammasomes, which have been observed to be essential in proinflammatory cytokine
productions during IAV infection. The promotion of inflammation in the respiratory tract by
NLRP3 was observed to have a protective effect in murine models of IAV infection [154].

IFNs have been demonstrated to be necessary for the activation of inflammasomes and
production of various pro-inflammatory cytokines including, interleukin (IL)-1β and IL-18,
that have protective roles against IAV infection [156]. Some of the main cytokines produced
during IAV infection are TNFα, IL-6, IL-1β, and IFNs [153]. Cytokine responses during
IAV infection are important in regulating inflammation, promoting anti-viral responses,
and recruiting and activating leukocytes [153].

Host cellular mediators during IAV infection include respiratory epithelial cells,
pulmonary endothelial cells, and leukocytes. Leukocytes involved in the protection of
IAV infection include natural killer (NK) cells, neutrophils, dendritic cells, and alveolar
macrophages [143]. Alveolar macrophages and monocytes are recruited by C-C motif
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chemokine ligand 2 produced by epithelial cells that have been infected with IAV. Along
with other functions, these macrophages and monocytes will phagocytose virus-infected
apoptotic cells, thereby limiting viral spread [157]. Neutrophils also assist the host de-
fense against IAV via phagocytosis, clearance of debris, killing of virus-infected cells,
release of granules, and recruiting other leukocytes [133,158]. Conversely, neutrophils
have also been associated with promoting inflammation, induction of lung damage, and
poor patient outcomes [159]. Increased expression of neutrophil activation in hosts was
associated with increased disease severity and could be used as a predictive marker for
patient outcomes [160].

Dendritic cells can detect IAV through various pathways, for instance plasmacytoid
dendritic cells can detect IAV via TLR7 [146] and conventional dendritic cells can recognize
IAV through RIG-1 [144,146]. Dendritic cells are potent antigen-presenting cells with crucial
roles in the communication between innate and adaptive immunity, making them key
innate leukocytes [133]. Dendritic cells in the respiratory system can produce inflammatory
cytokines and capture IAV antigens for education of adaptive cell-mediated immune
responses. IFNs can stimulate the maturation of dendritic cells, such as those residing in
the respiratory tract. Mature dendritic cells that have acquired IAV antigens can migrate
to lymph nodes and prime and activate T-cell responses against IAV [161]. This includes
promoting virus-specific cytotoxic T-cell responses that can kill infected hosT-cells [162,163].
Dendritic cells also help support antibody responses by presentation of antigens to B-cells
and in generation of plasma cells from B-cells, and it has been observed that in the absence
of dendritic cells, antibody responses against IAV are compromised [164].

Influenza viruses in a host will initiate many different signaling pathways of the host
defense response. Despite the plethora of defense mechanisms against influenza, influenza
viruses manage to adapt and develop protective mechanisms that allow for replication
and survival. Qualitative aspects of host responses vary from person to person depending
on genetic factors and immunological imprints [160,165]. Further complicating influenza
infection, is the fact that host responses can even inflict self-harm due to losses in regulation
and/or hyperactivation that can cause various injuries [163,166,167]. Influenza infections
involve many complex factors and pathways that should be considered in vaccine design
and taken advantage of in order to promote sterilizing immunity.

Type 1 Versus Type 2 Immunity in Influenza Vaccination

The immune system can elicit qualitatively different responses to optimally respond
to distinct species of pathogens. It is important to design vaccines that capitalize on
these mechanisms to produce a tailored and maximally protective immune response.
In 1986, Mosmann et al. [168] first described the existence of two major functionally dif-
ferent subsets of CD4+ T helper (Th) cells, distinguishable by the cytokines they produce
and the different regulatory and effector functions they mediate in response to invading
pathogens. CD4+ Th1 cells are primarily associated with the induction of pro-inflammatory
responses, increased phagocytic activity, and cytotoxic CD8+ T-cell activation [168,169].
Conversely, CD4+ Th2 cells primarily regulate B-cell activation and Ab responses [168,169].
The T helper cell type hypothesis subsequently gave birth to the concept of type 1 versus
type 2 immunity, which applies to many leukocytes exhibiting both type 1 and 2 phenotypes.
Type 1 responses function primarily to protect against intracellular pathogens, such as
viruses, through cytokine production, upregulation of innate leukocyte phagocytic and
antigen-presentation activities, and induction of cytotoxic T-cell expansion essential in
the killing of virally-infected cells and induction of CD4+ and CD8+ memory T-cell re-
sponses [170]. Conversely, type 2 immune responses function to protect against extracellu-
lar pathogens, such as parasites, and involves the initiation of B-cell class switching, and
the production of Abs [169].

The polarization of type 1 versus type 2 immunity is of particular importance for
consideration in influenza virus vaccine development, given that the most effective re-
sponses against intracellular organisms like influenza viruses are type 1 in nature [170,171].



Vaccines 2021, 9, 979 11 of 33

Less severe cases of natural infection with influenza viruses have been associated with the
accelerated induction of Th1 responses, while Th2-biased responses have been strongly
associated with enhancement of lung pathology and disease progression due to reduced
viral clearance [108,166,167,172]. Thus, vaccines formulated to tilt the balance in favor of
type 1 immunity are vital for eliciting more effective and rapid responses upon influenza
re-infection, particularly in scenarios of incomplete antibody-mediated protection. It is,
therefore, pertinent that the vaccine platform elicits the appropriate initial response, in or-
der to generate a cytokine microenvironment conducive to promotion of type 1 polarization.
Several factors influence the polarization of type 1 versus type 2 immunity, the most notable
of which include the choice of vaccine platform and the subsequent relative immunogenic
strength of the vaccine-derived viral antigens, the local cytokine milieu stimulated upon ad-
ministration, the dose and route of administration, the antigens of choice, and subsequently,
the type of antigen-presenting cell stimulating the T-cell [167–170,173,174].

The vaccine platform will influence the type of immunity the host will respond with
and can affect the efficacy of the vaccine. For instance, inactivated or subunit vaccines may
not have the capacity to enter the host cell as the virus would during natural infection due
to factors such as inactivation or an absence of components that allow entry into the cell.
The host immune system may incorrectly interpret it as an extracellular pathogen and elicit
type 2 immunity rather than as an intracellular pathogen and elicit type 1 immunity. Major
pathways of host detection of influenza virus first require attachment and fusion of the
virus to the host cell before recognition of its viral RNA can occur [107]. If the vaccine is
designed in such a way that it is recognized as an extracellular pathogen, or does not mimic
influenza infection sufficiently, this will result in improper interpretation and sub-optimal
host responses, which can be imprinted into the host’s immunological response memory.

Currently available seasonal inactivated influenza vaccines have been observed to
reduce efficiency in inducing type 1 immune responses, potentially contributing to their
limited efficacy and breadth of reactivity against diverse influenza virus strains [175]. The
inactivated influenza vaccines are also poor stimulators of heterosubtypic cell-mediated
immunity needed to prevent the serious complications of influenza infection, which would
otherwise be elicited by natural influenza virus infections. Live-attenuated influenza
vaccine strains were observed to induce superior protection against influenza infection in
children and adults with pre-existing immunity, which researchers attributed to the ability
of the LAIV to stimulate potent Th1 cell responses [175–177]. While both platforms have
been observed over multiple studies to induce similar viral hemagglutination inhibition
(HAI) Ab responses, only LAIVs induce significant increases in T-cell responses. These
lines of evidence coupled with the continuous emergence of antigenic drift variants of
seasonal influenza viruses suggests that considerable attention should be paid to enhancing
influenza vaccine platforms to induce broader protective immunity, rather than a bias in
induction of strain-specific Abs to the viral HA. Since this could be afforded by vaccinations
biased towards stimulating the Th1 cascade [178,179], there is consequently a need to
investigate how Th1 cell-mediated immune responses can be enhanced in the design
of new influenza vaccines. Multiple mechanisms to mediate vaccine-induced type 1
polarization have been described, including the use of IFN-γ and IL-12 as vaccine adjuvants
or the inclusion of genes coding for IFN-γ or IL-12 in the vaccine platform. Reports
have been published of phase I and II clinical trials utilizing platforms biased to polarize
patients’ immune responses toward the appropriate phenotype, with promising results thus
far [180,181]. The inclusion of molecules capable of disrupting or inducing transcription
factors regulating Th1/Th2 polarization may provide an additional set of clinical tools in
the influenza vaccine platform toolbox.

While the stimulation of Th1 responses can inhibit disease progression through more ef-
ficient clearance of the virus, vaccines targeted towards heightening Th1 responses generally
require the use of conserved epitopes that can be recognized by all major histocompatibility
complex subclasses. Given the extensive variability of epitope recognition across individuals,
the feasibility of generating vaccines with this ability is limited. Despite type 1 responses
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being pertinent to and favorable for optimal protection against influenza infection, paradoxi-
cally, clinicians traditionally measure vaccine-induced protective immunity by following Ab
titers [182]. While the Ab response to influenza vaccination may indeed be a good correlate of
protection, high Ab titers can be consistent with either type 1 or type 2 immunity depending
on the subtypes of Ab present and, therefore, may not be predictive of the degree of pro-
tection against severe influenza illness. One improvement in monitoring influenza vaccine
rollouts would be to expand Ab testing to include analysis of Ab subtypes associated with
type 1 versus type 2 immunity. Clinically, there are no rapid cell-mediated immunological
assays; thus, it is difficult to know to what degree a given vaccine elicits type 1 versus type 2
immunity in a patient. Only after directly analyzing cytokine patterns elicited following vac-
cination, or concurrently studying humoral and cell-mediated responses can one comment
on the relative effects of a vaccine in terms of the type 1 versus type 2 paradigm. Future
studies of influenza vaccination focused on expanding the criteria used to categorize vaccine
responses to include more than just HA Ab titers will be informative for confirming correlates
of protection affiliated with vaccine efficacy.

9. Trained Immunity and Influenza

Trained immunity is a recently discovered phenomenon that occurs in innate leukocytes,
when they are exposed to certain pathogenic stimuli, and develop a non-specific immuno-
logical memory through epigenetic, functional, and metabolic reprogramming [183–186].
Clinical studies indicate that trained immunity can be used to enhance immune responses
against infections and improve vaccine efficacy in adults [183]. However, it is unclear what
promotes or restricts vaccine effectiveness. As mechanisms underlying trained immunity are
better understood, they can be exploited in the design of new therapies and vaccines that
combine activation of classical adaptive immune memory and trained immunity, which will
be an important area of future research [187].

The process of trained immunity following infection and vaccination involves mem-
bers of the innate immune system such as monocytes, dendritic cells, and NK cells. These
cell types exhibit increased reactivity to a second infection that may be the same or a
different pathogen [183]. For instance, beta-glucans are a group of polysaccharides found
naturally in the cell walls of bacteria and fungi, which are high in biologically active
polysaccharides and are recognized by PRRs on leukocytes. In mouse models, these sub-
stances were observed to improve the immune response of the host by stimulating and
improving the functions of innate leukocytes, and resulted in protection against bacterial
infections that cause peritonitis, enteritis, and pneumonia [188].

Bacillus Calmette-Guérin (BCG) vaccination protects against tuberculosis, but it
also protects against viral diseases, including respiratory syncytial virus, human papil-
loma virus, and herpes simplex virus [187]. In eliciting protective responses against
Staphylococcus aureus or Candida albicans, BCG vaccination induces trained immunity in
monocytes and NK cells, resulting in increased expression of activation markers and de-
velopment of pro-inflammatory cytokines [189]. Employing flow cytometry technology, it
was demonstrated that BCG vaccination protects mice from IAV infection by promoting
the induction of memory T-cell responses [190]. BCG vaccination was shown to reduce
influenza virus titers, and virus-induced inflammation and lung injury compared to a
control group [187]. Delivering the BCG vaccine to the lungs greatly improves efferocytosis
by alveolar phagocytes, and this increased efferocytosis protects mice from fatal influenza-
mediated pneumonia by supporting the maintenance of pulmonary homeostasis [191].

BCG vaccination induces trained immunity, which results in a more effective cytokine
response, including cytokines associated with antiviral responses such as IL-1, tumor
necrosis factor, and IFNs. These cytokines are present in high circulating concentrations in
patients with the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and may
contribute to acute respiratory distress syndrome (ARDS) [186]. When the BCG vaccine is
given before influenza vaccination, functional antibody responses to the 2009 pandemic
influenza A (H1N1) vaccine strain were significantly increased in concentration and their
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induction was accelerated. These findings could have implications for vaccination strategy
development and may contribute to increased vaccination efficacy. However, a study
performed by de Bree et al. observed that the BCG vaccine did not promote protection of
mice against avian H7N9 influenza and did not affect histopathological damage, inflamma-
tion, or viral replication. No significant differences in survival, weight loss, or pulmonary
disease was demonstrated between the groups that had previously been immunized with
BCG and the control groups that had not [192]. Therefore, although trained immunity from
BCG vaccination is a promising strategy to examine against influenza infection, its benefits
may be strain-dependent, and further investigations are needed.

A current relevant topic similar to influenza viruses is SARS-CoV-2, which is the
causative agent of COVID-19. As a result, there has been a great deal of interest in
SARS-CoV-2 and its potential similarities and relationships with influenza viruses. The
aim of several retrospective observational studies was to see if there was a link between
trivalent influenza vaccination and COVID-19 mortality and serious clinical outcomes in
hospitalized patients. Patients with at least two of the following symptoms were assigned
a diagnosis of respiratory infection: fever, chills, sore throat, headache, cough, or loss of
smell or taste. This retrospective observational study demonstrated that patients with
COVID-19 who had recently received an inactivated influenza vaccine had substantially
improved health outcomes compared to non-vaccinated patients [193].

Several studies have proposed that influenza virus infection can induce a trained
immunity response that improves cytokine responses to SARS-CoV-2. In vitro experiments
investigating human leukocyte responses to SARS-CoV-2 revealed that responses can be
induced by an inactivated influenza vaccine, which may result in relative protection against
COVID-19 [194]. Influenza vaccination has been linked to fewer positive COVID-19 tests
and better clinical outcomes, which suggests it could be providing a form of protection,
possibly through mechanisms of trained immunity [195].

A study done by Priya et al. using an established in vitro model of trained immu-
nity, demonstrated that the inactivated influenza vaccine can induce a trained immunity
response, including an improvement in cytokine responses after stimulation of human
leukocytes with SARS-CoV-2 [194]. During the first six months, memory NK cells with
intracellular NKp46 expression were induced by influenza vaccines. Increasing NKp46
was positively associated with increased IFN-γ production, which could react quickly
to viral restimulation. This finding indicates that the ability of the NK cell memory-like
response to provide strong immunity against a variety of influenza virus subtypes may be
an advantage of trained immunity [196]. More research is needed to determine the role of
trained immunity in influenza vaccinations and COVID-19 infection.

LAIVs have previously been linked to increased pro-inflammatory cytokine produc-
tion and an effect on both innate and adaptive immune responses. Cold-adapted LAIV,
which is more immunogenic in anatomical locations below 37 ◦C, induces local innate
immune responses that provide a broad range of antiviral immunity. Cold-adapted LAIVs
can provide short-term, non-specific defense against genetically unrelated respiratory
pathogens. The vaccine triggered an almost immediate release of cytokines and leukocyte
infiltration into the respiratory tract, reducing the immune disruption caused by respira-
tory syncytial virus infection [197], illustrating how vaccine platforms can influence the
trained immunity responses that are elicited. Further investigation into trained immunity
responses following different vaccine platforms would be informative for future vaccine
designs and could be useful for development of vaccines that can be catered for specific
requirements.

Trained immunity-based vaccines are a relatively new idea that involve the priming
and education of innate leukocytes. The stimulation of innate leukocytes through their
PRRs causes epigenetic changes that will affect the subsequent innate immune responses.
Therefore, this concept can be capitalized on as an approach to design vaccines that train
the innate immune system. In contrast to traditional vaccines that aim to develop immune
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responses against specific antigens, trained immunity-based vaccines would develop a
more broad and non-specific immunity in the host [198].

There are investigations into the development and use of prophylactic vaccines that
focus on trained immunity for individuals that are immunocompromised and would benefit
from an enhanced broad immune protection such as individuals with immune disorders who
are more prone to developing infections [199]. A study by Guevara-Hoyer et al., has demon-
strated the possible benefit of this concept. They observed a positive effect in patients with
common variable immunodeficiency from an adjuvant trained immunity-based vaccination,
wherein they had reduced upper respiratory infections and decreased medical attention re-
quirements and expenses [199]. This demonstrates the exciting potential to generate trained
immunity-based vaccines that could have useful applications in the design of influenza
vaccines to enhance broad cross-reactive immunity, especially for immunocompromised
individuals.

Trained immunity is a relatively new concept in the field of immunology and could
be used as a tool to improve influenza vaccination efficacy. Further investigation into
the roles of trained immunity in the immune system and responses to foreign pathogens
such as influenza virus will allow for a better understanding of the molecular mechanisms
that promote innate memory-like responses. Current vaccine strategies primarily focus
on adaptive immunity. However, innate immunity may play more important roles in
vaccination than previously considered. Vaccines designed to target and educate both
innate and adaptive immunity may be the key to unleashing the full potential of influenza
vaccines and lead to a new generation of vaccines.

10. Immunological Immaturity and Influenza Vaccines

Infection with influenza viruses presents a serious health concern for immunologically
immature individuals, including fetuses, neonates, and young children, which are at a
higher risk of infection and are more vulnerable to serious consequences than adults [200].
This significant burden results from limitations in both the innate and adaptive immune
system [201]. The infant immune system is tasked with adapting to its new environment,
learning to accommodate commensal microbiota, and neutralizing harmful antigens [201].
This rapid change results in phenotypic differences in immunological characteristics com-
pared to adults, including antigen presenting cells and immunoglobulins [201]. The first
exposure to a virus is an important immunological event as it can define the immune
response to subsequent viral infections [202]. It is very important that the first exposure to
an influenza vaccine is an effective one and understanding these imprinting events will
better inform future vaccine development.

As of now, inactivated vaccines are the only vaccine type authorized for use in chil-
dren under two years of age [203]. While LAIV have demonstrated superior efficacy to
inactivated vaccines, they increase the risk of the obstruction of airways in patients under
12 months of age [204]. The pathogenesis of this wheezing is unknown and until studies are
conducted to elucidate the underlying mechanisms contributing to this side-effects, LAIV
will not be recommended for children under 12 months [204]. Unfortunately, immune
responses to the standard inactive vaccines have demonstrated inadequate effectiveness
in young children [205]. Strategies to enhance the immunological education and limit the
negative side effects of influenza vaccines must be identified to maximally protect this
high-risk population.

Due to the mismatch between the B lineage influenza virus in circulation and the one
in the seasonal vaccine, trivalent vaccines cannot provide guaranteed protection against
influenza B, to which children are especially vulnerable [206]. Thus, quadrivalent vaccines
which include both influenza B viruses were developed where an immune response is
elicited against four different antigens [206]. These quadrivalent vaccine platforms have
been extensively studied and approved in populations over the age of three years old.
However, research was lacking in the safety and immunogenicity of these vaccines in
children under three. With this high-risk population in mind, Pepin, and colleagues
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conducted a phase III clinical trial and demonstrated that these vaccines were both effective
and safe when compared to the currently approved trivalent vaccine in participants aged
6–35 months [207].

Adjuvants are used in vaccines to induce more robust immune responses [208]. The
adjuvant known as MF59 stimulates antigen-presenting cells and promotes T-cell activation
and B-cell expansion [208]. The broadened immune response to adjuvanted vaccines may
more closely mimic a natural infection and since first exposures are critical, this could
provide long-term benefits [209]. MF59-adjuvanted trivalent and quadrivalent vaccines
have been shown to be both safe and highly immunogenic when compared to their non-
adjuvanted counterparts [210,211]. To properly prime and activate the immune system,
two doses are recommended for non-adjuvanted vaccines in an infant’s first influenza
season [203]. It was demonstrated that one dose of an adjuvanted inactive vaccine provides
a better Ab response than two doses of a non-adjuvanted inactive vaccine [209]. This may
provide a more logistically effective dosing regimen than what is currently recommended.
The long-term benefits of priming have yet to be elucidated, and research into the continued
protection from these adjuvants is required.

Efforts to protect children in their first six months of life through vaccination have been
unsuccessful. The safety and efficacy of any type of influenza vaccine has not been shown
in infants. Influenza vaccination during pregnancy and the subsequent passive immunity
is an important strategy for the protection of infants in their first months of life [212,213].
By vaccinating mothers, infants have a substantially decreased risk of influenza and
influenza-related hospitalizations [212,213]. The efficacy of these vaccines is highly depen-
dent on timing [214]. The timing in which the mother receives the vaccine, the time between
vaccination and birth, and the timing of influenza circulation can limit protection for the
first two to three months of life [214]. This demonstrates the need for highly immunogenic
vaccines to increase the concentration of Abs transferred from mother to child and extend
the period of protection. As of yet, no vaccine that fills this need has been identified.

11. Immunosenescence, Influenza, and Influenza Vaccination

Elderly individuals are a key demographic for protecting against influenza as they
are disproportionately at risk for higher rates of influenza-related severe diseases, hospi-
talization, and death [215]. Despite their importance, the efficacy of influenza vaccines
are markedly lower in elderly (≥65 years of age) individuals, with efficacy rates ranging
from 17–53% [216]. This increased susceptibility to influenza and reduced vaccine efficacy is
rooted in poor immunological functioning due to progressive dysregulation of the immune
system, termed immunosenescence. Due to reduced functioning in both innate and adaptive
leukocyte activities, the issues with current influenza vaccines are exacerbated in the elderly.
As such, a greater focus needs to be given to optimizing influenza vaccines for the elderly.

The combination of immunosenescence and immunological aging in elderly individu-
als leads to a progressive dysregulation of the immune system that affects all leukocyte
populations. Detailed changes occurring in innate and adaptive leukocytes populations as
a result of immunosenescence has been extensively reviewed by Allen et al. [217], and is
briefly reviewed here. Aged phagocytes, such as neutrophils, monocytes, macrophages,
and dendritic cells have reduced phagocytic ability, compromising the ability to kill and
engulf pathogens [218–220]. Elderly individuals also have a reduced capacity to combat vi-
ral and malignant threats due to dysfunctional migration and cytotoxicity of NK cells [221].
Reduced phagocytosis and NK cell cytotoxicity likely results in a reduction in the number
of viral peptides produced and acquired during infection or vaccination contributing to
reduced magnitude and breadth of adaptive responses. A variety of age-related defects in
dendritic cells likely also plays a major role in reduced immunity in the elderly. Dendritic
cells have decreased ability to become activated, have poor antigen uptake and presenta-
tion, and reduced expression of co-stimulatory molecules, all of which may contribute to
reduced activation of adaptive responses [222,223].
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The functionality of aged leukocytes of the adaptive immune system are affected at
multiple levels. First, age-related involution of bone marrow and the thymus reduces the
production of naïve B and T-cells, greatly reducing the overall diversity of the B and T-cell
receptor repertoires [224,225]. As a result, aged immune systems have reduced capacity
to generate de novo immune responses against novel epitopes. With reduced pools of
naïve B and T-cells, aged immune systems compensate by relying more heavily on memory
responses [226]. The effectiveness of current influenza vaccines primarily relies on the
ability to generate de novo Ab responses against antigenically shifted epitopes within the
influenza HA protein. Therefore, current influenza vaccine strategies are poorly designed
for efficacy within elderly populations. In addition to reduced pools of naïve lymphocytes,
there are numerous phenotypic differences in the B and T-cells available. For example,
B-cells of aged immune systems exhibit a reduced ability to undergo somatic hypermutation
and class switch recombination [227]. The Abs that are produced demonstrate reduced
affinity maturation and suboptimal effector functions, greatly reducing their ability to
neutralize viruses [228]. Combined with restricted clonal expansion, B-cell responses are
severely hindered in elderly individuals [229]. Reliance of current influenza strategies on
antibody-mediated immunity against antigenically shifting HA epitopes is a poor strategy
for protecting high-risk elderly individuals.

Similar to B-cells, T-cells of elderly individuals exhibit numerous age- and immunosenescence-
related defects. Interestingly, with increased age the ratio of CD4+ to CD8+ T-cells increases,
which is accompanied by an increase in differentiated memory T-cells [230]. Within this larger
population of CD4+ T-cells there are numerous defects such as reduced production of IL-2, reduced
capacity for clonal expansion, and altered differentiation upon antigen stimulation [231]. Elderly
individuals fail to produce increased numbers of activated T follicular helper cells, reducing the
ability to produce effective Ab responses [232]. Similarly, compromised CD4+ T-cell function can
also negatively affect the generation of cytotoxic T-lymphocyte responses. Lastly, CD8+ T-cells
have lower cell surface expression of CD28 and reduced cytolytic abilities, which represents
a significant disadvantage in immune protection [233]. Dysregulation of innate and adaptive
leukocyte populations positions elderly individuals at a severe disadvantage in properly controlling
influenza infections and optimally responding to vaccination. Therefore, there is a critical need for
novel strategies to overcome these immunological defects.

Since current influenza vaccines focus on generating HA-specific Abs, there is a signif-
icant amount of literature characterizing B-cell responses in the elderly. Elderly individuals
have consistently been shown to reduce vaccine-induced Ab responses characterized by de-
creased IgA and IgG concentrations, delays in achieving peak Ab titers, and rapid decline of
Abs [234]. One study investigating the epitope specificity of Abs generated from influenza
vaccination demonstrated that the magnitude of polyclonal antibody responses following
vaccination did not significantly differ between elderly and young volunteers [234]. Upon
closer examination of epitope specificity, the authors demonstrated that the amount of
HAI-positive mAbs was substantially reduced in the elderly, 33% versus 72% [234]. Rather
than targeting the HA protein, the majority of the vaccination-induced Abs targeted rare
epitopes in other influenza proteins, such as NA, NP, and others. Therefore, while the total
magnitude of Ab responses was similar between the two groups in this study, the overall
magnitude of the anti-HAI response was greatly diminished in elderly individuals.

Another shortfall of current influenza vaccines is their inability to generate long lasting
Ab responses in the elderly population. Vaccination-induced influenza virus-specific Ab
responses have been shown to last less than one year in the elderly, with some studies
having demonstrated insufficient HAI Ab titers as early as 120 days (four months) post-
vaccination [235,236]. As a result, some members of the elderly population are insufficiently
protected for the influenza season. Similarly, vaccine induced CD4+ T-cell responses have
been shown to be shorter lived in elderly individuals [237].

With increasing age and the development of comorbidities, aged individuals often
require the long-term use of medication to manage their health. A recent study by Agar-
wal et al. demonstrated that elderly individuals on long-term metformin therapy had
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significantly lower IgA, IgG, and IgM Ab responses following influenza vaccination [238].
Surprisingly, 28 days post-immunization the virus neutralizing activity of patient sera was
37-fold lower for metformin users compared to non-users. Reduced virus neutralizing
activity of metformin users was demonstrated at all later study time points. Interestingly,
metformin users had a 25% higher proportion of CD8+ T-cells at baseline, which increased
to 41% following vaccination. This study did not determine the protective efficacy against
influenza infection, thus, it is unclear if the enhanced CD8+ T-cell responses in metformin
users would be beneficial or detrimental. The results of this study underline the impor-
tance of considering the effect of medication on influenza vaccine efficacy and that other
unexpected factors may affect the immune responsivity of elderly individuals.

Despite vaccination representing the best strategy for protection against influenza,
influenza vaccines remain poorly effective in elderly individuals, with efficacy ranging
from 17–53% [216]. Therefore, there is a need for novel strategies capable of overcoming
barriers associated with immunosenescence to provide protection against influenza to the
elderly population. Optimization of vaccine immunogenicity requires a multipronged
approach, including optimization of current vaccination protocols, trained immunity-based
vaccines, and social interventions.

12. Immunocompromised Individuals

Immunocompromised individuals are at an increased risk of serious complications
from infections with influenza viruses [239]. Due to the weakened nature of the immune
system, immunocompromised populations are recommended to get influenza vaccines with
inactivated virus [240]. Compromised humoral and cell-mediated responses will result in
an impaired ability to produce Abs necessary to prevent infection and a hindered ability to
clear viral particles and limit the spread and repercussions of the viral infection. There is a
need for increased awareness and education of the importance of receiving the annual in-
fluenza vaccination in immunocompromised individuals and healthcare workers [241,242].
Although it is highly recommended for many immunocompromised populations to get the
influenza vaccine annually because of the increased risk of fatal conditions, these popula-
tions remain heavily under-vaccinated [243,244]. Immunocompromised individuals have
higher rates of pneumonia and mortality from influenza and longer hospital stays than
non-immunocompromised individuals [245]. Immunocompromised individuals comprise
a large variety of populations including those on immunosuppressants, with human im-
munodeficiency virus, on steroids, taking immune-modulating agents, with cancer, with
autoimmune diseases, inflammatory conditions, or transplant recipients [246]. Immuno-
compromised individuals are at higher risk of many health complications and disease [246].
Interestingly, it was observed that immunocompromised individuals had less detectable
symptoms of influenza infection than the non-immunocompromised. This suggests they
might have different clinical manifestations and there may be a need for different markers
of disease since the symptoms stray from that of the general public, which could be due to
different infection kinetics or pathogenesis [239].

In patients with solid organ transplants, natural infection with influenza virus was
linked to increased CD4+ T-cell responses compared to vaccinated individuals who were not
infected, suggesting a sub-optimal design of influenza vaccines for this demographic [247].
Transplant recipients must take immunosuppressants to prevent rejection of the transplant,
which makes influenza infection a concern. Immunosuppressants are given to the recipient
and function to repress their immune system from attacking the transplanted foreign
material. This will also downregulate the immune responses and the host protection against
influenza infection and compromise the efficacy of the influenza vaccines [247]. Transplant
recipients are recommended to get the inactivated vaccine annually, but due to problems
with vaccine design and the fact that their immune system may not be able to fight the
infection, they are still susceptible to infection [247].

Natural infection with influenza virus in patients with transplants resulted in stronger
Ab responses with a greater variety than vaccination with a split virus vaccine [248]. It
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has also been shown that booster vaccinations provide additional immunogenic protection
in recipients of solid organ transplants [249]. A high-dose influenza vaccine conferred
better immunological protection against influenza virus infection than the standard dose
in patients with solid-organ transplants [250]. Cell-mediated and antibody responses to
influenza following vaccination were assessed in patients with stable kidney transplants
and it was observed that they had reduced T-cell and Ab responses compared to controls.
Although there were no substantial side-effects observed following vaccination, the im-
munosuppressants the transplant recipients had to take, dampened their immunological
memory and responses to influenza [251]. A study investigating the kinetics of the antibody
responses following influenza vaccination in recipients of renal transplants found that there
was a delay in the induction of influenza-specific Abs, as well as overall weaker responses
in the transplant recipients compared to controls who had not received transplants and
were not immunocompromised [252].

Obesity is a risk factor for chronic and infectious diseases with serious complications
resulting from influenza infection [253]. Obesity has consequences on the immune system
that compromise the ability of a host to fight influenza infection [254]. During the 2009 IAV
pandemic, an increased risk for obese individuals to contract severe influenza infection and
require hospitalization compared to non-obese individuals was observed, indicating obesity
is a risk factor for more serious outcomes or complications of influenza infection [254,255].
Humoral responses have been observed to be negatively affected by obesity in both young
and elderly populations, which result in compromised immune responses following influenza
vaccination and against influenza infection [256]. Reduced CD8+ T-cell functions were
apparent in obese individuals compared to those of healthy weight [257]. Diet or genetically-
induced obesity in mouse models demonstrated that influenza infection has severe outcomes
in obese populations compared to controls [254]. In mouse models of obesity, reduced
numbers of regulatory T-cells, importantly in the bronchoalveolar fluid, have been detected,
suggesting that increased lung pathologies in obese individuals with influenza infection might
be due to a reduction in the ability to down-regulate overly robust immune responses [254].
Obesity has also been associated in murine models with interference of the healing processes in
the lungs and can cause influenza infections to have serious and even fatal consequences [258].
Humoral responses were observed to be hindered in obese mice and humans, which may
also help explain the reduced vaccine efficacy and capacity to fight influenza infection [259].

There is still doubt about the most effective and safest vaccine platform, timing of
vaccination, and amount of vaccine doses in immunocompromised populations. Moreover,
the degree of immunosuppression and the extent of harm the influenza infection causes
can vary depending on many factors. These include the underlying condition and the
treatments being given, which makes influenza vaccination more complex [245]. Although
studies have shown beneficial effects from high doses and booster vaccinations, at the
current moment the main recommendation for immunocompromised populations is to
receive the annual inactivated influenza vaccine at the standard single dose [240]. There
are different methods that are being researched to improve vaccine immunogenicity in
immunocompromised individuals by addition of adjuvants, such as MF59 or increasing
vaccine dosages [248,260].

Optimization of Current Influenza Vaccines for Immunosenescence

Simple modifications to current influenza vaccines are a cost-effective, timesaving,
and low-risk strategy for enhancing the efficacy of influenza vaccines. First demonstrated
in 1994, increasing the dose of HA delivered was shown to enhance anti-HA and neutral-
izing Ab levels compared to the standard dose [261]. Since then, numerous studies have
confirmed the benefit of increased HA dose in enhancing vaccine-induced Ab responses
and protection against influenza [262,263]. For example, the Fluzone high-dose influenza
vaccine, which contains four times the standard dose of HA antigen (60 µg versus 15 µg),
has been shown to be 24% more effective in preventing influenza in elderly adults relative
to the standard-dose vaccine [262,263]. It is hypothesized that increasing the amount of
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Ag results in greater Ag uptake and subsequent presentation by dendritic cells, leading
to enhanced adaptive responses and possibly provides support for B-cell maturation in
germinal centers.

Another simple strategy for enhancing influenza vaccine efficacy is the use of in-
tradermal (ID) vaccination [264–266]. Holland et al. compared standard-dose ID versus
intramuscular influenza vaccination in elderly individuals and demonstrated that ID vac-
cination provided superior seroprotection and seroconversion rates [266]. ID vaccine
administration is believed to enhance vaccine immunogenicity due to the greater number
of antigen-presenting cells present within the dermis, allowing for enhanced Ag presen-
tation and subsequent immune responses. Interestingly, all currently licensed influenza
vaccines are given via intramuscular injection, and it is unclear if they have been tested
via ID administration. Due to its extremely cost-effective nature, we recommend that
ID administration of currently licensed influenza vaccines be investigated to potentially
enhance vaccine efficacy.

Multi-site vaccination is a powerful, economical strategy, which has been severely
underutilized in the field of vaccinology. First pioneered in 1984 by Warrell et al., multi-
site ID, and subcutaneous vaccination was demonstrated to induce rapid, high-titer Ab
responses relative to conventional single injection strategies in patients [267]. We recently
confirmed and extended this strategy to the field of cancer immunotherapy. Using a
replication-deficient human serotype 5 adenovirus vector as a vaccine in a model of murine
melanoma, we demonstrated that four intramuscular injections, with the same total vaccine
dose, generated superior Ab and CD8+ T-cell responses compared to one- or two-site
injection strategies [268]. The robust production of CD8+ T-cell responses using this
strategy may be beneficial in the generation of universal influenza vaccines focused on
generating strong influenza-specific CTL responses in the elderly. We predict that multi-site
injection provides superior immune responses by maximizing the engagement of multiple
secondary lymphoid tissues. Multi-site vaccination is a simple, low-cost strategy to enhance
vaccine response; it should be investigated as a way to enhance vaccine responses in the
elderly. The combination of multi-site injection, high Ag dose, and ID administration may
prove to be an ideal strategy to maximize the efficacy of current influenza vaccines.

Earlier in this review, we discussed how some studies have demonstrated the ability
of pre-immunization with the live attenuated tuberculosis BCG vaccine to enhance the
immunogenicity of vaccines against numerous infectious diseases. A study investigating
the effects of BCG pre-immunization on influenza vaccine efficacy in young healthy adults,
demonstrated that BCG pre-immunization followed by influenza vaccination two weeks
later, resulted in enhanced HI Ab responses and more rapid seroconversion [269]. While
this strategy has not been tested for enhancing influenza vaccine responses in elderly
populations, BCG vaccination has been shown to be safe and reduce the prevalence of
acute upper respiratory tract infections in the elderly [270]. Due to an impressive track
record in terms of trained immunity efficacy and safety, the BCG vaccine is a promising
initial candidate to investigate the ability of pre-immunization and trained immunity to
enhance the efficacy of influenza vaccines in the elderly. Further research is needed to
identify optimal trained immunity-based vaccine strategies and formulations for enhancing
influenza vaccine efficacy, especially in elderly populations.

13. The Effect of Sex on Infections with Influenza Viruses and Potential Implications
for Vaccination

Sexual dimorphism of the immune system has been thoroughly documented in cases
of viral, bacterial, and fungal pathogens, as well as autoimmune diseases [271]. We
observed sexually dimorphic antiviral responses in murine models (Bridle and Karimi
unpublished data). IAV severity is impacted by both biological sex and socioeconomic
factors linked to gender [272]. Sex and gender contribute to host responses to vaccination,
antivirals, and IAV infection severity [272]. The effect of sex on immune responses is
affected by which life stage an individual is at [273]. Prior to puberty, males are more likely
to have severe IAV infections compared to female youth. This trend reverses in adults
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aged 20–65 [272]. In Australia, males aged 0–14 years of age and 85+ had higher infection
rates than their female counterparts [274]. Within children from Costa Rica, infections with
IAV occurred more frequently in boys than girls, whereas Influenza B virus exhibited the
opposite trend [275]. Both pregnancy and menopause status are relevant information that
should be recorded in surveillance data and considered during clinical trial design [274].

These observed epidemiological differences in infection rates can be explained by
studies that elucidate mechanistic variances in the immune system gene profile. A com-
prehensive research effort spanning 3672 samples from six continents determined that
humans have an immunological sex-related gene expression signature in healthy adult
human blood involving 144 genes [276]. Female profiles exhibited higher gene expression
from their CD4+ T-cells, whereas males had elevated gene expression from myeloid cells.
A generated score based on the gene expression data could be correlated with male Ab
responses to influenza infection [276]. A different study analyzing the effects of e-cigarette
use on live attenuated influenza virus-induced gene expression determined that significant
variations existed between male and female expression profiles [277]. Genes associated
with T- and B-cell adaptive immunological functions, including expression of CXCL12,
CXCL13, and CCL20, IFN responses (including IFI27, IFNAR1, IFNL1, IL-18, IRF2, IRF5),
and CD40- and TLR7-mediated responses to pathogens were varied, implicating differen-
tial ability to produce Abs and mount an effective memory response. Females often have a
more protective anti-influenza response than their male counterparts [277].

Females have more robust Ab responses after influenza vaccination. A study that
used both BALB/c and C57BL/6 strains of mice determined that female mice have higher
IgG Ab titers regardless of the strain or age (three months versus 18 months) in response to
trivalent inactivated split-virus influenza vaccination [278]. In an H1N1 vaccination model,
female mice produced a larger quantity of Abs [279]. Antibodies obtained from female mice
were more protective when transferred to naïve mice of either sex compared to Abs derived
from male mice. Female B-cells expressed higher concentrations of TLR7 and deletion
experiments demonstrated that a lack of TLR7 diminished sex-based differences [279].
Hence, TLR7 sexual dimorphism plays an important role in vaccine efficacy. Experiments
in outbred Swiss mice examining differences between sexes in response to whole virus
trivalent inactivated influenza vaccination determined that females had an elevated IgM Ab
response to all three viruses and elevated IgG Abs for H1N1 [280]. There was no difference
in the IgG response to either the B or H3N2 influenza viruses. These studies demonstrate
that it is paramount for influenza researchers to include both male and female animals
within preclinical trials. Variations in post-vaccination Ab responses have extended to
human studies. Indeed, higher magnitude female B-cell responses have been documented
in a cohort of 138 adults aged 50–74, as were higher numbers of CD4+ T-cells and fewer
NK cells [281]. Another recent study reported that human females mounted higher Ab and
IL-6 responses after H1N1 vaccination [282]. A study of vaccinated healthcare workers
within Johns Hopkins Hospital (n = 274) did not observe overall significant differences in
neutralizing Ab titers between males and females when all age groups were merged [283].
Females in older age groups had higher titers than males. Elevated female body mass index
resulted in reduced Ab responses; males did not exhibit the same trend [283].

Sex hormones influence immune responses to influenza vaccination. Human nasal
epithelial cell cultures were treated with endogenous 17-estradiol and estrogen receptor
modulators to analyze their influence on influenza A viral replication [284]. Cell lines
derived from female donors had reduced IAV titers when they were exposed to bisphenol
A, estradiol, or raloxifene. Genomic estrogen receptor-2 was required for the viral titer
to decrease. Cell lines derived from male donors did not have the same effect, indicating
researchers also need to consider testing cell lines derived from both sexes in preclinical
studies. Higher concentrations of the sex hormone estradiol correlated with higher Ab
responses to influenza vaccination in female humans [282]. Moreover, C57BL/6 female
mice had more protective responses to H1N1 vaccinations, although the effect diminished
in older mice. Administering estradiol increased Ab responses, whereas administering
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testosterone diminished the responses [282]. Thus, estradiol treatment post-influenza
vaccination may boost memory responses and protect a larger proportion of susceptible
population subsets.

Testosterone was characterized as having an immunosuppressive influence after
influenza vaccination [285]. In this study with 87 participants, female serum had higher
concentrations of inflammatory cytokines and Abs, which correlated with phosphorylated
STAT3 in monocytes [285]. This provides a mechanistic explanation for why females tend
to have lower viral titers during influenza infections but a propensity towards more severe
inflammation-mediated pathogenesis. Males with higher levels of testosterone had lower
titers of antibodies induced by the trivalent inactivated influenza vaccine. Testosterone
has been shown to have an immunosuppressive effect by interacting with the androgen
receptor on CD4+ T-cells to produce the immunosuppressive cytokine IL-10 [286]. Male
SJL mice also produce more IL-4 and reduced quantities of IL-12 compared to female
mice [286]. IL-4 promotes naïve T-cells to differentiate into the Th2 subtype, which is less
favorable than the Th1 response for effective viral clearance. Testosterone levels decrease
with age, which may explain higher incidences of immune-mediated severe influenza in
senior males due to excessive inflammation in response to the infection [287]. Indeed,
higher testosterone levels proved to be protective against inflammatory damage following
H1N1 influenza infection in a C57BL/6 mouse model [288]. Similarly, treating female mice
with testosterone reduced influenza-mediated mortalities by preventing inflammatory
responses from becoming excessive.

A mounting body of evidence exists that sexual dimorphism might contribute sub-
stantially to influenza vaccination responses and, thus, should always be considered when
designing the next generation of influenza vaccines. Males generally produce fewer neu-
tralizing Abs in response to modern vaccines and have more severe infections in elderly
populations. Thus, consideration should be given to boosting male immunity in senior pop-
ulations. Developing sex-optimized vaccines would contribute to lowering the mortality
of annual influenza infection in hospitals and long-term care facilities.

14. Conclusions

Influenza viruses remain a global problem, with no permanent solution. Annual
vaccines are currently used to manage influenza infections. Yet seasonal influenza results
in hundreds of thousands of deaths annually, with varying vaccine efficacy each year [289].
The development of new methods to design vaccines that cater to the more-qualitative as-
pects of immunological responses could assist in the production of more effective vaccines,
and possibly a more-universal type of vaccine for influenza. The qualitative aspects of
the host immune systems are of even more crucial consideration in immunocompromised
populations, such as young children, elderly people, and individuals with underlying
health conditions, where influenza is a more serious health concern [240]. The qualitative
aspects of host immune responses, including trained immunity, should be exploited in
vaccine design to optimize immunity against influenza, and confer a broader, longer lasting,
and more diverse range of responses.
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