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Novel and disappearing climates 
in the global surface ocean 
from 1800 to 2100
Katie E. Lotterhos  1*, Áki J. Láruson  1,2 & Li‑Qing Jiang  3,4

Marine ecosystems are experiencing unprecedented warming and acidification caused by 
anthropogenic carbon dioxide. For the global sea surface, we quantified the degree that present 
climates are disappearing and novel climates (without recent analogs) are emerging, spanning from 
1800 through different emission scenarios to 2100. We quantified the sea surface environment based 
on model estimates of carbonate chemistry and temperature. Between 1800 and 2000, no gridpoints 
on the ocean surface were estimated to have experienced an extreme degree of global disappearance 
or novelty. In other words, the majority of environmental shifts since 1800 were not novel, which 
is consistent with evidence that marine species have been able to track shifting environments via 
dispersal. However, between 2000 and 2100 under Representative Concentrations Pathway (RCP) 
4.5 and 8.5 projections, 10–82% of the surface ocean is estimated to experience an extreme degree 
of global novelty. Additionally, 35–95% of the surface ocean is estimated to experience an extreme 
degree of global disappearance. These upward estimates of climate novelty and disappearance are 
larger than those predicted for terrestrial systems. Without mitigation, many species will face rapidly 
disappearing or novel climates that cannot be outpaced by dispersal and may require evolutionary 
adaptation to keep pace.

Marine ecosystems worldwide are being threatened by an anticipated temperature increase of 1–3 °C1 and a pH 
drop of 0.3–0.5 units (an acidity increase of greater than 100%)2,3 over the next century due to the uptake of 
atmospheric carbon dioxide (CO2)4–6. The rates of change in atmospheric CO2 over the past century are two-to-
three orders of magnitude higher than most of the changes seen in the past 420,000 to 300 million years, sug-
gesting that this challenge may be without precedent for many extant species4–6. This rapid rate of environmental 
change means that by the end of the twenty-first century, large portions of the Earth’s ocean could experience 
climates not found at present (“novel climates”), and some twentieth century climates may disappear7–9.

Despite evidence that some marine species may be able to keep pace with climate change through distribu-
tion shifts because of high dispersal potential10–12, range shifts no longer become a viable strategy if globally the 
climate shifts beyond what they can tolerate. Thus, novel climates with no analog in recent evolutionary history 
may leave species in an “adapt or die” scenario13. In addition, novel climates may cause a reshuffling of com-
munities including novel species associations, community disaggregation, new communities, extinction, and 
other unexpected ecological surprises7,8,14.

Recently for the global ocean, others have estimated the year that single climate variables (e.g., pH, SST, 
oxygen) are projected to emerge beyond a historical baseline for a particular location or marine reserve15–17. 
While these kinds of analyses are important, they did not give insight into where novel environmental stresses 
not recently experienced anywhere on Earth may emerge, nor where historical climates may disappear relative 
to a global baseline. In addition, these previous studies did not quantify the degree of climate novelty or disap-
pearance in the global ocean since pre-industrial times.

Our study fills these gaps by quantifying the degree of global climate novelty or disappearance for the ocean 
sea surface, based on the dissimilarity between the multivariate climate normal at a focal geographic location 
and its nearest analog in the climate normals from the global climate baseline data (Table 1, definitions). We 
use reconstructed pre-industrial environments and climate change scenarios to map risk of current and future 
novel and disappearing environments for the global sea surface and discuss their potential ecological impacts. 
The degree of global novelty is calculated by comparing a later climate normal for each surface ocean gridpoint 
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to a baseline of climate normals for all surface ocean gridpoints in the same hemisphere (N or S) from an earlier 
time. Gridpoints with a high degree of global novelty are those whose future climate projection lies outside of the 
present-day climate envelope for that hemisphere. In contrast, the degree of global disappearance is calculated by 
comparing each gridpoint at an earlier time to a baseline of climate normals for all surface ocean gridpoints in the 
same hemisphere from a later time (Table 1, definitions). Gridpoints with a high degree of global disappearance 
are those whose present-day climate lies outside of the future-projected climate envelope for that hemisphere.

Unlike on land, where the climate is traditionally described by temperature and precipitation, here we con-
sider ocean climate to be described by temperature and carbonate chemistry (Table 1, definitions). Carbonate 
chemistry is an important aspect of ocean climate because it describes the availability of biologically important 
carbon ions (CO3

2−) that many marine fauna use to make shells or bone. We calculated the degree of global 
novelty or disappearance based on seasonal temperature, pH, and the saturation state of aragonite: a form of 
calcium carbonate form found in corals, bivalves, and many other marine organisms18–20. These three variables 
describe different aspects of the ocean climate. For instance, temperature is known to be an important driver 
of biodiversity in the marine environment21 through its influence on the biochemical kinetics of metabolism22, 
thermal tolerance limits10, and the sensitivity of corals to warming23. Saturation state and pH are interrelated and 
both decrease with increasing CO2, but have distinct effects on organisms. Declines in pH can alter acid–base 
balance in both vertebrates and invertebrates24, leading to for example behavioral changes in marine fish due to 
changes in regulation at neurotransmitters25 (although behavioral changes have been debated, see Clark et al.26). 

Table 1.   Definitions for the terms used in this study in alphabetical order.

Term Definition

Climate normal In this study, 40-year means of each climate variable obtained from 
the model for a single ocean gridpoint

Degree of global novelty (σD-Novelty)

Calculated by comparing the climate normal for each ocean gridpoint 
at a later time to a pool of climate normals from the global climate 
baseline data from an earlier time. Mathematically, σD-Novelty is an esti-
mate of the dissimilarity between the later climate normal for a focal 
geographic location and its nearest neighbor in the global climate 
baseline data from an earlier pool of climate normals30

Degree of global disappearance (σD-Disappearance)

Calculated by comparing the climate normal for each ocean gridpoint 
at an earlier time to a pool of climate normals from the global climate 
baseline data from a later time. Mathematically, σD-Disappearance is an 
estimate of the dissimilarity between an earlier climate normal for 
a focal geographic location and its nearest neighbor in the global 
climate baseline data from a later pool of climate normals30

Degree of global novelty/disappearance—moderate30 2-4σD degree of sigma dissimilarity; corresponds to the 95th percen-
tile of the global climate baseline data

Degree of global novelty/disappearance—extreme30 Greater than 4σD degree of sigma dissimilarity; corresponds to the 
99.994th percentile of the global climate baseline data

Focal station or focal geographic location
The location for which the degree of climate novelty or disappear-
ance is being calculated. In this study, the focal stations are individual 
ocean gridpoints

Global climate baseline data

Includes climate normals for the sea surface from widespread geo-
graphic locations in the hemisphere of the focal station (e.g., northern 
or southern hemisphere) at a specific point in time. For the degree of 
global novelty, the baseline consists of climate normals from an earlier 
time point than the focal station. For the degree of global disappear-
ance, the baseline consists of climate normals from a later time point 
than the focal station

Interannual climate variability (ICV)30
The flucuations in climate observed at the focal station, which is used 
to standardize MD into σD. In this study, ICV for each focal station 
included all model observations between 1965 and 2004

Mahalanobis distance (MD)30
The multivariate distance between a single gridpoint at one point in 
time and its closest analog (nearest neighbor) in the global climate 
baseline data from another time point

Nearest neighbor

In principal components space (following standardization by ICV), 
the nearest neighbor is the geographical location in the global climate 
baseline data whose climate normal (at one point in time) is most 
similar to the climate normal at the focal station at a different point in 
time (e.g., closest analog). For the degree of global novelty, the nearest 
neighbor is the geographical location in the global data whose climate 
at an earlier time is most similar to that of the climate at the focal sta-
tion at a later time. For the degree of global disappearance, the nearest 
neighbor is the geographical location in the global data whose climate 
at a later time is most similar to that of the climate at the focal station 
at an earlier time

Ocean climate
In this study, ocean climate is quantified by seasonal temperature, 
pH, and the saturation state of aragonite (a form of calcium carbonate 
form found in corals, bivalves, and many other marine organisms)

Sigma dissimilarity (σD)30
The transformation of MD into a standardized metric that can be 
interpreted as the number of standard deviations of interannual 
climate variability (ICV) at the focal station
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On the other hand, saturation state is the ratio of the ionic product, [Ca2+][CO3
2−], to its saturated value. As satu-

ration state decreases, shell development becomes increasingly constrained by kinetics and energetics27, although 
the specifics depend on the species. In marine bivalves, larval shell development and growth are dependent on 
seawater saturation state, and not on carbon dioxide partial pressure or pH28. Note that because saturation state 
increases slightly with temperature while pH decreases quickly with temperature, saturation states do not scale 
linearly with pH and each of these variables represent different aspects of ocean climate3.

Data for this analysis was created by combining a recent observational carbon dioxide data product, the 6th 
version of the Surface Ocean CO2 Atlas (SOCAT, 1991–2018, ~ 23 million observations), with a robust Earth 
System Model29 to provide temporal trends at individual locations of the global ocean surface for aragonite satu-
ration state, SST, and pH from 1800–2100. Using these observation/model hybrid ensembles, we calculated the 
degree of global novelty or disappearance30 among the pre-industrial early nineteenth century (reconstructed), 
the late twentieth century, and twenty-first century projections under different emissions scenarios. We compared 
the nineteenth century pre-industrial reconstructed climate to the late twentieth century climate, and the late 
twentieth century climate to the late twenty-first century climate for emissions scenarios RCP 4.5 (“stabilization” 
emission response scenario where emissions peak in 2050, followed by slowed increase) and RCP 8.5 (worst case 
“business as usual” scenario where emissions peak in 2100, followed by slowed increase). Over a decade of CO2 
emissions since 2005 show that the RCP 2.6 scenario is too low to adequately represent the future atmosphere 
CO2 level31–33. Consequently, the RCP 4.5 and RCP 8.5 scenarios are now the plausible low-end and high-end 
concentration pathways.

Overview of metrics that reflect climate risk.  We estimate the degree of global novelty or disappear-
ance using the Mahalanobian dissimilarity metrics developed by Mahony et al.30. These metrics are an improve-
ment over the standardized Euclidean distance7 because the latter is susceptible to variance inflation due to 
correlations in the raw variables and does not account for the effect of the number of variables on the statistical 
meaning of distance. Following Mahony et al.30, we estimated two metrics that reflect climatic risk: (i) Mahalano-
bis distance (MD) (a multivariate distance) between a single gridpoint at one point in time and its closest analog 
in the global baseline pool from another timepoint, and (ii) the transformation of MD into a standardized met-
ric called sigma dissimilarity (σD) that can be interpreted as the number of standard deviations of interannual 
climate variability (ICV) at the focal station (see Table 1, definitions). The global climate baseline data includes 
climate normals from widespread geographic locations in the hemisphere of the focal station (e.g., northern 
or southern hemisphere) at a specific point of time. Following the framework outlined by Mahony et al.30, we 
interpret 2–4σD to represent a moderate degree of global novelty/disappearance (corresponding to the 95th 
percentile of the baseline) and greater than 4σD to represent an extreme degree of global novelty/disappearance 
(corresponding to the 99.994th percentile of the baseline) (see Table 1, definitions). As a statistical measure of 
the departure from historical variability, sigma dissimilarity provides an intrinsically meaningful metric of the 
general ecological significance of climatic dissimilarities30.

We illustrate the calculation of sigma dissimilarity with hypothetical data in Fig. 1 for two hypothetical 
climate variables, X1 and X2. In the left column of Fig. 1, the grey points represent the global climate baseline 
data, which are shaded only for illustration. To calculate the degree of dissimilarity, σD, a principal components 
analysis is performed on the global climate baseline data in the left column of Fig. 1 and standardized by the 
multivariate interannual climate variability (ICV, magenta circles in Fig. 1) experienced at the focal station (blue 
point in Fig. 1), resulting in the transformed data in the right column of Fig. 1 (see Table 1 for definitions). The 
different shadings of grey in the global climate data are only used to help to visualize this transformation. In 
this standardized principal components space, the degree of dissimilarity is then calculated as the number of 
standard deviations between the climate normal at the focal station (blue point in Fig. 1) and the climate normal 
of its nearest neighbor (e.g., closest analog) in the global climate baseline data (green diamond in Fig. 1). Via 
the standardization, the degree of dissimilarity calculation incorporates the amount of ICV for the focal station.

Figure 1 illustrates the calculation for the degree of global novelty for a future climate projection at a focal 
station compared to a present-day climate. A novel climate at a focal station occurs when a future climate normal 
at that location does not currently exist in the present-day baseline of climate normals from geographic locations 
across the same hemisphere (global climate baseline data, grey points in Fig. 1) and is projected to be outside 
that historically experienced (e.g., the ICV) at the focal station. After transformation of the raw data (Fig. 1 left 
column, for hypothetical environmental variables X1 and X2) with principal components and standardization by 
the ICV (resulting in the data in Fig. 1 right column, arrows show how the loadings of environmental variables 
X1 and X2 in PC space depend on the ICV), the degree of global novelty, σD-Novelty, is an estimate of the number 
of standard deviations between the future climate normal at the focal station (blue point) and the climate normal 
of its nearest neighbor (green diamond) in the present-day global climate baseline data (grey points, which are 
shaded only to help visualize the standardization)30. In the principal components space (right side of Fig. 1), 
the nearest neighbor (green diamond in Fig. 1) is the geographical location in the global baseline climate data 
whose present-day climate normal is most similar to that of the focal station’s future projected climate normal 
(e.g., closest analog).

In comparing Fig. 1A,B, the future climate predicted for the focal station (blue dot) and the nearest neighbor 
(green diamond) is the same for both examples, but the ICV (magenta points) historically experienced at the 
focal station is low (in A) or high (in B). When the focal geographical location experiences low ICV, the degree 
of global novelty (σD-Novelty) to its nearest neighbor is large (Fig. 1A). When the focal geographical location expe-
riences high ICV, the degree of global novelty (σD-Novelty) is low (Fig. 1B). Thus, when all else is equal, σD varies 
inversely with ICV. This is intuitive in the sense that a site that experiences a lot of climate variability would not 
be expected to be as negatively impacted by climate change as a site that experiences less climate variability.
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Figure 1 can also be used to illustrate the degree of climate disappearance. A disappearing climate at a focal 
station is one that exists in the present-day, but is projected to no longer exist in the global baseline of future-time 
climates from widespread geographic locations. The degree of global disappearance (σD-Disappearance) for a focal 
geographic location is analogous to the grey points representing the global baseline data for projected future 
climate normals and the blue point representing today’s climate normal at the focal station. The magenta points 
still represent the ICV at the focal station, which is assumed to be constant through time. The σD-Disappearance is 
based on the number of standard deviations between the current climate normal at the focal station (blue point) 
and the climate normal for its nearest neighbor in the future-time climate (green diamond).

Figure 1.   Illustration of climate novelty calculations. Hypothetical data for two focal geographic locations 
whose future climate normal (blue point, a novel climate in this case) is being compared to a global baseline of 
present-day climate normals (grey dots). The raw data (left column, for hypothetical environmental variables 
X1 and X2) is subject to a principal components analysis and then standardized by the multivariate interannual 
climate variability (ICV, pink circles) at the focal station, which results in the standardized data in the right 
column (arrows show how the loadings of environmental variables X1 and X2 in PC space depend on the ICV 
at the focal location). In the standardized PC space (right column), the degree of novelty (σD-Novelty) is calculated 
as the number of standard deviations between the climate projection at the focal station (blue point) and its 
nearest neighbor (green diamond) in the present-day global climate baseline data (grey points, which are 
shaded only to help visualize the standardization). (A) The novelty calculation for the future climate at a focal 
location that experiences low ICV is calculated to be extremely dissimilar to the global baseline. (B) The novelty 
calculation for the future climate at a focal location that is projected to be the same mean future climate as A, 
but experiences higher ICV, is calculated to have low dissimilarity to the global baseline. Note how the different 
degrees of ICV for X1 and X2 affect the data transformation into PC space. The degree of disappearance 
(σD-Disappearance) for a focal station is analogous to the grey points representing the global baseline for possible 
future climates, and the blue point representing today’s climate at the focal station. For further explanation see 
“Overview of metrics that reflect climate risk" section in the main text.
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Results
Overview of model data.  The model data has been previously published3, so here we only briefly sum-
marize the patterns that are helpful in interpreting the multivariate analysis of global novelty and disappearance. 
The relationship between saturation state, temperature, and pH in the present-day sea surface is shown in Fig. 2. 
Because saturation state decreases with temperature, it does not scale linearly with pH and each of these vari-
ables represent different aspects of ocean climate. The local interannual climate variability that is used in the 
standardization for the degree of global novelty/disappearance calculations is typically lowest for all variables 
at the equator (Fig. 3). The temperate zones in the northern hemisphere typically have a more variable local 
ICV than temperate zones in the southern hemisphere, and the Arctic experiences lower saturation states and 
warmer conditions than Antarctic (Fig. 3).

Between 1800 and 2000, the shift in the individual climate variables as a function of latitude shows a slight 
temperature increase at the equator and an ocean-wide slight drop in aragonite saturation state (Fig. 4 left col-
umn). Between 2000 and 2100, these shifts are projected to become larger under RCP 4.5 (Fig. 4 middle column) 
and extreme under RCP 8.5 (Fig. 4 right column).

How these individual climate shifts correspond to the multivariate emergence of novel and disappearing 
climates is visualized in Fig. 5 (for the northern hemisphere) and Fig. 6 (for the southern hemisphere). In the 
northern hemisphere, the present-day undersaturated and low pH conditions in the Arctic are projected to 
become more common at temperate latitudes under RCP 4.5 and RCP 8.5; note that for temperate latitudes these 
conditions are unlikely to be globally novel because they are already common in the Arctic (Fig. 5 middle and 
right columns, note overlap in 2000 and 2100 envelopes at low SST). In the southern hemisphere under RCP 
8.5 projections, there is almost no overlap between current and projected climate envelopes across all latitudes 

Figure 2.   Distribution of pH versus aragonite saturation state in the global ocean. The points are colored by sea 
surface temperature (SST, top) or latitude (Lat, bottom).
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(Fig. 6 right column). While these figures are useful for comparing climate envelopes, note that they do not give 
much insight into the degree of global novelty for a specific location, because that degree depends on the amount 
of historical ICV at that location.

Degree of global novelty and disappearance between 1800 and 2000.  Compared to 2000, 12.4% 
of the modeled 1800 gridpoints had moderate degree of global disappearance and 0% had an extreme degree 
of global disappearance (Table 2, Fig. 7A for MD-Disappearance and Fig. 8A for σD-Disappearance). Similarly, since 1800, 
3.7% of the gridpoints from 2000 had a moderate degree of global novelty and 0% had an extreme degree of 
global novelty (Table 3, Fig. 7B for MD-Novelty and Fig. 8B for σD-Novelty). Current globally disappearing climates are 
trending in the Indian Ocean, the southwest Pacific, and tropical Atlantic (Fig. 7A), whereas current globally 
novel climates are emerging in the equatorial Pacific (Fig. 7B). The relatively small climate shift since 1800 can be 
visualized by the substantial overlap between the 1800 and 2000 climate envelopes for temperature and aragonite 
saturation state and temperature and pH (Figs. 4, 5, 6).

Degree of global novelty and disappearance between 2000 and 2100.  A substantial proportion 
of the sea surface is projected to experience a moderate-to-extreme degree of global disappearance between 2000 
and 2100 under RCP 4.5 and RCP 8.5. By 2100, between 35.6% (RCP 4.5) and 95% (RCP 8.5) of the sea surface 
is predicted to experience an extreme degree of global disappearance (Table 2, Fig. 7C,E for MD-Disappearance and 
Fig. 8C,E for σD-Disapperance). Locations with climates that are projected to experience the most extreme degree of 
global disappearance are primarily located in the tropics and the temperate region of the southern hemisphere 
(Figs. 7C,E and 8C,E), and become more widespread under RCP 8.5 (Fig. 8E).

A substantial proportion of the sea surface is also projected to experience a moderate-to-extreme degree of 
global novelty between 2000 and 2100 under RCP 4.5 and RCP 8.5. By 2100, between 10.3% (RCP 4.5) and 81.9% 
(RCP 8.5) of the sea surface is predicted to experience an extreme degree of global novelty (Table 3, Fig. 7D,F 
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for MD-Disappearance and Fig. 8D,F for σD-Disapperance). Locations with climates that are projected to experience the 
most extreme degree of global novelty are primarily located near the equator, in the Arctic, and in the sub-polar 
region of the southern hemisphere (Figs. 7D,F and 8D,F), and become more widespread under RCP 8.5 (Fig. 8F).

The non-intuitive result that a larger proportion of sea surface climate will have a more extreme degree of 
global disappearance than degree of global novelty is caused by the way the climate envelope shifts in the northern 
hemisphere. A high density area of the temperature-pH envelope in 2000 does not overlap with the temperature-
pH envelope in 2100 (e.g., the former would have a high degree of global disappearance). However, a high density 
area of the temperature-pH envelope in 2100 overlaps with some relatively rare locations in 2000 that have low 
temperature and low pH (thus the lower degree of global novelty). Consequently, the multivariate distance from 
a point at the end of the twentieth century to its nearest analog at the end of the twenty-first century (degree 
of global disappearance) is more often larger than the multivariate distance from a point at the end of the 21th 
century to its nearest analog at the end of the twentieth century (degree of global novelty).

Comparing model ICV with real data.  If ICV is underestimated in our dataset, then the predictions for 
MD and σD shown in Figs. 7 and 8 are overestimated. In comparing projections from the model to measured 
values from long-term ocean monitoring time series, we found that variation in temporal field station measure-
ments of both SST and pH was lower in the tropics (as represented by Hawaiʻi) than at similar latitudes (between 
20° N and 25° N) in the model (Fig. 9), indicating that our novelty projections for tropical regions (which are 
already quite large) may be underestimated. Conversely, we found that variation in field station measurements of 
both SST and pH was higher in the temperate zone (represented by Maine and New Hampshire) than at similar 
latitudes (between 40° N and 45° N) in the model (Fig. 9), indicating that our novelty projections for this region 
(which were among the lowest observed) may be overestimated. In summary, the qualitative prediction that 
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Figure 5.   Shifts in climate envelopes for the northern hemisphere. We compared the distribution of sea surface 
climate normals between different centuries in the northern hemisphere. Aragonite saturation state (top row) 
or pH (bottom row) are plotted against sea surface temperature (SST). For specific comparisons see the titles 
in each panel. When aragonite saturation state falls below 1.0 (horizontal dotted line), the calcium carbonate 
polymorph that some marine animals use to make their shells will dissolve into seawater.
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Figure 6.   Shifts in climate envelopes for the southern hemisphere. We compared the distribution of sea surface 
climate normals between different centuries in the southern hemisphere. Sea surface temperature (SST) is 
plotted against aragonite saturation state (top row) or pH (bottom row). For specific comparisons see the titles 
in each panel. When aragonite saturation state falls below 1.0 (horizontal dotted line), the calcium carbonate 
polymorph that some marine animals use to make their shells will dissolve into seawater.
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Table 2.   Percent of ocean surface estimated to experience different degrees of global disappearance.

Degree of global disappearance σD-Disappearance 1800–2000 (%) 2000–2100 RCP 4.5 (%) 2000–2100 RCP 8.5 (%)

Low (σD < 2) 87.6 30.2 1.5

Moderate (2 < σD < 4) 12.4 34.2 3.5

High (σD > 4) 0 35.6 95

Figure 7.   Map of climate risk based on Mahalanobis distance. A map of the multivariate distance between the 
climate normal for each gridpoint at one point in time and its closest analog in the global climate baseline data 
at another point in time (Mahalanobis distance, MD). The MD,Disappearance is the multivariate distance between the 
climate normal of a gridpoint at an earlier time to its closest analog in the global baseline climate normals at 
a later time (left column). The MD,Novelty is the multivariate distance between the climate normal of a gridpoint 
at a later time to its closest analog in the global baseline climate normals at an earlier time (right column). For 
specific comparisons see the titles within each panel.
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Figure 8.   Map of climate risk based on sigma dissimilarity. The degree of global disappearance or novelty for 
the global ocean. Sigma dissimilarity (σD) represents the number of standard deviations of the local interannual 
climatic variability (ICV) at a gridpoint at one point in time from its closest analog in a global pool of data at 
a different point in time. The degree of global disappearance (σD-Disappearance) is the dissimilarity between the 
climate normal of a gridpoint at an earlier time to its closest analog in the global baseline climate normals 
at a later time (left column). The degree of global novelty (σD-Novelty) is the dissimilarity between the climate 
normal of a gridpoint at a later time to its closest analog in the global baseline climate normals at an earlier 
time (left column). For specific comparisons see the titles within each panel. The largest σD that could be 
calculated with decimal precision was 8.29σ. Following30, a moderate degree of novelty or disappearance is 
given by 2 < σD < (corresponding to the the 95th percentile of local ICV) and an extreme degree is given by σD > 4 
(corresponding to the the 99.994th percentile of local ICV).

Table 3.   Percent of ocean surface estimated to experience different degrees of global novelty.

Degree of global novelty σD-Novelty 1800–2000 (%) 2000–2100 RCP 4.5 (%) 2000–2100 RCP 8.5 (%)

Low (σD < 2) 96.3 47.6 11.4

Moderate (2 < σD < 4) 3.7 42.1 6.7

High (σD > 4) 0 10.3 81.9
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equatorial regions will experience an extreme degree of global novelty and northern temperate regions will not 
experience globally novel conditions is robust given the direction of the slight biases in the ICV.

Discussion
Our analysis did not predict that any modeled gridpoints on the ocean surface have experienced an extreme 
degree of global disappearance or novelty between 1800 and 2000. However, between 2000 and 2100 under 
Representative Concentrations Pathway (RCP 4.5 or 8.5) projections, our analysis predicted that a substantial 
proportion of the sea surface may experience an extreme degree of global novelty and disappearance relative to 
the global climate baseline data. The upward estimates in our analysis are larger than those projected for global 
novel and disappearing climates on land7, and are due in part to the ocean surface environment being two to 
three orders of magnitude less variable than that on land34. Under both RCP 4.5 and RCP 8.5, the more extreme 
degree of global novelty near the equator and in the sub-Antarctic is driven in part by the lower interannual 
climatic variability (ICV) at these locations. In contrast, the low degree of global novelty in northern temperate 
regions stems in part from the higher ICV at those latitudes.

In this study we estimated the degree of multivariate novelty of future climates and disappearance of extant 
climates relative to global climate baseline data for the sea surface, which complements previous studies for the 
global ocean based on local rates of climate change15,16. The local versus global metrics provide important, and 
different, information about the vulnerability of populations to climate change. Local climate change at a specific 
location, relative to the historical variability at that location, may reflect the extent to which the species composi-
tion will shift as species track shifting climate envelopes with dispersal. The degree of global climate novelty at a 
location, however, may indicate how stressful novel conditions will be for all species. In contrast, the degree of 
global climate disappearance for a location may represent how hard it might be for species who are well adapted 
to the climate at that location to find a similar climate in the future.

While dispersal limitations greatly increase the risk that species will experience the loss of extant climates or 
the occurrence of novel climates7, the high dispersal potential of marine organisms with a planktonic larval stage 
has been discussed as a trait that will allow them to keep pace with climate change15. Recent studies have found 
that marine species are able to track shifting climates10,11. Our study shows that the majority of these climate shifts 
are not novel (e.g., have an analog) since the early nineteenth century. In other words, although some climate 
variables, such as pH, have already emerged beyond historical baseline for a particular location15, our study shows 
these climates are not novel from a global perspective and may facilitate tracking via range shifts. However, if a 
majority of the ocean surface climate disappears and is replaced by novel climates with no recent analog by the 
end of the twenty-first century, the optimal environment for many species may not exist and dispersal will not 

Figure 9.   Comparison of ICV for observational versus model data. We compared long-term ocean field site 
measurement standard deviations in sea surface temperature (A) and pH (B) to model standard deviations at 
representative latitudes and longitudes. The solid lines represent the average annual standard deviation of the 
field measured time series data, while the dotted line represents the average standard deviation of the model in 
the same region. The observational data included the tropical Hawaii Ocean Time-series (HOTS), the temperate 
North Atlantic datasets from the University of New Hampshire Coastal Marine Laboratory and the National 
Oceanic and Atmospheric Administration mooring NH_70W_43N (CML/NOAA), and Boothbay Harbor, 
Maine (BBH).
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help these species keep pace with environmental change. Instead, species may need to keep pace via evolutionary 
adaptation, plasticity and acclimatization, and/or epigenetic processes35.

Evidence for adaptive capacity is emerging, although examples are still few. Phytoplankton have been shown 
to evolve rapidly in response to increased pCO2

13, due in part to their short generation times and large popula-
tion sizes. The concerns remain, however, that adaptive variation for high pCO2 is limited in most species36, that 
high pCO2 can diminish the heritability of larval traits37, that marine species live close to their upper thermal 
limits38, and that the unprecedented rate of change will be too fast relative to the long life span of many marine 
species for adaptive evolution to occur before their lineages go extinct39. Yet, a growing number of studies have 
found transgenerational plasticity of marine invertebrates and vertebrates in response to increased temperature 
or pCO2

40,41, suggesting that non-genetic or epigenetic processes could play a major role in acclimatization—
although there are many knowledge gaps in the molecular mechanisms that underlie such processes42.

The degree of global novelty or disappearance for a specific location is relative to the amount of variability 
historically experienced at a location. We found that the model data tended to have lower ICV than time series 
data for high latitudes, and higher ICV than time series data for low latitudes, indicating that our estimates of 
novelty may be overestimated for high latitudes (which are already the lowest novelty) and underestimated for 
low latitudes (which are already the highest novelty). Therefore, the main conclusion—that the equator and 
sub-Antarctic regions will experience the highest degree of global novelty and northern temperate regions the 
lowest degree of global novelty—is robust to the direction of bias we observed in the ICV. Note, however, that 
our analysis did not include coastal areas, which are known to experience large fluctuations in temperature and 
carbonate chemistry due to upwelling processes and freshwater input43,44. Including coastal areas in this analysis 
was not possible due to the paucity of data, but would be an important avenue for future research.

Our projections may be conservative because there are other important aspects of seawater chemistry, food 
availability, and ocean dynamics that will be altered by climate change but were not considered by our model. For 
example, enhanced stratification caused by warming temperatures can have a range of indirect effects, including 
reduced nutrient supply to phytoplankton at low latitudes, but a more favorable light regime for these organisms 
at high latitudes45,46. Primary productivity may also be altered in coastal areas where productivity is driven by 
the seasonal upwelling of deep, nutrient-rich water. Climate change is altering the intensity, timing and spatial 
structure of upwelling dynamics, thus reshaping patterns of primary productivity47–50. Warming also reduces 
the solubility of oxygen, and hypoxic conditions have been shown to have negative effects on many marine 
organisms51. Moreover, warming drives sea ice melt and systematic freshening of polar areas52.

Including multiple stressors into calculations of MD and σD is an important avenue for future research. In our 
analysis, reconstructed and projected carbonate chemistry for the global ocean was based on the GFDL-ESM2M 
model that is often considered as the most reliable model for the carbonate parameters (Dunne et al. 2012, 2013). 
Other models with different variables (e.g. sea ice, salinity, dissolved oxygen, nutrients, etc.) could be analysed in 
the same way and this would allow an estimate of the uncertainty in the results. The sensitivity of the results to the 
choice of model is an important next step towards producing more robust estimates of novelty and disappearance.

If the projections of climate novelty and disappearance reported here are accurate, the cascading effects on 
marine ecosystems and communities could be substantial. Areas such as the IndoPacific, which are projected 
to experience the most extreme degree of climate novelty and disappearance, are critical hot spots for endemic 
biodiversity and coral reefs53–55. Coral reefs are particularly vulnerable to bleaching of their zooxanthellae symbi-
onts, which can result from minor increases in temperature50. In these areas, elevated risks of ecological surprises, 
including extinction, are likely.

Shifting climate niches only represent one aspect of the ecological risks associated with climate change. Modi-
fied energy flows and biogeochemical cycles, multiple stressors, shifts in phenology, climate-mediated invasions, 
climate-driven disease outbreaks, and asynchronies between prey availability and predator demand are some of 
the other processes that will contribute to shifting ecosystem distributions and the services that they provide to 
society50,56,57. Species will vary in their ability to keep up with multivariate environmental transitions into no-
analog climates, which will promote the formation of no-analog species assemblages and present many ecological 
surprises. Highly novel marine ecosystems will challenge the predictive ability of eco-evolutionary models and 
present many challenges to the preservation of marine biodiversity over the next century.

Methods
Global ocean reconstructed and projected data.  Seawater carbonate data for pH and aragonite sat-
uration state calculation in this study were extracted from the 6th version of the Surface Ocean CO2 Atlas 
(SOCATv6, 1991–2018, ~ 23 million observations) at a spatial resolution of 1 × 1 degree58. Data without quality 
control flags of A or B (uncertainty of fugacity of carbon dioxide, fCO2 < 2 µatm) were omitted. Silicate and phos-
phate values for all SOCATv6 stations were extracted from the gridded GLODAPv2 climatologies59. Total alka-
linity (TA) was then calculated with the updated Locally Interpolated Alkalinity Regression (LIARv2) method60. 
pH on the total hydrogen scale (pHT) and aragonite saturation state were calculated from in-situ temperature, 
salinity, hydrostatic pressure, dissolved inorganic carbon (DIC) concentration, TA, silicate and phosphate. Dis-
sociation constants were taken from the literature for carbonic acid61, bisulfate (HSO4

−)62, and hydrofluoric acid 
(HF)63. Total borate concentration equations were the same as reported by Uppström64. A MATLAB version65 of 
the CO2SYS program66 was used for analysis. Uncertainties of the methods using the CO2SYS errors program67 
are estimated to be 0.01 for pH and 0.13 for aragonite saturation state, assuming uncertainties for SST, salinity, 
TA, and DIC of 0.01, 0.02, 6 µmol kg−1 and 4 µmol kg−1, respectively.

The calculated pHT and aragonite were then adjusted from their sampling year to 2000 assuming that: (a) sea 
surface pCO2 increases at the same rate as atmospheric mole fraction of carbon dioxide (xCO2), as documented 
by the IPCC Fifth Assessment Report 5 (AR5)68, (b) SST increases at the rate described by NOAA’s Extended 
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Reconstructed Sea Surface Temperature (ERSST) v569, and (c) salinity and TA remain constant. Surface pHT and 
Revelle Factor were further adjusted from their sampling month to all 12 months of 2000 assuming that: (a) sea 
surface pCO2 follows the same annual cycle as documented by the LDEO database70, (b) sea surface temperature 
(SST) in all months of 2000 can be approximated by the 1995–2004 average monthly SST climatology from the 
World Ocean Atlas71 and (c) salinity and TA remain constant.

Surface ocean pHT and aragonite saturation state in all 12 months for all decades from 1770 to 2100 under 
the IPCC scenarios (RCP 4.5 and RCP 8.5) were reconstructed or projected assuming that sea surface pCO2 and 
SST increase at the rate simulated by the GFDL-ESM2M model run with these pathways2,29. Spatial mapping was 
conducted using a Matlab version (Divand Software) of the Data-Interpolating Variational Analysis (DIVA)72. 
For more detail, please refer to Jiang et al.3.

Estimating global climate novelty or disappearance.  For each location, the metrics we estimate are 
based on dissimilarity between the projected multivariate (past or future/projected) climate change at a given 
location and its nearest analog in a global set of “baseline” data. To estimate the range of possible degrees of nov-
elty or disappearance, we compared the predictions for a global baseline and a hemisphere-restricted baseline 
(e.g., northern or southern hemisphere). An important feature of our calculations is that they (i) are performed 
in multivariate space, and (ii) take into account the interannual climatic variability (ICV) at that location. For all 
analyses, climate normals were calculated based on 40-year means of each climate variable and ICV was based 
on model data for 1965–2004 (see Table 1 for definitions). Because the ICV did not change substantially through 
time in the model data, our results were not sensitive to the span of years chosen to represent the ICV.

Aragonite saturation state was log10-transformed because it was a ratio variable: it is limited at zero and 
proportional changes are meaningful (C. R. Mahoney, pers. comm.). This transformation makes the difference 
between 1 and 2 the same significance as the difference between 0.5 and 1 (doubling vs. halving, i.e., proportional 
scaling). In practice, temperature doesn’t need to be log-transformed because it doesn’t vary across orders of 
magnitude, and in our case pH is already a log-scaled variable. Nevertheless, our analysis was not sensitive to 
whether or not aragonite saturation state was log-transformed.

The degree of global novelty is calculated by comparing a later climate normal for each ocean gridpoint to all 
earlier climate normals for the global baseline data. We performed three planned comparisons for the degree of 
climate novelty as measured by MD-novelty and σD-novelty (note we use the reference period 1965–2004 ICV for all 
analyses): (i) novelty of the late twentieth century ocean surface (1965–2004) compared to pre-industrial early 
nineteenth century (1795–1834) reconstructed climate; (ii) novelty of the late twenty-first century climate under 
RCP 4.5 (2065–2104) compared to late twentieth century; and (iii) novelty of the late twenty-first century climate 
under RCP 8.5 (2065–2104) compared to late twentieth century.

Conversely, the degree of global disappearance is calculated by comparing an earlier climate normal for each 
ocean gridpoint to a later pool of climate normals for the global baseline data. High values indicate places where 
climates may disappear; i.e., they have no close counterpart anywhere in the later timepoint. We performed three 
planned comparisons for the degree of climate disappearance as measured by MD-disapperance and σD-disappearance: (i) 
disappearance of climates from early nineteenth century pre-industrial times (1795–1835 reconstructed climate) 
in the late twentieth century ocean (1965–2005); (ii) disappearance of late twentieth century climates by the late 
twenty-first century under RCP 4.5 (2065–2105); and (iii) disappearance of twentieth century climates by the 
late twenty-first century under RCP 8.5 (2065–2105).

Values of σD higher than ~ 8 were difficult to estimate due to the high decimal precision required to estimate 
probability in the extreme tail of the chi distribution; in these cases σD was set to a value of 8.29 σ (the maximum 
value that could be calculated given decimal precision). We created maps of MD and σD in Matlab R2021 Version 
(code available in repo).

Comparing ICV between model projections and real data.  Because of the sensitivity of the degree 
of global novelty/disappearance calculations to the ICV (see An overview of global climate novelty and disappear-
ance calculations), we wanted to ensure the ICV that we used from the model data were similar to those observed 
in long-term ocean time series. We were particularly concerned whether ICV might be underestimated in the 
model data, because that would bias our estimates of MD and σD upwards. To explore whether ICV in the model 
projections were lower or greater than that observed in long-term ocean time series, and to address some of 
the limitations due to the coarse grid of global models, we compared SST and pH standard deviations from the 
model to those from long-term ocean monitoring time series in the tropical and temperate zones.

The model output is the predicted climate variable for that ocean gridpoint for each month, and it is calculated 
every decade. The standard deviation of the modeled data is based on the monthly data for each year that data is 
available. The observational data, however, is collected continuously across an entire year. The standard deviation 
of the observational data is based on this continuous data for each year that data is available.

Real measurements of SST and surface pH were downloaded from Hawaii Ocean Time Series73, and from 
the University of New Hampshire Coastal Marine Laboratory74; SST was also acquired from Boothbay Harbor75; 
and additional pH measurements from the National Oceanic and Atmospheric Administration mooring 
NH_70W_43N (NOAA)76. For regional comparisons, the tropical central Pacific (HOTS) dataset was compared 
to model data for values between latitude 20° N and 25° N, and longitude 160° E and 130° W, and the temperate 
North Atlantic (UNH_CML, BBH & NOAA) data were compared to model data for values between latitude 
40° N and 45° N, and longitudes 40° W and 70° W. For the time series data, years in which measurements were 
not sampled continuously across both winter and summer months were omitted. Yearly standard deviations of 
both SST and pH for the observational and model data were calculated and compared in R.
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Data availability
Code and data for reproducing the results can be found at the Dryad repository: Data from: Novel and disap-
pearing climates in the global surface ocean from 1800 to 2100 (doi:https://​doi.​org/​10.​5061/​dryad.​ht76h​drgb).
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