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CARDIAC RADIOLOGY
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Abstract
Over the last decades, interest toward athlete’s heart has progressively increased, leading to improve the knowledge on 
exercise-induced heart modifications. Sport may act as a trigger for life-threatening arrhythmias in patients with structural or 
electrical abnormalities, hence requiring to improve the diagnostic capability to differentiate physiological from pathologi-
cal remodeling. Pathological alterations are often subtle at the initial stages; therefore, the challenge is to promptly identify 
athletes at risk of sudden cardiac death during the pre-participation screening protocols. Advanced imaging modalities such 
as coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) can non-invasively depict 
coronary vessels and provide a deep morpho-functional and structural characterization of the myocardium, in order to rule 
out pathological life threatening alterations, which may overlap with athletes’ heart remodeling. The purpose of the present 
narrative review is to provide an overview of most frequent diagnostic challenges, defining the boundaries between athlete's 
heart remodeling and pathological structural alteration with a focus on the role and importance of CCTA and CMR.

Keywords Athlete’s heart · Sudden cardiac death · Cardiac magnetic resonance · Cardiac computed tomography · 
Cardiomyopathy

Sudden cardiac death: epidemiology 
and etiology

Sudden cardiac death (SCD) prevention in athletes is a 
public health concern. Sudden cardiac death is defined as a 
non-traumatic, unexpected death occurring within one hour 
from the onset of symptoms in an apparently healthy indi-
vidual [1]. It is a rare but devastating occurrence usually 
affecting young and apparently healthy individuals, with an 
extensive social impact due to the preventable nature of this 
event. The reported incidence of SCD in young athletes is 
quite variable ranging from 0.6/100,000 [2] to approximately 
3.6/100,000 athletes per year [3], involving mainly males 
and Afro-Americans. The incidence in athletes is from 2.5 
[4] to 4.5-fold higher [5] than in age-matched non-athletic 
young population, suggesting the role of sport as a trigger 
for SCD.

The aetiology of SCD varies with athletes’ age. SCD in 
young athletes (< 35 years) is mostly due to inherited struc-
tural heart diseases, specifically to hypertrophic cardiomyo-
pathy (HCM), which accounts for approximately one-third 
of deaths in US competitive athletes [2] and arrhythmogenic 
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right ventricular dysplasia/cardiomyopathy (ARVD/C), as 
the most common cause of athletic deaths in Veneto region 
of north-eastern Italy [3]. Reported differences may be 
related to different genetic and myocardial substrate and to 
systematic pre-participation screening in Italy for more than 
30 years with prompt identification and disqualification of 
athletes affected by HCM [3].

The second most common cause of SCD in athletes is 
congenital coronary artery anomalies with origin from the 
“wrong” aortic sinus. The least common causes (5–8%) 
include myocarditis, valvular heart disease and ion-channel 
disorders [6].

In master athletes (> 35 years), the 80% of SCD is due to 
atherosclerotic coronary artery disease (CAD) [5].

Pre-participation screening (PPS) protocols are essential 
to identify subtle heart diseases, reducing the risk of SCD; 
however, they differ among countries. Differently from the 
US, where the inclusion of ECG in PPS is still controversial, 
ECG has been extensively integrated in PPS for more than 
ten years in Europe, due to its high sensitivity [7]. However, 
some cardiac conditions such as coronary anomalies, cardio-
myopathies (e.g. HCM/ARVC) and premature CAD cannot 
be early identified on ECG [2].

Echocardiography is a valid and complementary diag-
nostic tool, which allows a morpho-functional evaluation 
of the heart, distinguishes physiological from pathological 
ventricle hypertrophy and identifies regional wall motion 
abnormalities [6].

The value of advanced cardiac imaging is established in 
current guidelines [8, 9]. In fact, for inconclusive echocar-
diography or in suspected cases of coronary abnormalities 
or cardiomyopathies, coronary computed tomography angi-
ography (CCTA) and cardiac magnetic resonance (CMR) 
are indicated [8, 10]. In particular, CCTA has the advantage 
to depict abnormal coronary vessels anatomy in young ath-
letes and atherosclerotic involvement in master athletes, non-
invasively and with limited radiation exposure, while CMR 
is indicated for the discrimination of normal adaptation to 
cardiomyopathy and for risk stratification [8] due to its capa-
bility to accurately characterize myocardial volumetry, mass, 
contractility and wall motion alteration, with the undisputed 
advantage of structural and microstructural characterization. 
Moreover, CMR can identify inherited cardiac disease, acute 
and chronic damages from different aetiologies [11] and also 
provides prognostic information.

The Athlete’s heart: physiology and adaptive 
mechanisms

Athlete's heart is structurally and physiologically different 
compared to general population.

During exercise there is an increase in oxygen consump-
tion (VO2) and biventricular cardiac output, associated to 
decrease in vascular resistance, which is less in the pulmo-
nary circulation. This mismatch between increased flow and 
vasodilation results in an abnormal increase in pulmonary 
artery pressure and right ventricle (RV) afterload, with a 
significant rise in RV workload.

Hemodynamic and cardiac adaptations differ according 
to the type and intensity of exercise (endurance or strength 
exercise). Regular athletic training determines a complex of 
structural, functional and electrical myocardial remodeling 
(Fig. 1).

Since first echocardiographic studies in 1975, athletes 
were shown to develop left ventricle hypertrophy (LVH) 
predominantly eccentric in endurance athletes and more 
frequently concentric in strength athletes. Compared to 
general population, athletes show a 15–20% greater left 
ventricle wall thickness (LVWT) and 10–15% greater LV 
size. These changes are adaptive mechanisms, which can 
regress in case of detraining. Notably, LVWT > 13 mm and 
LV diameter > 60 mm are rare in healthy athletes [12, 13].

Left Atrium (LA) dilation is the second structural adap-
tation in trained athletes, mainly in endurance sports. 
Increased LA size (cut-off value: 46 mm in females; 50 mm 
in males) can be explained by concomitant LV cavity 
enlargement and volume overload [14], which explains the 
higher incidence of supraventricular arrhythmias encoun-
tered in adult athletes [15].

Right Ventricle (RV) is considered the Achille’s Heel of 
athlete adaptation mechanism. At rest when cardiac flow is 
low, there are modest atrio-ventricular pressure gradients. 
During exercise, the high-flow state results in substantial 
atrial filling and pressure rise during systole when the atrio-
ventricular valves are closed. This high LA pressure backs 
up, through the pulmonary circulation and result in RV after-
load elevation. The higher RV afterload is the determinant 
of RV dilation.

Because of pericardial constraint, the increase in RV vol-
umes causes septal shift toward the left ventricle in early 
diastole that can attenuate early diastolic filling of the LV 
and further increase in LA pressure. Thus, the increase in 
RV afterload becomes a critical constraint during high inten-
sity exercise in healthy subjects [16].

Regarding functional adaptation, elite athletes appear 
to have a higher capacity to increase stroke volume during 
exercise [17]. In particular, endurance athletes have greater 
effective LV diastolic chamber compliance and distensibil-
ity than non-athletes and thus have a steeper slope of their 
Starling curve, which relates LV filling pressure to stroke 
volume.

Despite exposure to vigorous training, no increase in car-
diovascular events or deterioration in global left ventricle 
systolic function or wall motion abnormalities incidence has 
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been evident. Only a transient reduction in LVEF has been 
demonstrated after prolonged strenuous exercise, which is 
termed “cardiac fatigue” [18].

During exercise, the increased LV cardiac output deter-
mines an augmented venous return to right chambers, with 
consequent progressive enlargement. This is associated to 
an increase in wall thickness and altered diastolic function 
for increased atrial component of the flow pattern across 
tricuspid valve. Intense endurance exercise causes acute 
RV dysfunction that recovers in the short term after detrain-
ing. However, chronic structural changes and reduced right 
ventricle function are evident in some athletes. In addition, 
global and regional right ventricle systolic function at rest 
are mildly reduced in endurance athletes compared with 
non-athletic control subjects. These findings can be consid-
ered as “physiological” adaptation to intensive exercise [19].

More than 80% of competitive athletes manifest changes 
in resting ECG reflecting physiological adaptation to training; 
changes potentially confounded with cardiovascular pathology 
occur in 10–14% of ECG. Electrical adaptations in athletes 
result from conditioning of the cardiac autonomic nervous 
system (increased vagal tone and/or sympathetic withdrawal) 
and structural remodeling. Increased vagal tone is responsi-
ble for findings such as bradycardia, sinus arrhythmia, early 
repolarization and first-degree Mobitz type I AV block. There-
fore, ECG findings can be classified [20] into: training related 
changes (sinus bradycardia, first-degree atrioventricular block, 

incomplete right bundle branch block and isolated QRS volt-
age criteria for LV hypertrophy) and uncommon and trained-
unrelated changes (T wave inversion, ST depression, Patho-
logical Q wave). Structural, functional and electrical changes 
in the athlete's heart must be always related to other factors 
such as age, sex and ethnicity.

In fact, women exhibit adaptive mechanisms analogous 
to men, but in absolute terms with less quantitative effects 
and therefore show analogous electrical remodeling but lower 
prevalence of LVH. Indeed, LVWT > 11 mm in the Caucasian 
woman and > 13 mm in the African Caribbean woman is rare 
[21]. African/Afro-Caribbean athletes exhibit marked repo-
larization anomalies and more significant LVH.

Performance-enhancing drugs may facilitate exercise 
capacity and increase athletic cardiac remodeling; how-
ever, the health consequences are still extensively unknown. 
Abergel et al. [22] demonstrated that cyclists in the 1999 Tour 
De France had larger LV diameter and lower systolic func-
tion than cyclists in 1995. One potential explanation is that 
erythropoietin use is believed to have increased dramatically 
over this period.

Fig. 1  Structural, functional, and electrical myocardial remodeling induced by exercise training in competitive athletes
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Hypertrophic phenotype and HCM

The type of sport practiced with age, sex, ethnicity, genetics 
lead to different severity of cardiac hypertrophic remodeling, 
which can be identified with echocardiography and better 
characterized with CMR. The majority of athletes exhibit 
normal LV geometry; however, a concentric hypertrophy 
usually symmetrical that does not exceed 16 mm (Fig. 2) 
is reported in up to 10% of white athletes and up to 18% of 
black athletes [23].

Importantly, athletes with HCM have a lower degree of 
hypertrophy than sedentary patients with HCM, however, in 
most of them (> 85%) the hypertrophy is asymmetric with 
LVWT > 16 mm [24].

Although distinguishing definitive pathological hyper-
trophy from a normal myocardium could be relatively easy, 
a certain number of athletes show intermediate features 
(e.g. LVWT between 13–15 mm in males and 12–15 mm 
in females), which causes a challenge to make a definitive 
diagnosis. Therefore, how to distinguishing hypertrophic 
athletes’ heart remodeling from HCM?

Hypertrophic cardiomyopathy is the most common 
genetic cardiac disorder, representing the first cause of 
sudden cardiac death among athletes. It is a heterogeneous 
entity with a variable clinical presentation. Fibers disarray, 
interstitial fibrosis and arteriolar thickening are the patholog-
ical characteristics that lead to adverse remodeling, arrhyth-
mias, ischemic homologues and sudden cardiac death.

Fig. 2  Cardiac Magnetic 
Resonance in hypertrophic 
adaptation in athletes (on top) 
and hypertrophic cardiomyo-
pathy (on bottom). Hyper-
trophic adaptation in athletes 
is typically characterized by 
mild symmetric hypertrophy, 
rarely over 13 mm and never 
over 16 mm (14 mm orange 
arrow in a), with absence of late 
gadolinium enhancement (b). 
Differently, HCM is character-
ized by myocardial hypertrophy 
with maximal LV wall thickness 
greater than or equal to 15 mm 
in the end-diastolic phase (24 
and 30 mm orange arrows in 
c and e, respectively), most 
frequently with an asymmet-
ric involvement (e, f). Late 
gadolinium enhancement in 
HCM involves the ventricle 
walls with greater thickness, 
most frequently with patchy 
mid-wall distribution (white 
arrows in d, e). Rarely, HCM 
exhibits symmetric phenotype 
(c, d), the most difficult to dif-
ferentiate from exercise induced 
hypertrophic adaptation
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Phenotypically, HCM ranges from symmetric to asym-
metric forms with septal, lateral or apical hypertrophy, while 
right ventricular involvement is relatively rare.

Less common forms may result in left ventricular non- 
compaction and transmural crypts [21]. There are different 
stages of the disease with different CMR findings and sud-
den cardiac risks. Initially HCM may be silent, with normal 
wall thickness, then it may evolve to classic form and eventu-
ally can present, in end stage phases, an adverse remodeling 
with restrictive pattern.

CMR plays a pivotal role in HCM diagnosis, phenotypi-
zation and prognostication, but also in the assessment of 
dynamic obstruction of the LV outflow tract, microvascular 
ischemia, myocardial fibrosis, cardio-embolic risk and for 
surgical planning.

Late gadolinium enhancement is frequent in patients with 
HCM (around 65% of cases) [25], while it is rare among 
young athletes (3–13%) [26] (Fig. 2).

Late Gadolinium Enhancement (LGE) typically involves 
hypertrophied LV walls and provides prognostic informa-
tion. Chan [27] demonstrated that extensive LGE, defined 
as ≥ 15% of LV mass, was associated with > twofold increase 
in SCD risk in asymptomatic cases. The recent introduction 
of mapping technique has opened the scenario to the possi-
bility to quantify the extracellular volume fraction (ECV). A 
few promising studies showed the possibility to distinguish-
ing initial stage of HCM from physiological athletes adapta-
tion by measuring the ECV. This is due to prevalent contri-
bution of myocyte hypertrophy to the increase in LV mass in 
athletes, with subsequent relatively small ECV; differently 
from HCM in which the ECV is significantly enlarged also 
at initial stages [28, 29].

Furthermore, CMR is capable to exclude several other 
causes of left ventricular concentric hypertrophy, such as 

Anderson Fabry disease, aortic stenosis and amyloidosis 
[30].

Anderson-Fabry disease is a rare X-linked disorder with 
systemic involvement and different myocardial disease pen-
etrance. CMR shows concentric hypertrophy, diastolic dys-
function and infero-lateral wall enhanced striae. Typically, in 
these patients native T1 mapping has low values (< 900 ms 
at 1.5 T), due to the high concentration of myocardial fat 
caused by the intracellular accumulation of glycosphingolip-
ids [30].

Amyloidosis is a systemic disease, characterized by 
extracellular deposition of amyloid material. Because of 
widespread and substantial extracellular infiltration, ECV 
is markedly increased (> 45%) with higher values in respect 
to the other forms of cardiomyopathy, moreover CMR might 
demonstrates a transmural enhancement with a “Zebra pat-
tern” [30, 31].

Arrhythmogenic right ventricular 
cardiomyopathy (ARVC)

ARVC is a genetic cardiomyopathy in which the loss of 
desmosomal integrity leads to a fibrofatty replacement 
of myocardial tissue [32, 33] predisposing to ventricular 
arrhythmias, right ventricle enlargement and dysfunction 
(Fig. 3). Although the right ventricle is the most involved, 
biventricular and left-dominant variants exist [34] (Fig. 4).

Diagnosis is based on structural, functional, electrophysi-
ological and histological abnormalities, included in the 2010 
International Task Force (ITF) criteria [35].

Some studies have revealed that vigorous and long-term 
exercise may facilitate clinical manifestations of ARVC, 
increasing the risk of SCD [3, 36]. ARVC has been identified 

Fig. 3  CMR features in a 54-years-old woman affected by right 
arrhythmogenic ventricular cardiomyopathy. Cardiac Magnetic 
Resonance shows an enlarged right ventricle (EDV = 185  ml; EDV/
BSA = 90  ml/mq) with impaired systolic function (EF = 37%). The 
right ventricular wall is thin and irregular (arrows in a) with sys-
tolic bulging (arrows in b) and increased trabeculation on the free 

and diaphragmatic wall. Late gadolinium enhancement short-axis 
image shows thin scars involving the free right ventricle wall (arrows 
in c). Left ventricle volume is in the range of normality (EDV/
BSA = 64 ml/mq), with normal systolic function (67%), without seg-
mental wall motion alteration
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in 4–22% of athletes with SCD [37]. Endurance athletes are 
over-represented among patients with ARVC, but the evi-
dence of genetic or familial involvement is rare [38, 39] and 
differential diagnosis between familial cardiomyopathy from 
a long-term physiological remodeling due to prolonged exer-
cise is challenging. In fact, training-induced RV modifica-
tion often overlaps with ARVC major or minor criteria [40]. 
According to literature, RV dilation is frequent in athletes 
and often matches ARVC task force criteria (end diastolic 
volume indexed for body surface area ≥ 110 ml/m2 in males 
or ≥ 100 ml/m2 in females) [35, 41], often accompanied by 
a concomitant remodeling of LV, mostly involves the inflow 
tract in athletes’ heart, whereas ARVC patients show both 

inflow and outflow tract dilation [42, 43]. Furthermore, 
bulging or aneurysms of RV lateral wall are not found in 
healthy athletes, while they are common findings in ARVC 
[44] (Table 1).

Even though tissue characterization of the RV is not 
included in the ITF Criteria, CMR, in particular LGE, 
provides useful information regarding RV myocardial tis-
sue [45]. In endurance athletes, LGE is frequently found 
in the interventricular septum at the junction point with 
the free wall [19], whereas the most common localization 
of RV fibrosis in ARVC is the free lateral wall [46]. Dif-
ferential diagnosis also includes the evaluation of clinical 
and electrocardiographic features: non-vasovagal syncope 

Fig. 4  Biventricular and left 
dominant arrhythmogenic 
cardiomyopathy. Cine and LGE 
images in genetic confirmed 
arrhythmogenic cardiomyopa-
thy with biventricular (a, b) and 
left-dominant involvement (c, 
d). Cine images show enlarged 
ventricles, with wall motion 
alteration of free RV wall 
(hypokinesia in a and marked 
dyskinesia in c) and of lateral 
LV wall (arrows in a and c), 
with biventricular reduced EF 
(≤ 50% in both cases). Wall 
motion alterations associated 
to irregular wall thinning and 
marked biventricular fibrofatty 
replacement on LGE images 
(b, d), with extensive involve-
ment of the LV in left-dominant 
arrhythmogenic cardiomyopa-
thy (d)

Table 1  Main differences between athlete’s heart and Arrhythmogenic Right Ventricle Cardiomyopathy (ARVC)

ECG: electrocardiogram; RV: Right Ventricle; LV: Left Ventricle; LGE: Late Gadolinium Enhancement; SCD: Sudden Cardiac Death

Imaging features Clinical feature

RV dilation RV wall motion 
abnormalities

LV dilation LGE Symptoms Family history of 
SCD or cardio-
myopathy

ECG abnormalities

Physiological 
adaptation to 
exercise (ath-
letes’ heart)

RV chamber and 
inflow tract

 −  + Posterior RV 
insertion point 
(if present)

 −  − 

ARVC Both inflow and 
outflow tract

Bulging or 
aneurysms of 
RV free lateral 
wall

 − RV free lateral 
wall

Non-
vasovagal 
syncope

 + T-wave inversion 
in V1-V4 and ST 
tract elevation/
Epsilon wave
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[40] and depolarization abnormalities with T-wave inver-
sion in V1-V4 and ST tract elevation [44]. Given that actual 
ITF criteria does not include cut-off values for athletes, the 
correct diagnosis is of fundamental importance to discrimi-
nate between ARVC, which can lead to SCD, from a benign 
adaptation of the RV to endurance exercise [47]. Apart from 
electrophysiological and clinical features, CMR represents 
an essential tool to detect both functional and morphologi-
cal abnormalities in order to distinguish pathological from 
physiological RV and LV characteristics.

Dilated phenotype and dilated 
cardiomyopathy (DCM)

Endurance sport determines dilatation of the myocardial 
chambers due to long-term volume and pressure overload. 
This exercise-induced cardiac remodeling can overlap with 

dilated cardiomyopathy (DCM) in its initial stage, with 
mildly depressed ejection fraction (≤ 55%) and enlarged LV 
(LVEDD > 58 mm and LVEDV > 150 ml) (Fig. 5). DCM is 
defined as a dilated LV with reduced ejection fraction (EF) 
in the absence of significant ischemic heart disease, hyper-
tension, or valvular pathology and is reported as a rare but 
possible cause of SCD in athletes [48].

Abergel et al. in 2004 [22] published a study conducted 
on 286 professional cyclists aimed to identify cut-off values 
for normal left ventricle adaptation in response to training. 
They identified cutoff values of 60 mm for end-diastolic left 
ventricular diameter (EDDLV) and 52% for left ventricu-
lar ejection fraction (LVEF). However, the limited data on 
CMR [49, 50] showed LV short-axis diameter > 60 mm in 
approximately 50% of elite male athletes, a condition rare in 
female athletes. Moreover, resting LVEF could be lower than 
normal in endurance athletes; Prakken et al. found 45–50% 
LVEF in 28% of athletes and 40–45% in 24% of athletes [49, 

Fig. 5  Dilated phenotype in athletes’ heart. Cine images show 
enlarged LV (a–c), with mildly reduced resting systolic function 
(EF = 50%). LV wall thickness is preserved (a, c), with a slightly 
increased apical trabeculation. RV volume and function are pre-
served. The grey zone of dilated adaptation to training is defined by 

LV enlargement (LVEDD > 58  mm or LVEDV > 150  mL) with bor-
derline ejection fraction (< 55%), which is difficult to distinguish 
from mild DCM in absence of LGE. In cases like this, the evaluation 
of systolic function during stress is of pivotal importance for differen-
tial diagnosis
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50]. Therefore, dilated LV with reduced resting EF, may lead 
to misclassification of DCM. A useful parameter to distin-
guish the physiological adaptation in athletes from DCM 
is the increase in ventricular EF during the exercise; rarely 
demonstrated in DCM [51]. Recently, in-scanner real-time 
CMR protocol has been developed to assess the ventricular 
function during exercise [52], improving CMR capability 
to distinguish DCM from ventricle adaptation to training.

Moreover, patients with DCM often showed mid-wall 
LGE involving the interventricular septum [53]. Despite the 
high specificity, the absence of LGE does not exclude DCM. 
Native T1 mapping and ECV values were found to be higher 
in DCM in comparison with healthy athletes [54]. However, 
these data derived from a limited sample size study and need 
to be confirmed in a larger population.

Moreover, excessive trabeculation in athletes’ heart raise 
concern about the potential diagnostic grey zone between 
left ventricle non compaction (LVNC) and exercise-induced 
remodeling.

LVNC is a condition characterized by a double-layered 
myocardial wall, with a thicker trabeculated layer compared 
to compacted wall and presence of deep intertrabecular 
recesses (Fig. 6) [55]. 

Pathognomonic clinical presentation of LVNC is heart 
failure, ventricular arrhythmia and systemic thromboembo-
lism; however, the presentation can be variable according to 
the severity of disease.

Currently, the diagnostic challenge is to distinguish 
LVNC from adaptive hypertrabeculation, in the absence of 
accepted diagnostic criteria.

Hypertrabeculation is a phenotypic manifestation, often 
seen in several myocardial disorders [56]. Only a limited 
number of studies [57, 58] have investigated the mechanisms 
that lead to hypertrabeculation; apical trabeculae cause wall 
stress redistribution, which in turn may protect the heart 

from adverse aneurysmal remodeling [57] in order to achieve 
a higher stroke volume without an increase in longitudinal 
strain [58]. Moreover, it has been hypothesized that a failure 
in LV twist could trigger compensatory hypertrabeculation 
to facilitate ventricular emptying [58].

In 2015, Caselli et  al. [59] recommending CMR for 
exclusion of LVNC in asymptomatic subjects without fam-
ily history and EF < 50% and in subjects with EF > 50% 
and positive family history, ECG anomalies or ventricular 
tachyarrhythmia.

Established CMR diagnostic criteria for LVNC are:

• the ratio between trabeculated and compacted 
layer > 2.3 in end-diastolic long axis view, excluding the 
apex (Fig. 6) [60];

• trabeculated myocardial mass > 20% of the total myocar-
dial mass of the left ventricle (Fig. 6) [60];

• maximal apical fractal dimension of > 1.3 [61].

Ancillary criteria are represented by the dilation of the 
left ventricle and the presence of late enhancement. Intra-
cavitary thrombi among the prominent trabecular structure 
has also been reported.

Myocarditis

Myocarditis is responsible for 2–20% of sudden deaths in 
athletes [8]. It was diagnosed in up to 8% of SCD in athletes 
in post-mortem studies [62]. Diagnosis of myocarditis is 
based on clinical evaluation, lab tests, ECG, echocardiogra-
phy and CMR [63].

CMR is able to non-invasively diagnose myocarditis 
based on the detection of the three main physiopathological 
phenomena occurring during myocardial inflammation such 

Fig. 6  Non-compaction cardiomyopathy. Two-chamber short-axis 
PD images show non compaction cardiomyopathy (a) involving both 
right and left ventricle (white arrows in a) with a ratio between tra-
beculated layer (yellow line in b) and compacted layer (blue line in 

b) equal to 3 (normal value < 2.3) and trabeculated LV myocardial 
mass > 20% of the total LV myocardial mass (trabeculated myocar-
dium mass in yellow contours/ total myocardial mass in yellow plus 
blue contours in c)
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as edema, hyperemia and necrosis/fibrosis (Fig. 7) [64, 65]. 
Traditional diagnostic criteria, the so-called Lake Louise 
Criteria (LLC) [64], showed a suboptimal diagnostic accu-
racy (close to 80%), poorer in chronic myocarditis. This is 
mainly due to the signal intensity-based approach for the 
evaluation of diffuse myocardial involvement; a, remote 
myocardium or skeletal muscle intensity, as reference tis-
sue, with risk of false negative results in coexisting myocar-
ditis [66]. Moreover, conventional imaging resulted prone 
to artifacts [66]. 

The recent introduction of mapping parameters in the 
diagnostic criteria [65] significantly improved CMR sensi-
tivity in the detection of myocardial inflammation [65, 67], 
for the capability to identify subtle myocardial injury [68] 
and to distinguishing active from healing myocarditis [69], 
quantifying myocardial microstructural alteration with a 
pixel-wise approach, overcoming the limits of conventional 
LLC [66].

During the COVID-19 pandemic, signs of myocardial 
inflammation in asymptomatic or mildly symptomatic 
competitive athletes after COVID-19 were identified at 
CMR with variable prevalence (0%-15%) [70]. In a large 

cohort of 1597 US competitive collegiate athletes posi-
tive by polymerase chain reaction for SARS-CoV-2, CMR 
with updated LLC was found to improve the detection of 
myocarditis from 0.31%, based on symptom-based screen-
ing strategy, to 7.4% and 2.3% in clinical and subclinical 
myocarditis [70].

According to current recommendations from American 
Heart Association/American College of Cardiology and 
European Society of Cardiology [8, 71], the participation 
to competitive sport activities has to be refrained in those 
athletes with diagnosis of myocarditis and evidence of active 
inflammation until inflammation resolves in the follow-up 
CMR.

Athletes who are asymptomatic with no arrhythmias and 
with normal echocardiogram and exercise capacity may 
return to sport.

However, based on the additional information provided 
by CMR in SARS-CoV2 positive athletes, also in absence 
of other cardiac tests abnormalities, the potential benefit of 
CMR screening protocols has been advocated, and in par-
ticular the value of CMR imaging, prior to returning to sport 
after COVID-19 infection [70].

Fig. 7  CMR in myocarditis. CMR findings in an 18-years-old male 
with acute chest pain while playing soccer, associated with mild fever 
and pharyngodynia. Cine SSFP image shows a thin subepicardial area 
of hyperintensity on the basal lateral wall (arrow in a), corresponding 

to focal edema on STIR (arrow in b) and subepicardial scar (arrow 
in c). Native T1 (d), T2 mapping (e) and ECV (f) maps show altered 
values on the lateral wall (native T1: 1128  ms; T2: 61  ms; ECV: 
31%). CMR findings suggestive of acute myocarditis
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CMR was found to provide prognostic information in 
myocarditis. LGE was the best predictor of mortality [72] 
especially septal mid-wall involvement [73].

Myocarditis has to be distinguished by other non-
ischemic cardiomyopathies including the left-dominant 
arrhythmogenic cardiomyopathy (LDAC) (Fig. 4) and sar-
coidosis. CMR provides complementary information to 
clinical, genetic/histological and ECG data. CMR identifies 
fibrofatty replacement of LV in LDAC, typically with epi-
cardial involvement and irregular epicardial borders on the 
lateral wall (“the rat-bite sign”) [74], also associated with 
wall motion abnormalities. CMR also allows to distinguish 
myocarditis from cardiac sarcoid, the latter with typical 
hypertrophic phenotype and frequent septal involvement 
[75] and possible concomitant RV-LGE.

Arrhythmogenic bileaflet mitral valve 
prolapse

Mitral valve prolapse (MVP) is defined as > 2 mm displace-
ment of one or both leaflets of the mitral valve beyond the 
annulus within the left atrium in end-systole. MVP affects 
1–3% of the general population with 0.2–1.9% estimated 
1-year risk of SCD and is responsible of 7% of SCDs in 
young adults according to the Italian cardiac pathology 
registry [76].The development of life-threatening arrhyth-
mic events seems to be associated with prolapsing leaflet-
induced papillary muscles/inferobasal left ventricle fibrosis 
due to mechanical traction and hyperadrenergic state (Fig. 8) 
[76]. Risk factors are: female sex, bileaflet prolapse, mod-
erate-severe mitral regurgitation (MR), focal LV papillary 
muscle fibrosis, inferobasal fibrosis or diffuse subclinical 

interstitial fibrosis on CMR, mitral annulus disjunction 
(MAD), history of complex ventricular ectopy, T wave inver-
sion in the inferior leads, ventricular arrhythmia arising from 
the LV and familiarity for SCD [77]. 

In particular, Carmo et al. found that a mitroanular dis-
junction > 8,5 mm as a strong predictor of non-sustained 
ventricular tachycardia (OR 10 95% CI 1.28–78.1) [78, 79].

Exercise has been associated to SCD in patients with 
MVP for increased sympathetic tone and worsening of MR 
[8]. Athletes with MVP should undergo exercise test and 
24-h ECG and in case of alterations, CMR for detection of 
myocardial scars. Physical activity should be restricted to 
low-intensity sports in presence of any of the following risk 
factors: (a) prior arrhythmic syncope, (b) frequent and/or 
complex premature ectopic beats, (c) sustained or recurrent 
non-sustained ventricular tachycardia, (d) family history of 
SCD, (e) severe MR, (f) reduced LVEF (≤ 50%) and (g) 
prior thromboembolic events. In athletes with asymptomatic 
isolated MVP no sport restriction is required.

Coronary artery anomalies 
and atherosclerotic disease

Coronary anomalies are one of the main causes of SCD 
among young athletes [8]. SCD may occur in coronary 
anomalies with hemodynamic impact, such as anoma-
lous left/right coronary artery from the pulmonary artery 
(ALCAPA/ARCAPA) or anomalous-origin of left- 
(AOLCA) or right- (AORCA) coronary artery from the 
opposite (“wrong”) Valsalva sinus especially the so called 
“malignant” variants, typically characterized by intramural 

Fig. 8  Arrhythmogenic mitral valve prolapse. Cine images of a 
45-years-old female with frequent BEV and non-sustained ventricu-
lar tachycardia (VT), show bileaflet mitral valve prolapse, mitroanular 
disjunction (arrow in a), systolic curling of lateral LV wall (arrow in 
b) and a small jet of mitral valve regurgitation (asterisks in b). LGE 

with non-ischemic pattern involves the inferior and infero-lateral 
basal wall (arrows in c). At elettroanatomic mapping, ventricular 
fibrillation was inducible, with subsequent implantation of a cardio-
verter defibrillator
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or interarterial course (Fig. 9), the 2nd cause of SCD in 
young athletes in USA and the 3rd in Italy [80].

Among master athletes, CAD is the most frequent cause 
of SCD during sports occurring in up to 80–90% at post-
mortem evaluation, due to acute plaque rupture/erosion or 
complication of severe stenosis [8, 81].

Indication to cardiac imaging is guided by clinical evalu-
ation of risk factors and maximal exercise stress test [8]. 
In cases of suspected CAD, advanced cardiac imaging is 
performed according to 2019 ESC guidelines for the man-
agement of chronic coronary syndrome [82]; coronary artery 
calcium score improved risk assessment and provides addi-
tional prognostic information for patients’ risk stratification 
[82].

Cardiac imaging techniques allow to non-invasively iden-
tify coronary anomalies of origin and course, malignant 
variants, intramural course and fistulas and have improved 
the diagnosis of CAD over clinical risk score assessment, 
identifying a greater number of individuals with asympto-
matic CAD.

CCTA is the non-invasive technique with highest sen-
sitivity (91–99%) and specificity (74–96%), with excellent 
negative predictive value (NPV 97–99%) able to accurately 
exclude obstructive CAD.

CCTA is fundamental in selection of best therapeutic 
strategy together with clinical and ECG-findings, propos-
ing restriction or suspension of sport activity or return to 
sport after treatment. CCTA is mandatory in the diagnostic-
workflow together with TTE and stress-ECG in order to 
rule-out CAD and anomalous origin/course, especially in 
“master” athletes [80].

CMR can be considered an alternative to CCTA in young 
athletes for the exclusion of anomalies of origin and proxi-
mal course of the coronary arteries, without needing contrast 

agent and without ionizing radiation [83, 84]. Moreover, in 
master athletes with a borderline or uninterpretable exercise 
test result in which a more specific imaging stress test is 
recommended, stress-CMR should be considered as a valid 
alternative to SPECT, for its higher sensitivity in the iden-
tification of myocardial ischemia [85] with the advantage 
of higher spatial resolution which allows a layer-by-layer 
assessment [86].

Conclusion

Advanced cardiac imaging has a pivotal role in the assess-
ment of structural alteration in competitive athletes and can 
distinguish physiological adaptation from congenital anoma-
lies and cardiomyopathy; this is crucial in the early detec-
tion of athletes at risk of SCD. The addition of mapping 
parameters may further improve CMR diagnostic capability 
in identifying cardiomyopathy at earlier stages.
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