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In emotion recognition based on physiological signals, collecting enough

labeled data of a single subject for training is time-consuming and expensive.

The physiological signals’ individual differences and the inherent noise

will significantly affect emotion recognition accuracy. To overcome the

difference in subject physiological signals, we propose a joint probability

domain adaptation with the bi-projection matrix algorithm (JPDA-BPM).

The bi-projection matrix method fully considers the source and target

domain’s different feature distributions. It can better project the source and

target domains into the feature space, thereby increasing the algorithm’s

performance. We propose a substructure-based joint probability domain

adaptation algorithm (SSJPDA) to overcome physiological signals’ noise

effect. This method can avoid the shortcomings that the domain level

matching is too rough and the sample level matching is susceptible to noise.

In order to verify the effectiveness of the proposed transfer learning algorithm

in emotion recognition based on physiological signals, we verified it on the

database for emotion analysis using physiological signals (DEAP dataset).

The experimental results show that the average recognition accuracy of

the proposed SSJPDA-BPM algorithm in the multimodal fusion physiological

data from the DEAP dataset is 63.6 and 64.4% in valence and arousal,

respectively. Compared with joint probability domain adaptation (JPDA), the

performance of valence and arousal recognition accuracy increased by 17.6

and 13.4%, respectively.
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Introduction

Emotion is a complex expression that integrates people’s
psychological and physiological functions. It reflects the
subjective response of individuals to external stimuli all the
time (Sharot et al., 2004). Since affective computing was
proposed, researchers have devoted to digitizing the concept
of emotion, enabling computers to recognize and process it,
and providing more reliable signal input for human-computer
interaction (Picard, 2003; Mühl et al., 2014). In the human-
computer interaction system, accurately decoding the user’s
emotion can make the device not only passively receive the user’s
instructions but also truly perceive the user’s state, to better
understand the user’s intention and establish a more natural
and harmonious human-computer interaction environment
(Egger et al., 2019). As a research hotspot in human-computer
interaction, affective computing is widely used in traffic safety
(Liu et al., 2019; Du et al., 2020), brain-computer interface
(Al-Nafjan et al., 2017; Rao et al., 2018), medical health
(Hosseinifard et al., 2013; Huang et al., 2019), and other
fields. Affective computing includes three continuous processes:
emotion recognition, behavior generation, and induction.
Accurate emotion recognition is the basis for building a good
human-computer interaction experience (Egger et al., 2019).
However, in practical applications, collecting large numbers
of data for each user to train the classifier is difficult, and
the recognition accuracy is easily affected by data noise (Wan
et al., 2021). When the accuracy of emotion recognition is
influenced by physiological signals’ individual differences and
inherent noise, making the model trained in the existing data set
accurately identify new users’ emotions without collecting data
or collecting as little data as possible has essential research value
and application significance.

Nowadays, there are many emotion recognition methods,
such as analyzing users’ voices (Li et al., 2019; Shaqra et al.,
2019), facial expressions (Lawrence et al., 2015; Abdulsalam
et al., 2019), and physiological signals (He et al., 2017; Liao et al.,
2020). Physiological signals are the most easily acquired signals
by the human body through sensors. It contains many important
physiological and psychological information about the human
body and plays a significant role in computer recognition of
human emotions (Li et al., 2021). Compared with emotion
recognition based on facial expression, emotion recognition
based on physiological signals not only has the advantages of low
cost and high efficiency in data acquisition but also can avoid the
errors caused by light and shadow acquisition and the invasion
of user privacy (Hao et al., 2020; Fu et al., 2021).

In the aspect of emotion recognition, electroencephalogram
(EEG) has been paid more attention by researchers among
many physiological signals. The analysis of EEG signals in the
field of emotion recognition depends on data preprocessing,
feature extraction, and feature classification (Xie et al., 2021).
Many researchers use traditional machine learning or deep

neural network to classify EEG signals by extracting the
energy features of the delta, theta, alpha, beta, and gamma
bands. For example, Verma and Tiwary (2014) extracted
the relative power energy, logarithmic relative power energy,
absolute logarithmic relative power energy, standard deviation,
and spectral entropy features of five frequency bands from
EEG signals. Liu et al. (2016) used a deep autoencoder to
extract the features of EEG signals in the DEAP dataset
and extract features. Sorkhabi (2014) used continuous wavelet
transform to extract energy features of five frequency bands
and entropy features of wavelet coefficients. Yin et al. (2017)
extracted the frequency band power features, statistical features,
signal zero crossing rate, Shannon entropy, spectral entropy,
kurtosis, skewness, and other features of the five frequency
bands. Torres-Valencia et al. (2017) extracted statistical
features of EEG signals and power features of five frequency
bands.

However, a single EEG signal’s lack of feature information
will lead to low emotion recognition accuracy. Some researchers
use feature level fusion or signal level fusion to fuse multimodal
signals to improve emotion recognition accuracy. He et al.
(2021) extracted 11 features from the EEG signal of FP2 channel
and 6 features from HR. Using multi-core learning for fusion,
they achieved 67% binary classification accuracy under fewer
signals and channels. Song et al. (2019) used attention-based
long-term short-term memory to fuse multimodal physiological
signals, including electroencephalogram (EEG), Galvanic Skin
Response (GSR), respiration (RSP), and electrocardiogram
(ECG), to improve the classification accuracy. Our study
uses EEG, RSP, GSR, and photo-plethysmograph (PPG)
signals collected from the database for emotion analysis
using physiological signals (DEAP) (Koelstra et al., 2011)
for feature extraction. We concatenate four mode features to
achieve multimodal feature fusion. It can remedy the inherent
limitations of the single mode by providing more dimensional
features. Consequently, the multimodal features improve the
accuracy of emotion recognition.

The EEG signals are very complex due to the inherent non-
stationary, non-linear, and non-Gaussian characteristics (Subha
et al., 2010). Meanwhile, EEG signals are greatly affected by
age, psychology, and other factors, which result in significant
differences in individual EEG signals (Lotte et al., 2018). This
difference is often substantial and cannot be ignored. The
traditional emotion recognition based on EEG does not consider
the existence of differences and directly trains a general model.
The difference between EEG signals of different individuals
will directly affect the accuracy of model recognition and
classification and lead to a poor generalization ability of the
model (Zheng and Lu, 2016). Considering different types of
information in EEG signals make it difficult to filter out
information sensitive to specific tasks, and there are few similar
EEG data among different individuals due to the significant
difference in EEG, it is problematic that use the deep learning
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model based on old user data training to estimate the mental
state of new users (Wan et al., 2021).

In order to solve the above problems, some researchers
have introduced transfer learning to emotion recognition.
Li et al. (2019) proposed a multi-source transfer learning
algorithm to transfer the existing emotion model to new
subjects. The experimental results show that this method can
effectively reduce the demand for data quantity and increase
the calibration capability of the model. Chai et al. (2017)
proposed an adaptive subspace feature matching algorithm
for emotion recognition, which aligns the source and target
subspaces by learning linear transformation to reduce the
distribution discrepancy between the source and target domains.
Lin and Jung (2017) proposed a conditional transfer learning
framework. The algorithm first evaluates the individual’s
transferability to positive transfer and then selectively leverages
the data from others with comparable feature spaces. Therefore,
in order to solve the low accuracy of emotion recognition
caused by the mismatch between individual specificity and
global threshold, we introduce domain adaptation, a transfer
learning method, into emotion recognition. This method can
apply the patterns learned in one domain to other domains
and reduce the differences in EEG data distribution so
that to improve the model’s ability to recognize new users’
emotions.

Generally, the domain adaptation method usually seeks the
alignment between the source and target domains. Different
domain adaptation methods often use different alignments. The
current alignment methods can be divided into three categories
according to distribution matching schemes: domain-level,
class-level, and sample-level (Lu et al., 2021). Pan et al. (2010)
proposed the transfer component analysis (TCA) method,
which uses the maximum mean difference (MMD) to learn a
transformation matrix in the reproducing kernel Hilbert space
(RKHS) to align the marginal distribution between the two
domains. Long et al. (2017) proposed the joint distribution
adaptation (JDA) method to align the joint distribution of
multiple domains through multi-kernel MMD. Sun et al. (2017)
proposed the correlation alignment (CORAL) method, which
minimizes the domain shift by aligning the second-order
statistical data of source and target distribution. The above
commonly used domain adaptation methods belong to domain-
level matching. The domain-level matching completely ignores
the intra-domain data structure. It is too rough to miss some
details and challenging to achieve good matching results.

The sample level matching can avoid the problem that
domain-level matching ignores intra-domain data structure.
Courty et al. (2017) proposed a regularized unsupervised
optimal transport model, which uses the optimal transport
theory to calculate the distance between the probability
distributions of the source and the target domain. In the
research of Das and Lee (2018), the source and the target
domain are regarded as hypergraphs, and the first-order,

second-order, and third-order similarities between graphs are
used for class-regularized hypergraph matching to obtain the
matching between the samples of the source domain and the
target domain. However, sample level matching is very time-
consuming, and it is more prone to overfitting when local
information is affected by the noise.

Class-level matching can neutralize too rough domain-
level matching and too fine sample-level matching. Wang
et al. (2018) proposed the Stratified Transfer Learning (STL)
method. STL transforms the same classes in the source and
the target domain into the same subspace and uses the intra-
affinity of the class to perform knowledge migration within
the class. Tian et al. (2020) proposed the Centroid Matching
and local Manifold Self-learning (CMMS) method. CMMS
can thoroughly explore the data distribution structure of the
domain and minimize the distribution difference in domain
adaptation by combining class centroid matching with local
manifold self-learning. Lu et al. (2021) proposed a domain
adaptation method based on substructure level matching, which
regards a class as synthesizing multiple substructures and
aligning the substructures. The above commonly used domain
adaptation methods belong to class-level matching. Considering
that the EEG signal acquisition process contains the location
information of different channels, which has the intra-domain
data structure, we adopt the class-level domain adaptation
to avoid rough alignment of domain-level adaptation and
overfitting of sample-level adaptation.

In the matching process of the source and target domains, it
is necessary to project the source and target domains into the
same feature space through the projection matrix. The TCA,
JDA, BDA, and JPDA all uses the single projection matrix
for transfer (Pan et al., 2010; Long et al., 2017; Wang et al.,
2017; Zhang et al., 2020). However, the distribution of the
source domain and target domain is different, and a single
projection matrix cannot account for all the feature distribution
of the source and target domains. Therefore, we propose a bi-
projection matrix (BPM) to better project the source and target
domains into the feature space.

This paper uses EEG, RES, PPG, and GSR signals
collected from the DEAP dataset to extract features, and
we concatenate four mode features to achieve multimodal
feature fusion. Multimodal fusion gives full play to the
advantages of each mode and makes up for its inherent
limitations, improving the accuracy of emotion recognition.
In order to improve the generalization ability of the model,
we propose a joint probability domain adaptation method
based on the substructure. Substructure-level data is aligned by
discriminative joint probability maximum mean discrepancy
(DJP-MMD) (Zhang et al., 2020). Substructure-based
joint probability domain adaptation (SSJPDA) can avoid
inadaptability caused by rough matching and overfitting when
learning local information caused by noise points. In order
to better project the source and target domains, we propose a
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method of the bi-projection matrix (BMP), which can effectively
avoid data loss in the projection stage.

The main contributions of this study are as follows:

We proposed a substructure-based joint probability
domain adaptation method (SSJPDA).
We proposed the bi-projection matrix (BPM) method and
applied it to the SSJPDA algorithm.
We validated the SSJPDA algorithm and the SSJPDA-BPM
method on DEAP dataset.

The rest of this paper is arranged as follows: Section
“Materials and methods” introduces the SSJPDA with the BPM
algorithm. Section “Results” presents the results verified on the
DEAP dataset. Section “Discussion” gives the full discussion
above the result.

Materials and methods

Physiological signal dataset

This study adopted the DEAP dataset to inspect our
proposed algorithm. DEAP dataset was established by Koelstra
et al. (2011) in 2012 and contained 32 subjects. Every subject
watched the 40 selected music videos, and each video viewed by
the subjects was regarded as an independent experiment. After
the video viewing, the subjects need to use the self-evaluation
model to score arousal, valence, like/dislike, dominance, and
familiarity, providing label information for each signal. Every
experiment recorded 40 physiological signals of subjects, of
which the first 32 signals were EEG signals collected according to
the international 10–20 system, and the remaining 8 signals were
peripheral physiological signals, including 2 ophthalmic signals,
1 skin electrical signal, 2 EMG signals, 1 respiratory record, 1
plethysmography, and 1 temperature record. The dataset also
preprocessed the collected signals. Each test section’s EEG data
and other peripheral physiological signal data were divided into
3 s baseline data and 60 s test data. EEG signals are collected
according to the international 10–20 lead system and down-
sampling from 512 Hz original sampling frequency to 128 Hz.
RES, PPG, and GSR signals are down-sampled to 128 Hz.
A band-pass frequency filter of 4–45 Hz and a blind source
separation technique were used to remove the eye artifacts.

Feature extraction

Considering that the subjects are not always in a high
emotional activation state if the sliding window is used to divide
the data into small segments, many segments will contain useless
information (Piho and Tjahjadi, 2018). Therefore, we directly
extract features from the preprocessed 60 s experimental data to

make samples instead of dividing continuous data into multiple
segments and making each segment into samples in the feature
processing. We extract the differential entropy features of five
frequency bands from each recorded EEG data from each EEG
channel. These five frequency bands are related to people’s state
of mind, so they also contain information about the state of
specific thinking tasks. These five bands are Delta (1–4 Hz),
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma
(30–48 Hz). Some studies have shown that the differential
entropy feature is superior to the power spectral density feature
(PSD) in EEG-based emotion recognition (Zheng and Lu, 2015;
Soleymani et al., 2017).

We extract their time-domain and frequency-domain
features for the peripheral physiological signals PPG, GSR,
and RES. The extracted time-domain features and frequency-
domain features refer to numerous previous studies (Verma
and Tiwary, 2014; Yin et al., 2017; Zhang et al., 2021). Time-
domain features depend on statistical features, which are simple
and intuitive. It realizes classification by analyzing statistical
features such as mean, maximum, minimum, root mean square,
standard deviation, etc. The time-domain analysis contains all
the characteristics of physiological signals, and the signal is
processed directly. Hence the loss of information is relatively
small. For example, from the time domain characteristics of PPG
signals, we can analyze the heart rate and its changes, which
are closely related to emotional arousal. In addition, Frequency
domain features can show the frequency information that time-
domain features cannot reach in more detail. Consequently, we
got 1,280 samples (32 subjects × 40 samples). Table 1 lists the
features extracted from the data.

The generation of substructures

The source domain {XS, YS} = {(xs,i, ys,i)}
ns
i=1containing the

label recorded as Ds. The target domain Xt = {xt,j}
nt
j=1 without

label recorded asDt . The ns and nt are the number of source
domain samples and target samples, respectively. x ∈ Rd×1is
the feature vector, and y ∈ {1, . . . , C} is its label in the C-
class classification problem. Ds and Dt have the same feature
space and label space, but the feature distribution is different,
i.e., P(Xs, Ys) 6= P(Xt, Yt). The task of domain adaptation is to
reduce the distribution difference between the source domain
and the target domain, so as to predict the label ytof the target
domain Dt with the help of the source domain Ds (Lu et al.,
2021).

We use δ ∼ N
(
0; σ2) and X to represent all feature data

and the Gaussian mixture model (GMM) to fit them. The kth
component in GMM is recorded as Xk ∼ N (zk, σk) where
zk represents mean value and σk represents covariance. Our
goal is to get mean value zk and covariance σk. These GMM
parameters can be obtained using the Expectation Maximum
(EM) algorithm. Suppose Ks and Kt are the number of GMM

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.1000716
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1000716 September 3, 2022 Time: 15:56 # 5

Fu et al. 10.3389/fnins.2022.1000716

TABLE 1 The features used in Experiment 1 and Experiment 2.

Signal Feature Description Dimension

EEG Differential Entropy (DE) DE in different bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz),
and Gamma (30–48 Hz)

32 channels× 5 features

PPG Time Domain Mean value, maximum value, minimum value, standard deviation and root mean square
value of heart rate interval.
Heart rate (times/second)

1 channel× 8 features

Frequency domain Power spectral density of bands 0.1–1.5 Hz and 1.5–3 Hz.

GSR Time Domain Mean, standard deviation 1 channel× 7 features

Frequency domain Power spectral density of bands 0.4–0.8 Hz, 0.8–1.2 Hz, 1.2–1.6 Hz, 1.6–2.0 Hz, and
2.0–2.4 Hz.

RES Time Domain Mean, maximum, minimum, standard deviation, and root mean square value of respiratory
interval. Respiratory rate (times / second)

1 channel× 8 features

Frequency domain Power spectral density of bands 0.1–1.5 Hz and 1.5–3.0 Hz.

components in the source domain and the target domain,
respectively. Ks is determined by the Bayesian Information
Criterion (BIC), and Kt is manually set according to the
specific data set.

After obtaining the GMM of the source domain and the
target domain, we regard each component of the GMM as a
substructure in the feature space, and the information of the
cluster center represents the substructure. Specifically, set

µs =

ks∑
i=1

ws,iδzs,i (1)

µt =

kt∑
i=1

wt,iδzt,i (2)

where µs and µtare the distribution of source domain and
target domain, respectively. z ∈ Rd×1 is cluster center, and δz

is the Dirac function at location z. wis the probability weight

associated with z, where
ks∑

i=1
ws,i = 1 and

kt∑
i=1

wt,i = 1.

The cost between zi and zj in square Euclidean distance can
be expressed as

c
(
zs,i, zt,j

)
=
∣∣∣∣zs,i − zt,j

∣∣∣∣2
2 (3)

Therefore, the problem can be regarded as the partial
optimal transmission (POT) problem, and the upper bound
ws,iis 1. The total cost of POT is 〈π, C〉F that is the Frobenius dot
product of cost matrix C and coupling matrix π. The C ∈ Rks×kt

represents the cost of µs and µtdistribution, and theπ ∈ Rks×kt

represents the coupling between µs and µt distribution.
The goal is to obtain the optimal transmission, which can be

expressed as

π∗1 = arg minπ〈π, C〉F + λ1H(π)

s.t.πT1ks = wt
(4)

where H(π) =
∑
ij

πij log πij is the entropy term, and λ1 is the

super parameter to balance the speed and accuracy calculation.
The feasible solution set of πT1ks = wt is C1, and then it can

be solved by the Lagrange method. Thus, we can easily get the

optimal π∗.

π∗1 = π0diag
(

wt�πT
0 1ks

)
(5)

where π0 = exp
(
−

C
λ1
− 1

)
and � represent element-wise

divide and diagrepresents the diagonals. Once the coupling
matrix π∗1 is obtained, the source domain weights can be easily
calculated as ws = π∗1 1kt .

Substructural joint probability domain
adaptation

The domain adaptation (DA) method attempts to find a
mapping h. The source domain and target domain are mapped
to the same subspace, so that the classifier trained on h(xs)can
achieve good classification effect on h(xt). For example, a linear
maph(x) = ATxfor the source and the target domains, where
A ∈ Rd× p, p ≤ d.

Due to the difference between the source domain and the
target domain, it is generally assumed that their probabilities
distributions are not equal. The derivation of TCA, JDA
and BDA algorithms are based on the inequality of the
marginal probabilities P(Xs) 6= P(Xt) or the conditional
probabilities P(Ys|Xs) 6= P(Yt|Xt). However, the JPDA
algorithm derives from the inequality assumption of joint
probabilities P(Xs, Ys) 6= P(Xt, Yt). Because JPDA directly
considers the difference of joint probability distribution, the
performance of JPDA is better than the traditional DA method,
which JPDA can improve the between-domain transferability
and the between-class discrimination (Zhang et al., 2020).

After obtaining the substructure, the set of substructures
in source domain is recorded as {ZS, Y ′S} = {(zs,i, y′s,i)}

ks
i=1, and

the set of substructures in target domain is recorded as Zt =

{zt,j}
kt
j=1, where ks and kt are the number of source domain

substructure and target domain substructure, respectively.
Let the source domain substructure one-hot coding label

matrix be Y
′

s = [y
′
s,1; . . . ; y

′

s,ks
] and the predicted target

domain substructure one-hot coding label matrix be Ŷ ′t =
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[ŷ′t,1; . . . ; ŷ
′

t,kt
] where y′s,ks ∈ R1×C and ŷ′t,kt ∈ R1×C. Define

Fs = [Y ′s(:, 1)∗ (C − 1) , ..., Y ′s(:, C) ∗ (C − 1)] (6)

F̂t = [Ŷ ′t(:, 1 : C)ĉ 6=1, ..., Ŷ ′t(:, 1 : C)ĉ 6=C] (7)

where Y ′s(:, c) denotes the c-th column of Y ′s , Y ′s(:, c) ∗ (C − 1)

repeats Y ′s(:, C) C−1 times to form a matrix in Rks×(C−1), and
Ŷ ′t(:, 1 : C)ĉ 6=c is formed by the 1st to the C-th, (except the c-th)
columns of Y ′t . Clearly, Fs ∈ Rks×(C(C−1)) and F̂t ∈ Rkt×(C(C−1)).
Fs is fixed, and F̂t is constructed from the pseudo labels, which
are updated iteratively.

Therefore, the objective function of JPDA can be written as
follows:

min
A
||ATZsNs − ATZtNt||

2
F − µ||ATZsMs − ATZtMt||

2
F + λ||A||2F

s.t.ATZHZTA = I
(8)

where µ > 0 is a trade-off parameter and λ is a regularization
parameter. Ns, Nt , Ms and Mt are defined as

Ns =
Y ′s
ks

, Nt =
Ŷ ′t
kt

(9)

Ms =
Fs

ks
, Mt =

F̂t

kt
(10)

where H = I − 1k is the centering matrix, in which k = ks + kt

and 1k ∈ Rk×k is a matrix with all elements being 1
k .

Let Z = [Zs, Zt], then we reach the Lagrange function of
Eq. 8

J = tr(AT(Z(Rmin − µRmax)ZT
+ λI)A)+tr(η(I − ATZHZTA))

(11)

where η is Lagrange multiplier, and

Rmin =

[
NsNT

s −NsNT
t

−NtNT
s NtNT

t

]
(12)

Rmax =

[
MsMT

s −MsMT
t

−MtMT
s MtMT

t

]
(13)

Rmax and Rmin have dimensionality k× k.
By setting the derivative ∇AJ = 0, Eq. 17 becomes a

generalized eigen-decomposition problem:

(Z(Rmin − µRmax)ZT
+ λI)A=ηZHZTA (14)

A is then formed by the p trailing eigen-vectors. A classifier can
then be trained onATZs and applied to A TZt .

The pseudocode of SSJPDA for classification is summarized
in Algorithm 1.

Input:

XS and Xt, source and target domain

feature matrices;

YS, source domain one-hot coding label

matrix;

µ, trade-off parameter;

λ, regularization parameter;

T, number of iterations;

Output:

Ŷt, estimated target domain labels.

Begin:

Use EM for GMM, cluster each class

data in the source to obtain

{ZS, Y ′S} = {(zs,i, y′s,i)}
ks
i=1,and cluster the

unlabeled data in target domain to

obtain Zt = {zt,j}
kt
j=1;

Compute cost matrix C and coupling

matrix π using Eq. 3 and Eq. 4,

respectively;

Compute the weights of source

substructures ws = π∗11kt and target

substructures wt =
1kt
kt

for n = 1,..., T do

Construct the joint probability

matrix Rmin and Rmax by Eq. 12 and

Eq. 13;

Solve the generalized

eigen-decomposition problem in

Eq. 14 and select the p trailing

eigenvectors to construct the

projection matrix A;

Train a classifier f on (ATZs, Y ′S) and

apply it to ATZt to obtain

Ŷ ′t = {y
′
t,j}

kt
j=1 which is the label matrix

of substructure in target domain

Zt = {zt,j}
kt
j=1

End for

For each substructure zt,j, assign its

label y′t,j to all samples it contains,

and getsŶt = {yt,j}
nt
j=1

End

Algorithm 1. Substructural Joint Probability Distribution Adaptation

(SSJPDA)

Substructure-based joint probability
domain adaptation algorithm with
bi-projection matrix

As described in the previous subsection, the source and
target domains have different probability distributions, so
applying only a single projection matrix to both domains
simultaneously may lack the ability to align their probability
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distributions well. It is better to make the source domain and the
target domain have their own projection matrix to accomplish
the distribution alignment task together. On this basis, we take
SSJPDA algorithm as an example to explain how to design
the projection matrix of source domain and target domain,
respectively, and call it SSJPDA-BPM.

Donate the projection matrices of the source domain and the
target domain asAs and At , respectively. Therefore, the objective
function of SSJPDA-BPM can be written as follows:

min
A
||AT

s ZsNs − AT
t ZtNt||

2
F − µ||AT

s ZsMs − AT
t ZtMt||

2
F

+λ
(
||As||

2
F + ||At||

2
F
)

s.t.AT
s ZsHsZT

s As = Iks , AT
t ZtHtZT

t At = Ikt

(15)

where Hs = Iks − 1ks (or Ht = Ikt − 1kt ) is the centering matrix,
in which 1ks ∈ Rks×ks (or 1kt ∈ Rkt×kt ) is a matrix with all
elements being 1

ks
(or 1

kt
).

LetZA = [AT
s Zs, AT

t Zt], then we reach the Lagrange function
of Eq. 15

J = tr(ZARZT
A)+ tr(ηs(Iks − AT

s ZsHsZT
s As))

+tr(ηt(Ikt − AT
t ZtHtZT

t At))+ tr(AT
s As)+ tr(AT

t At) (16)

where ηs ηt are Lagrange multipliers, and

R = Rmin − µRmax =

[
R11 R12

R21 R22

]

=

[
NsNT

s − µMsMT
s −NsNT

t + µMsMT
t

−NtNT
s + µMtMT

s NtNT
t − µMtMT

t

]
(17)

By setting the derivative ∇AsJ = 0, ∇AsJ = 0, and add a
constraint ZsR12ZT

t As=ZtR21ZT
s At , then Eq. 16 becomes two

generalized eigen-decomposition problem:

(ZsR11ZT
s + ZtR21ZT

s + λI)As=ηsZsHsZT
s As (18)

(ZtR22ZT
t + ZsR12ZT

t + λI)At=ηtZtHtZT
t At (19)

As and At are then formed by the p trailing eigen-vectors of each
problem. A classifier can then be trained on AT

s Zs and applied to
A T

t Zt .
The pseudocode of SSJPDA-BPM for classification is

summarized in Algorithm 2.

Input:

XS and Xt, source and target domain

feature matrices;

YS, source domain one-hot coding label

matrix;

µ, trade-off parameter;

λ, regularization parameter;

T, number of iterations;

Output:

Ŷt, estimated target domain labels.

Begin:

Use EM for GMM, cluster each class

data in the source to obtain

{ZS, Y ′S} = {(zs,i, y′s,i)}
ks
i=1,and cluster the

unlabeled data in target domain

to obtain Zt = {zt,j}
kt
j=1;

Compute cost matrix C and coupling

matrix π using Eq. 3 and Eq. 4

respectively;

Compute the weights of source

substructures ws = π∗11kt and target

substructures wt =
1kt
kt

for n = 1,..., T do

Construct the joint probability

matrix R in Eq. 17

Solve the generalized

eigen-decomposition problem in

Eq. 18 and Eq. 19, and select the p
trailing eigenvectors to construct

the projection matrix As and At;

Train a classifier f on AT
s Zs

and applied to AT
t Zt to obtain

Ŷ ′t = {y
′
t,j}

kt
j=1 which is the label matrix

of substructure in target domain

Zt = {zt,j}
kt
j=1

End for

For each substructure zt,j, assign its

label y′t,j to all samples it contains,

and getsŶt = {yt,j}
nt
j=1

End

Algorithm 2. Substructural Joint Probability Distribution Adaptation

with Bi-Projection Metrix (SSJPDA-BPM)

Validation of the substructure-based
joint probability domain adaptation
algorithm and substructural joint
probability distribution adaptation with
bi-projection metrix

The DEAP dataset contains 32 subjects, each taking turns
as the target domain and the remaining 31 people as the source
domain. The number of samples in the source domain is 1,240
(31 subjects × 40 samples), and the number of target domain
samples is 40 (1 subject × 40 samples). After dividing the
source and target domains, the EEG, GSR, PPG, and RES modes
were transferred, respectively, and all the subjects’ valence and
arousal dimensions were classified, respectively. In each sample,
the feature dimension of EEG is 160, the feature dimension of
GSR is 7, the feature dimension of PPG is 8, and the feature

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1000716
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1000716 September 3, 2022 Time: 15:56 # 8

Fu et al. 10.3389/fnins.2022.1000716

dimension of RES is 8. Those four modes were fused through
average splicing, where the feature dimension after fusion in
each sample is 183. The feature dimension of the modes remains
the same dimension before and after the transfer learning.
The effects of single-mode transfer and multi-mode transfer
are compared to explore whether data fusion can promote
the accuracy of the transfer learning algorithm. By comparing
SSJPDA with other transfer learning methods and traditional
machine learning methods, this paper explores whether SSJPDA
can improve recognition accuracy.

Hyperparameters of the model will affect the recognition
accuracy. We divide the target domain with 40 samples from
1 subject into a verification set and a test set for the specific
hyperparameter configuration in the algorithm, which follows
similar protocols used in Courty et al. (2016). Among them,
the training set is an optional 10 samples, and the test set is
the remaining 30 samples. Both validation and test sets have
no labels. The validation set data and source domain data are
trained together to obtain the best accuracy within the range of
hyperparameters, and the range of hyperparameter sets follows
(Kerdoncuff et al., 2021). Under the best hyperparameters set,
the classification accuracy and F1 measure are used to measure
the performance of our proposed algorithm on the test set.

Result

Experiment 1

In Experiment 1, JPDA, JPDA (BMP), SSJPDA, and SSJPDA
(BMP) algorithms were used to transfer EEG, PPG, GSR, RES,
and four-mode fusion data (ALL) of subjects, respectively.
Table 2 shows the average accuracy and F1-measure of 32
subjects in valence and arousal.

Table 2 shows that in the DEAP dataset, the recognition
accuracy of multimodal fusion data is less improved than that of
single-mode data recognition. Even in the identification of some
modes of JPDA and JPDA-BPM, the accuracy of single-mode
is higher than that of multi-mode. However, this phenomenon
does not appear in the domain adaptation algorithm using
substructure. In the classification of valence and arousal by
SSJPDA and SSJPDA-BPM algorithms, the recognition accuracy
and F1-measure based on multimodal data are generally higher
than that of single-mode data. In the recognition of multimodal
data, the recognition accuracy of SSJPDA and SSJPDA-BPM
in valence is 14.1 and 19.3% higher than that of JPDA and
JPDA-BPM, respectively. In the recognition accuracy of arousal,
SSJPDA and SSJPDA-BPM are higher than JPDA and JPDA-
BPM by 11.8 and 12.4%, respectively. In the single-mode
recognition, SSJPDA-BMP has higher recognition accuracy and
F1 than JPDA-BMP in every single mode. Similar rules also
appear in the comparison between SSJPDA and JPDA. By
comparing the recognition ability of the two transfer learning

algorithms with or without the BPM algorithm in each mode,
we find that the BPM algorithm is more effective in the transfer
learning algorithm with substructure. Among the algorithms
that do not use substructures, whether to use the BPM algorithm
has little impact on transfer performance.

In order to present the representations generated by
different methods more intuitively, we use the t-SNE algorithm
in multimodal data experiments to reduce the dimension and
visualize the representations generated by different algorithms.
Figure 1 is the t-SNE diagrams of each algorithm in Experiment
1 on multimodal data. The dots legend represents the source
domain data, and the legend of the star represents the target
domain data. The light blue and dark blue represent positive
samples, and the orange and red represent negative samples.

According to Figure 1, the representations generated by
different algorithms have consistent performance, regardless of
valence or arousal classification. The substructures generated by
SSJPDA and SSJPDA-BPM through clustering in the domain
can significantly reduce the quantity of data. JPDA-BPM and
SSJPDA-BPM can lessen the intra-class sample distance and
increase the inter-class sample distance in the same domain.
At the same time, they can make the same kind of samples in
different domains align better compared with not using the BPM
algorithm. The representation generated by SSJPDA-BPM has
better separability than others.

TABLE 2 The average accuracy (ACC_100%) and F1-measure in
different algorithms with single-mode and multi-mode data in
valence and arousal classification.

Method Modality Valence Arousal

ACC F1-measure ACC F1-measure

JPDA EEG 0.529 0.563 0.549 0.615

PPG 0.561 0.603 0.551 0.589

GSR 0.537 0.578 0.567 0.619

RES 0.531 0.574 0.509 0.567

ALL 0.541 0.576 0.568 0.626

JPDA-BPM EEG 0.536 0.605 0.525 0.624

PPG 0.536 0.63 0.551 0.582

GSR 0.553 0.446 0.537 0.57

RES 0.517 0.555 0.537 0.613

ALL 0.533 0.615 0.573 0.613

SSJPDA EEG 0.604 0.617 0.614 0.645

PPG 0.588 0.537 0.633 0.634

GSR 0.605 0.596 0.613 0.618

RES 0.614 0.643 0.619 0.614

ALL 0.617 0.627 0.635 0.643

SSJPDA-BPM EEG 0.621 0.645 0.629 0.655

PPG 0.62 0.619 0.648 0.652

GSR 0.608 0.581 0.62 0.65

RES 0.595 0.601 0.636 0.653

ALL 0.636 0.653 0.644 0.679

The numbers in bold indicate the highest value of the experimental results.
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FIGURE 1

The source and target domain’s prediction samples are projected to two-dimensional visualization through t-SNE in multimodal data
experiments with different algorithms. (A) Shows valence classification representations, and (B) shows arousal classification representations,
where (I) is JPDA algorithm, (II) is JPDA (BPM) algorithm, (III) is SSJPDA algorithm, (IV) is SSJPDA(BPM) algorithm.

Experiment 2

The source domain data and target domain data settings
of Experiment 2 are the same as Experiment 1, but only

fusion data is used for comparison in the different algorithms.
Traditional machine learning and transfer learning algorithms
are used to classify valence and arousal. Because the TCA, JDA,
BDA, and JPDA algorithms all use the 1-Nearest Neighbor
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(1NN) model in classification, we choose 1NN as the traditional
machine learning model to compare the impact of the transfer
learning algorithm on recognition results. Table 3 shows the
average accuracy and F1-measure of 32 subjects using different
algorithms in valence and arousal.

Table 3 shows that in the problem of emotion recognition
based on the DEAP dataset, when the data distribution of the
source domain and target domain is different, the performance
of all transfer learning algorithms is better than the 1NN
algorithm. In recognition of valence and arousal, the algorithm
with the worst classification accuracy in the transfer learning
algorithm is still 1.2% (TCA) and 2.2% (JDA) higher than
1NN, respectively. We proposed SSJPDA-BPM algorithm has
the best performance. The recognition accuracy and F1-
measure values of valence are 63.3 and 65.3%, respectively.
The recognition accuracy and F1-measure arousal values are
64.4 and 67.9%, respectively. Its accuracy and F1-measure
values are higher than other algorithms. Compared with the
traditional transfer learning algorithm, SSJPDA-BPM has higher
classification accuracy than TCA, JDA, and BDA by 29.8,
28.2, and 22.5%, respectively, in valence classification. In the
recognition accuracy of arousal, SSJPDA-BPM is 23.6, 25.1,
and 19.7% higher than TCA, JDA, and BDA, respectively. The
comparison results of whether to use BPM and SS algorithms
have been described in detail in Experiment 1, which will not be
explained in this part.

Figure 2 is the line chart showing the recognition accuracy
of each algorithm in Experiment 2 in 32 subjects in descending
order, of which Figure 2A is the recognition accuracy of valence
and Figure 2B is the recognition accuracy of arousal. The gray
horizontal line is the chance level of 50% for the two classes.
Each color corresponds to an algorithm. Subjects above the gray
level line are represented by upward triangles. The recognition
accuracy of this subject in the algorithm is higher than that of
the chance level. Downward triangles represent subjects below
the gray level line, and the recognition accuracy of this subject
in the algorithm is lower than the accuracy of the chance level.

TABLE 3 The average accuracy and F1-measure of different
algorithms in valence and arousal classification.

Method Valence Arousal

ACC F1 ACC F1

1NN 0.484 0.529 0.504 0.555

TCA 0.49 0.533 0.521 0.583

JDA 0.496 0.535 0.515 0.578

BDA 0.519 0.56 0.538 0.572

JPDA 0.541 0.576 0.568 0.626

JPDA-BPM 0.533 0.615 0.573 0.613

SSJPDA 0.617 0.627 0.635 0.643

SSJPDA-BPM 0.636 0.653 0.644 0.679

The numbers in bold indicate the highest value of the experimental results.

Figure 2A shows that more than half of the subjects have
a recognition accuracy higher than the chance level of 50%
for two classes in recognition of valence by the 1NN, TCA,
and JDA algorithms. The recognition accuracy of 1NN and
TCA in some subjects is less than 30%. Therefore, the average
recognition accuracy of these two algorithms is lower than
JDA. By comparing JDA, BDA, and JPDA algorithms in order
of this arrangement, we can see that the number of people
whose three algorithms are higher than the chance level of
50% is slowly increasing. Meanwhile, the highest and lowest
recognition accuracy of subjects in the test set is also gradually
increasing. The performance of JPDA-BPM is lower than that of
JPDA. Although JPDA-BPM algorithm has more subjects with
recognition accuracy higher than 70 and 60%, wrong matching
still leads to more subjects with recognition accuracy lower than
45%. The SSJPDA and SSJPDA-BPM algorithms have improved
compared to the original algorithm. It is worth noting that the
recognition accuracy of the SSJPDA-BPM algorithm is above
55% in all subjects.

Figure 2B shows that the number of subjects with arousal
recognition accuracy higher than the chance level exceeded half
of the total sample size. 1NN, TCA, and JDA algorithms have
more than 70% recognition accuracy in some subjects. However,
the recognition performance of the algorithm is poor in some
subjects, and its recognition accuracy is lower than 35%, which
leads to the low average recognition accuracy of these three
algorithms. In the JPDA-BPM algorithm, one subject has a
recognition accuracy of 85%, which is the highest among the
eight algorithms. Meanwhile, its minimum recognition accuracy
is 35%, and the number of people lower than the chance
level of 50% is also higher than JPDA, which leads to little
difference between its average recognition accuracy and JPDA.
In the comparison between SSJPDA and SSJPDA-BPM, the
performance of SSJPDA-BPM is generally higher than SSJPDA,
and the recognition accuracy is lower than SSJPDA only in a
few subjects. Comparing whether to use the SS method, SSJPDA
and SSJPDA-BPM have been improved compared to the original
algorithm, and the recognition accuracy of all subjects is above
50%.

Discussion

The performance of different
algorithms with multi modal and single
modal data

In the algorithm based on non-substructure, the recognition
accuracy using multimodal data is less improved than that using
single-mode data. In the substructure-based algorithm,
multimodal data can significantly improve recognition
performance. Multimodal data in JPDA, the amount of data in
the source domain and target domain are very different. The
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FIGURE 2

The recognition accuracy of each algorithm in Experiment 2 in 32 subjects was ranked in descending order. (A) Shows the recognition accuracy
of valence in different algorithms of 32 subjects, and (B) shows the recognition accuracy of arousal in different algorithms of 32 subjects.

source domain consists of 31 subjects, each of which contains
40 samples. The target domain is 40 samples from one subject,
of which 40 samples are also divided into a validation set
composed of 10 random samples and a test set consisting of 30
random samples. Therefore, there is an enormous difference
in the data volume between the source domain and the target
domain. When the source and the target domain are projected
to the same feature space, the probability of false matching will
increase, which affects transfer recognition’s accuracy.

Fusing the features of the four modes will increase the
sample dimensions of the source and the target domain. The
probability of sample error matching is greater than that of
single-mode identification, so the performance of the non-
substructure algorithm in multimodal data identification is
poor. The transfer learning algorithm based on substructure can
avoid error matching caused by sample dimensions increasing
and data volume differences between the source and target
domains. SSJPDA first generates substructures by clustering
in the domain and then matches the substructures. The
generation of substructures can dramatically reduce the data

volume gap between the source and target domains. This can
significantly reduce the probability of false matching. Therefore,
the SSJPDA algorithm performs better than JPDA in single-
mode emotion recognition. Without the influence of data
volume, multimodal fusion data can provide more dimensional
information to align the substructures of the source domain
and target domains’ substructures. Therefore, using the SSJPDA
algorithm to recognize multi-mode emotional data can obtain
high recognition accuracy.

The application of BPM in SSJPDA can significantly
improve recognition performance. Because the emotional labels
of subjects in the DEAP dataset are provided by the subjects
themselves, this will affect the consistency of the emotional
labels of different subjects. At the same time, because the
emotional stimulation of the DEAP dataset depends on
multimedia clips, some subjects also have the problem of weak
emotional stimulation. In this experiment, the source domain
contains all the test samples of 31 subjects, so there must be
many abnormal samples and noise in the source domain. If
no substructure is generated in the source domain and the
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data is projected directly, the abnormal samples and noise
greatly impact the projecting matrix. Therefore, the advantages
of the BPM algorithm are not reflected in JPDA. However,
the substructure algorithm can cluster the noise or outliers of
samples into the substructures of adjacent samples to reduce the
impact of noise and outliers. When the source and target domain
samples are clustered into substructures, we fully consider the
distribution differences between the source and target domain
substructures. Projecting the substructure through two different
projecting matrices can better project the substructure of the
source domain and the target domain to the feature space to
improve the algorithm’s recognition performance.

The comparison of different algorithms

When the data distribution of the training set and test
set is inconsistent, the traditional machine learning algorithm
cannot be competent for classification. Therefore, the 1-
NearestNeighbor (1NN) algorithm performs worst in this
emotion recognition problem. The purpose of transfer learning
is to solve the inconsistency between the data distribution
of the training set and test set, that is, the inconsistency
between the distribution of the source domain and target
domain. Therefore, the transfer learning algorithm performs
well in this emotion recognition problem. Among them,
transfer component analysis (TCA) assumes that if the marginal
distributions of the source domain and the target domain are
close, the conditional distributions of the two domains will
also be close. Therefore, TCA projects the source and target
domain data together into a high-dimensional reproducing
kernel Hilbert space. In this space, the data distance between
the source and the target is minimized, while their respective
internal attributes are preserved to the greatest extent to
complete the transfer learning. The joint distribution adaptation
(JDA) method simultaneously assumes that the marginal and
conditional distribution of the source and target domains are
different. Then the two distributions are adapted together to
achieve transfer. The goal of JDA is to reduce the distance
between the source and target domain’s joint probability
distribution to complete the transfer learning. Balanced
distribution adaptation (BDA) is improved on the basis of
JDA. BDA assumes that marginal distribution adaptation and
conditional distribution adaptation are not equally important.
BDA adaptively adjusts the importance of marginal and
conditional distribution in the distribution adaptation process
according to specific data fields to complete the transfer.

We proposed the SSJPDA algorithm can better measure
the distribution difference between the two domains through
the joint probability distribution. This is better than JDA
and BDA algorithms, which directly calculate the sum of
marginal probability and conditional probability distribution
differences between the two domains. In the SSJPDA algorithm,

the algorithm’s transferability is achieved by minimizing the
difference in joint probability distribution between different
domains of the same class, and the algorithm’s discriminability
is achieved by maximizing the difference in joint probability
distribution between different domains. At the same time, using
substructures reduces the difference in data volume between the
source domain and the target domain and reduces the impact
of noise or outliers. After using the substructure, the SSJPDA-
BPM algorithm we proposed fully considers the distribution
difference between the substructure of the source domain and
the target domain and projects the substructure through two
different mapping matrices to improve the performance of
the algorithm further. Therefore, this paper’s SSJPDA (BMP)
algorithm has the highest recognition performance accuracy.

Discussion on negative transfer

Negative transfer means that the knowledge learned in the
source domain has a negative effect on the learning in the target
domain. When the source domain data is not similar to the
target domain data, or the source domain data is similar to the
target domain data, but the transfer learning method is not good
enough that no transferable components are found, the negative
transfer is likely to occur in those two cases (Pan and Yang,
2009). In this experiment, the distribution of source domain
data and target domain data are different. Through the multi-
source domain transfer method, the data in the target domain
is correctly classified by using the knowledge learned from
multiple source domains so that the target domain can learn
more comprehensive feature information. This can well avoid
the negative transfer caused by the low correlation between
the source domain and the target domain in the single source
domain transfer.

However, if the source domain data used in the transfer
learning algorithm contains a lot of noise, it is likely to
negatively impact the classification model. The multiple source
domain transfer method will further amplify the impact of
noise. Regrettably, the four physiological signals, especially
EEG signals, in this experiment contain numerous noise and
abnormal samples. Therefore, the noise and abnormal samples
in the source and target domains will inevitably lead to negative
transfer. Therefore, in addition to SSJPDA-BPM algorithm, the
classification accuracy of every algorithm in some subjects is
lower than the chance level of 50% for two classes.

Compared with other algorithms, SSJPDA and SSJPDA-
BPM generate substructures in the source domain and target
domain. These substructures can properly process the data
according to the data’s similarity, which can validly reduce
the negative impact of noise and abnormal samples in the
source and target domains. It can effectively avoid negative
transfer and improve the performance of the transfer learning
algorithm. At the same time, as traditional migration learning
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methods, TCA, JDA, and BDA algorithms have a better effect
on the transfer of feature size within a certain threshold.
The information redundancy caused by too large feature
vectors makes the impact of confusing information greater than
that of task-related information, resulting in negative transfer
(Zhang et al., 2020). However, SSJPDA and SSJPDA-BPM
can filter abnormal samples affected by confusing information
through substructure, which further improves the algorithm’s
performance.

More than that, how to transfer the components found
in the source and target domain data also affects the negative
transfer. In comparing whether to use the BPM algorithm, if the
algorithm finds the correct transferable components, projecting
the effective data to the feature space through two different
projecting matrices can improve the algorithm’s performance
and better avoid the negative transfer. However, suppose there
is a lot of noise and outliers in the data. In that case, the
BPM algorithm changes from an excellent method that avoids
more negative transfers to a lousy method that leads to more
negative transfers.

Conclusion

This paper proposes SSJPDA and SSJPDA-BPM algorithms
to use the labeled physiological data to recognize the emotion
of new subjects. We also explored single-mode and multimodal
data’s influence on emotion recognition based on physiological
signals. The performance of the SSJPDA-BPM algorithm is
verified by the comparative experiments of various algorithms
on DEAP dataset. The results show that SSJPDA and SSJPDA-
BPM algorithms can better deal with noise and outliers in
data by clustering substructures. Meanwhile, these algorithms
can reduce the quantity of data that better use the multi-
dimensional information provided by multimodal fusion data.
BPM algorithm can project the substructure through two
different projecting matrices, which can better project the
source domain and target domain data to the feature space,
to improve the algorithm’s recognition performance. The
experimental results show that the average recognition accuracy
of the proposed SSJPDA-BPM algorithm in the multimodal
fusion physiological data is 63.6 and 64.4% in valence and
arousal, respectively.
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