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Abstract
Sevoflurane has been available for clinical practice for about 20 years.
Nowadays, its pharmacodynamic and pharmacokinetic properties together with
its absence of major adverse side effects on the different organ systems have
made this drug accepted worldwide as a safe and reliable anesthetic agent for
clinical practice in various settings.
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Introduction
Although sevoflurane was synthesized in the early 1970s1, it was 
not released for clinical use until the early 1990s. This was related 
partly to the expensive synthesis and the initial concern of appar-
ent toxic effects2, which later appeared to be a consequence of a 
flawed experimental design3. Nowadays, its pharmacodynamic 
and pharmacokinetic properties together with its absence of major 
adverse side effects on the different organ systems have made this 
drug accepted worldwide as a safe and reliable anesthetic agent for 
clinical practice in various settings.

Physicochemical properties
Sevoflurane (1,1,1,3,3,3-hexafluoro-2-(fluoromethoxy)propane) is 
a colorless, volatile, and non-flammable liquid with a characteristic 
smell. It is stable at room temperature and has a boiling point of 
58.6°C and a vapor pressure of 157 mm Hg. Hence, in contrast to 
desflurane, it can be used in standard vaporizers3. Sevoflurane has 
an oil/gas partition coefficient of 47.2 and its minimal alveolar con-
centration (MAC), which is the percentage that is necessary to pre-
vent movement in 50% of patients during skin incision, is 2.05%4,5. 
As a consequence, its potency is considerably lower than that of the 
older inhalational agents such as halothane and isoflurane, but it is 
about three times more potent than desflurane.

Upon contact with alkaline carbon dioxide (CO
2
) absorbers, 

sevoflurane undergoes degradation6–8. The most important degra-
dation product is fluoromethyl-2,2-difluoro-1-(trifluoromethyl) 
vinyl ether, better known as compound A. In experimental studies, 
compound A has been reported to be nephrotoxic9,10. Although the 
clinical implications of these findings remained unclear11, the safety 
issue related to compound A formation led to intense debates for 
many years before the issue was resolved12.

In 1996, Abbott Laboratories voluntarily recalled one lot of sevoflu-
rane because evaluation of a bottle of sevoflurane revealed an 
uncharacteristically pungent odor13,14. This was caused by the 
formation of hydrogen fluoride as a consequence of a Lewis acid-
fluorocarbon reaction. Even in minute amounts, this substance is 
highly reactive and toxic and can cause respiratory irritation and 
pulmonary hemorrhage15. Subsequently, the offending Lewis acid 
(ferric oxide)-containing part was removed from the sevoflurane 
handling equipment, and a Lewis acid inhibitor (water) was added to 
the final product16,17. Although Abbott adapted the production proc-
ess to create a “high water” sevoflurane (>300 parts per million), 
the manufacturers that subsequently launched sevoflurane (Minrad 
and Baxter) did not18–20.

Pharmacological properties
It is beyond the scope of this review to discuss in detail the phar-
macological properties of sevoflurane. Several excellent review  
articles have addressed this topic21–25.

Pharmacodynamics
MAC values of sevoflurane decrease with age, from 3.3% in neonates 
and 2.5% in infants and young adults to 1.58% to 2.05% in middle-
aged adults and 1.45% in adults who are more than 70 years old26–31. 
In the presence of 65% nitrous oxide in the inspired gas mixture, 
MAC values for sevoflurane decrease by about 50% in adults32.

Gender does not influence the MAC of sevoflurane, but there is some 
evidence suggesting that ethnic factors may play a role: MAC values 
reported in US studies were consistently higher (2.05% to 2.6%)5,32 
than those reported for Japanese adults (1.58% to 1.71%)30,31.

Pharmacokinetics
As for the volatile anesthetic uptake, distribution and elimination 
are best described by a five-compartment mammillary model33. 
This model consists of the lungs, the vessel-rich group of organs, 
muscle, fat adjacent to the vessel-rich organs, and peripheral fat. 
In general, an inverse relationship exists between the blood/gas 
partition coefficient of a volatile anesthetic and the time required 
for the inspired and alveolar concentrations to reach equilibrium. 
Sevoflurane has a low blood/gas partition coefficient (0.69), result-
ing in a swifter equilibration of the alveolar-to-inspiratory fraction 
(F

A
/F

I
 ratio) than with enflurane and isoflurane but slightly slower 

than with nitrous oxide and desflurane33,34.

Because of its pleasant odor and the absence of irritation to the 
airways, sevoflurane can be used for inhalational induction both in 
children and in adults35. Studies have shown that induction is as 
rapid as36,37 or even swifter than38–40 with halothane.

Elimination of a volatile anesthetic is also related to its blood solu-
bility. Between 95% and 98% of sevoflurane is eliminated through 
the lung. The driving force for this elimination is the difference 
in partial pressures between the inspired gas mix and the pulmo-
nary capillary blood. In humans, 2% to 5% of the absorbed dose of 
sevoflurane is metabolized by the liver, resulting in the formation 
of inorganic fluoride and the organic fluoride metabolite hexafluor-
oisopropanol41. The latter is conjugated with glucuronic acid and 
excreted rapidly via the kidneys. The biotransformation of sevoflu-
rane occurs predominantly through cytochrome P450(CYP)2E142,43. 
Serum inorganic fluoride concentrations after sevoflurane anesthe-
sia are dose-dependent, reaching 10 to 20 µmol/L after 1 to 2 MAC 
hours and up to 20 to 90 µmol/L with prolonged exposure41. Although 
most studies could not show nephrotoxic effects after sevoflurane 
anesthesia44, some controversial reports45 of mild renal dysfunction 
after the use of sevoflurane resulted in a recommendation by the  
US Food and Drug Administration for caution in the use of sevoflu-
rane in patients with coexisting renal disease. Interestingly, the 
majority of data report no differences in pharmacokinetics between 
patients with and those without kidney diseases46,47. Percutaneous 
losses account for less than 1% of the total uptake of sevoflurane48.

Effects on vital systems
Like the effects of other anesthetic agents, those of sevoflurane on 
the vital systems are mostly depressant.

Respiration
A decrease in ventilation leading to apnea at concentrations of 
between 1.5 and 2.0 MAC can be observed. The ventilatory depression 
with sevoflurane is the result of a combination of central depression 
of medullary respiratory neurons49 and depression of diaphragmatic 
function50 and contractility51.

Sevoflurane provides bronchodilation and attenuates bronchial 
smooth muscle constriction by histamine or acetylcholine and can 
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be safely used in patients with asthma21. Hypoxic pulmonary vaso-
constriction is inhibited by sevoflurane in a dose-dependent manner 
and is not mediated by cyclo-oxygenase21–23.

Circulation
Sevoflurane decreases blood pressure in a dose-dependent man-
ner by decreasing total peripheral resistance. At clinically relevant 
concentrations, cardiac output is usually preserved21–23. Heart rate 
remains unchanged or even decreases. Coronary blood flow remains 
preserved and regional blood flow to other vascular beds appears to 
be maintained at least when systemic hemodynamics are preserved. 
For sevoflurane (unlike for desflurane), no sympathetic nervous 
system activation is observed21–23. Although sevoflurane has been 
reported to prolong the QT and the QTc interval52, it has no effect 
on the normal cardiac conduction pathways and therefore is consid-
ered a safe agent that can also be used in cardiac electrophysiologi-
cal procedures25.

Central nervous system
Sevoflurane is a cerebral vasodilator. In neurosurgical patients, 
sevoflurane decreased middle cerebral artery flow velocity and 
caused no epileptiform electroencephalogram activity and no 
increase of intracranial pressure53. Cerebral autoregulation is main-
tained at low concentrations of sevoflurane54, but higher doses seem 
to decrease autoregulatory capacity55.

Safety
Overall, sevoflurane is considered to be a safe and reliable agent that 
has also been used in uncommon medical conditions such as pheo-
chromocytoma, acute intermittent porphyria, carnitine deficiency, 
muscular dystrophy, multiple sclerosis, primary aldosteronism, and 
myotonic dystrophy23.

In the early years of its use, a number of reports on malignant hyper-
thermia with sevoflurane were published. In many of them, it was 
difficult to isolate the potential effects of sevoflurane from the influ-
ence of the concurrent use of other triggers such as succinylcholine. 
Animal studies have suggested that the malignant hyperthermia 
trigger of sevoflurane was substantially lower than that of other 
volatile anesthetic agents56. However, a recent Japanese database 
study did not find evidence that sevoflurane would be a weaker trig-
gering agent for malignant hyperthermia57. Since its introduction 
in clinical practice, sevoflurane has been safely used in millions of 
people, and reports of sevoflurane-related malignant hyperthermia 
are scarce. Nevertheless, it seems wise to avoid exposure to sevoflu-
rane in patients with a known susceptibility.

In the early years of clinical sevoflurane use, it was reported that 
sevoflurane in the presence of the CO

2
 absorbers soda lime (cal-

cium, sodium, and potassium hydroxide mixture), or baralyme (bar-
ium, sodium, calcium, and potassium hydroxide mixture) degrades 
to compound A. This degradation occurs in the anesthesia machine 
as a result of the extraction of an acidic proton (from the inhala-
tional anesthetic) by a strong base (soda lime or baralyme)58. The 
rate of degradation at a given temperature and moisture level is two 
to four times greater with baralyme compared with soda lime58,59. 
The order of solubility of inhalation anesthetics in dry soda lime is 
sevoflurane > enflurane > desflurane ≥ halothane > isoflurane4. As 

a consequence, more sevoflurane is absorbed into the CO
2
 absorber 

than is observed with other inhalational anesthetics. The produc-
tion and subsequent inhalation of compound A correlate inversely 
with the inflow rate60 and directly with the absorbent temperature61. 
In addition, low fresh gas flows of sevoflurane are associated with 
increased temperatures in the CO

2
 absorber62. Therefore, compound 

A production can be limited by decreasing the temperature of the 
absorbent63. For these reasons, US and Canadian package labels and 
licensing authorities have recommended minimal fresh gas inflow 
rates of 1 or 2 L/min, although other licensing authorities have not 
made such a recommendation. Compound A production can also 
be reduced by the amount of absorbent (smaller canisters)64 and 
adapting the composition of the absorbent by eliminating potassium 
and sodium hydroxide65–67. The clinical implications of compound 
A production have been a point of debate for many years68, but the 
introduction of the new-generation absorbers11 has made this issue 
largely obsolete.

Special populations
The pediatric patient
There seems to be no significant difference in sevoflurane pharma-
cokinetics between children and adults24. Because of its pleasant 
odor, lack of airway irritation, and maintenance of stable hemo-
dynamics, sevoflurane is the agent of choice for mask induction. 
In general, complications upon emergence are infrequent, although 
some studies mention a significantly higher incidence of excite-
ment/agitation with sevoflurane69,70. However, this observation has 
been linked to the fact that the prompt recovery from anesthesia 
with sevoflurane also facilitates earlier awareness of postoperative 
pain69,71. This causal relationship was confirmed in a number of 
studies demonstrating that adequate pain treatment was associated 
with significantly fewer episodes of emergence agitation72,73.

The ambulatory patient
Ambulatory surgery has increased rapidly in recent years and this 
has put an emphasis on the use of short-acting drugs in anesthetic 
practice, allowing fast recovery and early mobilization. Differences 
in early recovery between sevoflurane, desflurane, and propofol have 
been reported to be small but in favor of the inhaled anesthetics74,  
although the clinical implications of these small differences are 
debatable. Postoperative nausea and vomiting are higher with vola-
tile anesthetics than with propofol, but adequate anti-emetic proph-
ylaxis can prevent or blunt this side effect.

The obese patient
The prevalence of obesity is increasing dramatically, not only in 
industrialized countries but also in developing ones. As a conse-
quence, we encounter a growing number of morbidly obese patients 
who need different types of surgery. Obese patients are traditionally 
reported to have slower emergence from anesthesia because of a 
delayed release of volatile anesthetics from the excess fat tissue. 
However, comparable recovery times have been reported in obese 
and non-obese subjects after anesthetic procedures lasting 2 to  
4 hours75.

The new inhalation drugs have a much lower lipid solubility com-
pared with the older volatile anesthetic agents, resulting in a more 
rapid and consistent recovery profile76. For sevoflurane, no significant  
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differences in F
A
/F

I
 ratio have been observed, but the wash-out 

curve—that is, the alveolar-to-expiratory fraction (F
A
/F

AO
 ratio)—was 

reported to be slower in obese patients compared with non-obese 
patients. However, 5 minutes after sevoflurane discontinuation, no 
differences in wash-out were observed between obese and non-obese 
patients77. Several studies have compared kinetic profiles of sevoflurane 
and desflurane. Some studies observed more rapid emergence from 
anesthesia with desflurane but this was not confirmed in other studies 
(reviewed in 78). Finally, an advantage of sevoflurane in this setting is 
that it allows progressive induction of anesthesia via face mask79.

Organ protection
The heart
The finding in the late 1990s that sevoflurane was capable of limit-
ing the extent of myocardial infarction after myocardial ischemia 
triggered a new research direction investigating potential cardiopro-
tective effects of volatile anesthetic agents. Experimental studies 
have clearly indicated that volatile anesthetic agents are capable of 
protecting the myocardium against the consequences of ischemia-
reperfusion injury by decreasing the extent of myocardial damage, 
decreasing the extent of reperfusion injury, and better preserving 
myocardial function. Subsequent research was directed toward 
unraveling the underlying mechanisms and intracellular pathways 
of these cardioprotective effects80–85.

Although the experimental evidence of cardioprotection with vola-
tile anesthetic agents was quite straightforward, the implications for 
clinical practice remain a point of debate. The potential cardiopro-
tective effects related to the use of volatile anesthetics were first 
explored in the setting of cardiac surgery. In coronary artery surgery 
patients, the results of preconditioning protocols were conflicting: 
some authors demonstrated a protective effect whereas others failed 
to observe such an effect. Later, it became clear that this might be 
attributed to the preconditioning protocol used. It also seems that 
the administration of the volatile anesthetic agent throughout the 
entire procedure results in a more pronounced protective effect than 
when administered intermittently. It is beyond the scope of this 
review to discuss these studies in detail. The interested reader is 
referred to a number of reviews on the topic86–95.

For non-cardiac surgery, the potential clinical implication of the car-
dioprotective properties of volatile anesthetics is even more debat-
able. One small study in vascular surgery patients observed a lower 
incidence of cardiac complications in patients treated with sevoflu-
rane compared with those anesthetized with propofol96. Others, 
however, observed no difference in the extent of myocardial damage 
when comparing a volatile anesthetic regimen with a total intrave-
nous regimen97,98. This clearly indicates that only in the presence of 
myocardial ischemia/reperfusion injury can a potential beneficial 
effect of volatile anesthetics be expected99. Interestingly, in the 
study by Lurati Buse and colleagues98, in which 385 patients were 
randomly assigned to receive anesthesia with either sevoflurane or 
propofol, the incidences of perioperative myocardial ischemia were 
comparable (40.8% in the sevoflurane group and 40.3% in the pro-
pofol group). Within 12 months, 14 patients had a major cardiac 
event in the sevoflurane-treated group (7.6%) and 17 in the propofol-
treated group (8.5%). However, given that a potential cardioprotec-
tive effect of volatile anesthetic agents relates to a modulation of the 

extent of myocardial ischemia/reperfusion injury, the analysis of the 
major cardiac events needs to be focused on the occurrence of these 
events in the subgroup of patients who had perioperative myocar-
dial ischemia. To further clarify this issue, the authors performed 
an additional analysis of their data. They found that the incidence 
of major cardiac complications in patients with evidence of peri-
operative myocardial ischemia was similar in both groups: 8 out of  
67 patients (11.9%) in the sevoflurane group and 9 out of 72 patients 
(12.9%) in the propofol group. The remaining 6 and 8 patients with 
postoperative major cardiac complications had not shown any evi-
dence of perioperative myocardial ischemia (Seeberger M, unpub-
lished observations).

Other organ systems
Clinical studies on the protective effects of sevoflurane on other 
organ systems are scarce and limited to a small number of patients. 
Three studies from the same group suggest protective effects after 
liver100,101 and lung102 ischemia with sevoflurane, but the potential 
implications on long-term outcome remain to be established.

Neurotoxicity in the young and aged brain
Preclinical evidence in rodents and non-human primates has caused 
concern regarding the safety of anesthesia in infants and children. 
Indeed, animal studies suggest that neurodegeneration with pos-
sible cognitive sequelae may constitute a potential long-term risk 
of anesthesia in neonatal and young pediatric patients (reviewed 
in 103,104). No hard clinical data suggest that the use of anesthet-
ics in the neonate or young child is associated with signs of devel-
opmental neurotoxicity103. It has been argued that the increased 
risk of poor outcome in some human cohort studies is because 
of the inflammation and stress associated with the surgery rather 
than the anesthetic105. It is expected that the results of two ongo-
ing large-scale studies—the Multi-site Randomized Controlled 
Trial comparing Regional and General Anesthesia for Effects on 
Neurodevelopment Outcome and Apnea in Infants (GAS) study 
and the Pediatric Anesthesia and NeuroDevelopment Assessment 
(PANDA) study—will give more insight into the problem104.

Similarly, experimental studies, observing effects of anesthetic 
agents on memory formation and the induction of neurodegenerative 
changes on a cellular level, have raised concerns about the effects of 
anesthesia and surgery on the elderly brain. The incidence of post-
operative cognitive dysfunction (POCD) varies according to the 
definitions used in the various studies but is reported to be higher in 
major surgery (reviewed in 106–108). Whether general anesthesia 
contributes to POCD remains uncertain. A recent meta-analysis of 
26 randomized trials comparing general to regional anesthesia was 
unable to identify general anesthesia as an independent risk factor 
for POCD109. It is conceivable that surgical trauma and underlying 
pathology are of greater importance. Given the complexity and still-
unknown elements of the pathogenesis of POCD, further research 
on the topic is needed.

Conclusions
Since its introduction in clinical practice, sevoflurane has gained 
wide acceptance as an anesthetic for various types of surgery. Its 
ease of administration, versatility, and stable hemodynamic profile 
make it a safe and easily applicable anesthetic agent.
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