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Abstract: In recent years, sarcopenic obesity has been considered central pathological factors in
diabetes. This study aimed to compare the effect of luseogliflozin, a sodium-glucose co-transporter-2
inhibitor (SGLT2i), on sarcopenic obesity in comparison to that of a low-carbohydrate diet (LCD).
Twenty-week-old male db/db mice were fed a normal diet (Ctrl), LCD, and normal diet with 0.01%
w/w luseogliflozin (SGLT2i) for eight weeks. Skeletal muscle mass and grip strength decreased in
the LCD group mice compared to those in the control group, while they increased in the SGLT2i
group mice. The amino acid content in the liver, skeletal muscle, and serum were lower in the
LCD group than those in the Ctrl group but increased in the SGLT2i group mice. Short-chain fatty
acids in rectal feces were lower in the LCD group mice than those in the Ctrl group, whereas they
were higher in the SGLT2i group mice. The abundance of Gammaproteobacteria, Enterobacteriaceae,
Escherichia, Enterobacterales, and Bacteroides caccae species increased in the LCD group compared to
the other two groups, whereas the abundance of Syntrophothermus lipocalidus, Syntrophomonadaceae
family, Parabacteroidesdistasonis distasonis, and the genus Anaerotignum increased in the SGLT2i group.
Luseogliflozin could prevent sarcopenic obesity by improving amino acid metabolism.

Keywords: sodium-glucose co-transporter-2 inhibitor; luseogliflozin; sarcopenia; sarcopenic obesity;
metabolites; gut microbiota

1. Introduction

The prevalence of diabetes mellitus has increased rapidly, and preventing the progression
of sarcopenia, a diabetic complication, has become imperative to decrease the number of
bedridden patients. In recent years, sarcopenic obesity, a decrease in skeletal muscle mass
along with an increase in body fat, has been assumed to be the main pathogenesis of diabetes-
associated obesity, and changes in skeletal muscle mass are associated with fatty liver and
glycemic control [1]. Therefore, innovative animal models are expected to elucidate the
pathomechanisms of sarcopenic obesity and lead to novel therapeutic approaches.

Our previous study demonstrated sarcopenic obesity in db/db mice and found ele-
vated levels of Foxo1 expression and saturated fatty acids in the skeletal muscle [2,3]. In
these studies, while the concentrations of saturated fatty acids including palmitic, myristic,
stearic, and lauric acid in the skeletal muscles of sarcopenic obese mice are elevated, the
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concentrations of these saturated fatty acids are significantly reduced in the skeletal mus-
cles of mice administered with luseogliflozin, a sodium-glucose co-transporter-2 inhibitor
(SGLT2i), and increased muscle strength and muscle mass are observed. In addition, the
expression of fatty acid transporters, including CD36, in the skeletal muscle is reduced
in association with a decrease in blood glucose. Thus, we revealed that luseogliflozin
improves the serum lipidome in addition to blood glucose. Although the direct mechanism
of regulating gene expression by improving intracellular metabolic conditions has not
yet been elucidated, our previous study suggested that luseogliflozin-mediated reduc-
tion in saturated fatty acid concentrations in the skeletal muscle involves suppressing the
expression of Foxo1 and other skeletal muscle atrophy-related genes.

Dietary treatment for sarcopenic obesity is limited; however, protein [4], calcium,
and vitamin D supplements [5] are potentially effective against sarcopenic obesity. Many
clinical trials have evaluated the diet for obesity and type 2 diabetes, with low-carbohydrate
diets (LCDs) demonstrating effectiveness, although they are still controversial. LCDs are
classified into the following four major categories based on their carbohydrate/energy ratio:
ketogenic diets, energy from carbohydrates (%): <10%, low carbohydrates: <26%, moderate
carbohydrates: 26–45%; and high carbohydrates: 45–55% [6]. A systematic review and
meta-analysis of randomized controlled studies examining the effects of LCD suggested
that reducing dietary carbohydrates would clinically improve the management of type
2 diabetes. It was also suggested that a considerable LCD (<50 g/day) may hinder dietary
adherence [7]. Additionally, in another meta-analysis of over 400,000 individuals, both high
(>70%) and low (<40%) carbohydrate intake was associated with an increased risk of mor-
tality than moderate carbohydrate (50–55%) intake [8]. In summary, LCDs are beneficial for
the short-term reduction of body weight; however, the longer-term effectiveness of LCDs
remains controversial [9]. Furthermore, the effects of LCD on sarcopenia remain contro-
versial. In humans, LCD was reported to prevent muscle protein catabolism under energy
restriction, when it includes sufficient amounts of protein [10], whereas Nakao et al. [11].
described that LCDs significantly increased the mRNA levels of oxidative stress-responsive
genes, including Sod1, in the skeletal muscle and suppress muscle protein synthesis in
a mouse study. Therefore, the efficacy of LCDs for sarcopenic obesity, a combination of
obesity and sarcopenia, remains unclear.

Furthermore, carbohydrate restriction due to LCD may consequently restrict fiber
intake. According to the findings of several human studies, LCD decreases short-chain fatty
acid (SCFA) levels in feces and causes dysbiosis [12–14]. The equilibrium between obligate
and facultative anaerobes is considered important, and a disruption in this equilibrium
is called dysbiosis [15]. Biophilic anaerobes are fermentative bacteria, which mainly use
dietary fiber as a nutrient source to produce SCFAs. The SCFAs further stimulate intestinal
resident type 3 innate lymphocytes via FFAR3 to release interleukin (IL)-22 [16]. IL-22
thickens the mucin layer, strengthens the intestinal barrier, and prevents endotoxins and
lipopolysaccharides from entering the body [17]. Through these mechanisms, IL-22 has
been shown to protect against the onset of metabolic syndrome; thus, LCD may induce
intestinal inflammation by reducing the promotion of SCFAs in the intestinal tract.

In a single dose luseogliflozin (3 mg/kg) study conducted in db/db mice, urinary
glucose excretion levels at 8 h after administration was 408 mg, compared with 228 mg in
the pathological control group (Taisho Pharmaceutical in-house data, common technical
document 2.6.2.2.2.2). The differences in urinary glucose excretion levels between the
control group and luseogliflozin in db/db mice were 100 mg at 8h [18], and 200 mg
at 6h [19]. Therefore, we estimated the maximum urinary glucose excretion effect of
luseogliflozin (0.01%) on 8-week-old db/db mice in a previous study to be 800 mg/day
(300–800 mg/day). If the anti-sarcopenic effect of luseogliflozin is solely due to urinary
glucose excretion, it is assumed that this effect would be exceeded by the anti-sarcopenic
effect of a carbohydrate-restricted diet. Since the daily carbohydrate intake was 6.0 g in the
study, we prepared a 51% carbohydrate (LCD 51%, D20031902) diet, with a daily intake of
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4.4 g, a reduction of 1600 mg carbohydrate, which is twice the urinary glucose excretion
effect of 800 mg/day.

The purpose of this study was to confirm the anti-sarcopenic effect of luseogliflozin
on LCD, using db/db mice fed an equal weight dose diet of AIN93G with either 51% LCD
(64% carbohydrate ratio) or 0.01% luseogliflozin.

2. Materials and Methods
2.1. Mice and Experimental Design

Approval by the Committee for Animal Research of the Kyoto Prefectural University
of Medicine was obtained for all experimental protocols. Iar-Leprdb/Leprdb mice (db/db
mice) were housed in the Kyoto Prefectural University of Medicine Animal Facility (M2020-
38). We obtained male homozygous db/db mice with diabetes at 20 weeks of age from
Shimizu Laboratory Supplies (Kyoto, Japan). The mice were given a standard diet (4 kcal/g,
carbohydrate kcal 64%, fat kcal 16%; New Brunswick, NJ, USA) or a low-carbohydrate
diet (4 kcal/g, carbohydrate kcal 51%, fat kcal 21%; Research Diets Inc., New Brunswick,
NJ, USA) (Table 1) for 8 weeks from 20 weeks of age. They were separated into the three
groups described below. We performed the following experiments with 6 mice per group:
(i) db/db mice fed a normal diet (6.0 g/day) without SGLT2i (Ctrl), (ii) db/db mice fed
an LCD (4.4 g/day), and (iii) db/db mice fed a normal diet (6.0 g/day) with luseogliflozin
(SGLT2i). We used luseogliflozin [Lusefi®, Tokyo, Japan)], an oral hypoglycemic agent and
second-generation SGLT2i originally developed by Taisho Pharmaceutical Co., Ltd. in this
study. Luseogliflozin was added to the diet at a ratio of 0.01% per weight, which was a
similar dosage to our previous study [2,3]. The effect of the 0.01% luseogliflozin mixed
diet was set at a urinary glucose excretion of 300–800 mg/day. At the age of 28 weeks, we
euthanized all mice by administration of the following combination of anesthetics: butor-
phanol (5.0 mg/kg), midazolam (4.0 mg/kg), and medetomidine (0.3 mg/kg) (Figure 1A).
The weight of soleus muscle, plantaris muscle, liver, and epididymal fat were measured.

Table 1. Dietary composition for the normal diet and LCD. Abbreviation: gm, gram.

Normal Diet Low-Carbohydrate Diet

gm% kcal% gm% kcal%

Protein 20 20 28 28
Carbohydrate 64 64 51 51

Fat 7 16 10 21
total 100 100

kcal/gm 4 4

Ingredient gm kcal mg/6 gm gm kcal mg/4.4 gm

Casein 200 800 1200 272.7 1090.8 1200
L-Csytine 3 12 18 4.1 16.4 18

Corn Starch 397.486 1590 2385 178.7 715 786
Maltodextrin 132 528 792 180 720 792

Sucrose 100 400 600 136 544 598
Cellulose 50 0 300 68.2 0 300

Soybean Oil 70 630 420 95.5 859.5 420
t-BHQ 0.014 0 0.084 0.019 0 0.084

Mineral Mix 35 0 210 47.7 0 210
Vitamin Mix 10 40 60 13.6 54.4 60

Choline
Bitartrate 2.5 0 15 3.4 0 15

Total 1000 4000 999.969 4000
Carbohydrate 3837 2237
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Figure 1. Low-carbohydrate diet (LCD) aggravated glucose impairment and reduced muscle strength,
whereas sodium-glucose co-transporter-2 inhibitor (SGLT2i) improved them. (A) Overview of the
feeding and euthanasia protocol. (B) Body weight changes. (C) Fasting blood glucose changes.
(D,E) Intraperitoneal glucose tolerance test (iPGTT) results and the area under the curve (AUC) of
iPGTT. (F,G) Insulin tolerance test (ITT) results and the AUC of ITT. Luseogliflozin improved their
impaired glucose tolerance. (H,I) Absolute and relative grip strength. Data are mean ± standard
deviation (SD). One-way analysis of variance (ANOVA) was conducted for statistical analysis.

2.2. Fasting Blood Glucose Measurement and Glucose Tolerance Tests

Blood glucose levels after 14 h fasting were checked at 20, 22, 24, 26, and 28 weeks.
The intraperitoneal glucose tolerance test (iPGTT) (1 mg/g) (6 mice in each group, two days
before euthanasia) and insulin tolerance test (ITT) (0.5 U/kg) (three days before euthanasia)
were evaluated at 28 weeks of age, after 5 and 14 h of fasting, respectively. Then, the
area under the curve (AUC) was calculated. We measured blood glucose levels with a
glucometer (Glutestmint II; Sanwa Kagaku Kenkyusho, Nagoya, Japan) in the tail vein.
The data of ITT and iPGTT were calculated and analyzed by obtaining the AUC.
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2.3. Grip Strength Assay

Grip strength was assessed with a mouse grip strength meter (model DS2-50N, IMADA
Co., Ltd., Toyohashi, Japan) in another batch of 28-week-old mice. Six consecutive measure-
ments were taken at 1-min intervals. The researchers were blinded to the group allocation
of the mice.

2.4. Amino Acid Quantification in Sera, Liver and Plantaris Muscle, and SCFA Determination
in Feces

The amino acid composition of sera, liver, and the plantaris muscle, as well as the
SCFA composition of rectal feces, were determined with gas chromatography (GC)–mass
spectrometry (MS) performed using an Agilent 7890B/7000D System (Agilent Technologies,
Santa Clara, CA, USA). Samples of serum (50 µL), liver (20 mg) rectal feces (20 mg), and
plantaris muscle (20 mg) were mixed with 500 µL diluted water and 500 µL acetonitrile
and, ground in a ball mill at 4000 rpm for two minutes. Further, the specimens were
shaken at 1000 rpm and 37 ◦C for thirty minutes and centrifuged at 14,000 rpm and room
temperature for three minutes. The supernatant (500 µL) was separated, then added to
500 µL acetonitrile, and shaken at 1000 rpm and 37 ◦C for three minutes. The specimens
were centrifuged at 14,000 rpm and room temperature for three minutes, and the pH of the
supernatant was controlled to eight with 0.1 mol/L NaOH, to extract the SCFAs.

SCFA and amino acid concentrations were measured using GC/MS with online solid-
phase extraction (SPE). In the SPE-GC system SGI-M100 (AiSTI Science, Wakayama, Japan),
SPE and injection into the GC/MS system were automated after placing vials of the sample
on an autosampler tray. We used flash-SPE ACXs (AiSTI Science) for solid-phase stratifica-
tion. Aliquots (50 µL) of each sample extract were obtained, loaded onto the solid phase, and
washed with water and acetonitrile (1:1). Subsequently, the samples were dehydrated with
acetone, impregnated with 4 µL N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide-
toluene solution (1:3), and eluted with hexane after derivatization in the solid phase. The
final product was injected using a programmed temperature vaporizer injector, LVI-S250
(AiSTI SCIENCE), with temperature maintained at 150 ◦C for 0.5 min, increased gradually
at a rate of 25 ◦C/min up to 290 ◦C, and then maintained for 16 min. The samples were
loaded onto a capillary column, Vf-5ms [30 m (length) × 0.25 µm (membrane thickness)
× 0.25 mm (inner diameter); Agilent Technologies]. The column temperature was main-
tained at 60 ◦C for three minutes, increased at a rate of 10 ◦C/min to 100 ◦C, increased
subsequently at a rate of 20 ◦C/min to 310 ◦C, and maintained at 310 ◦C for seven minutes.
The sample was injected in the split mode at a ratio of 20:1. The SCFAs were detected in
the scan mode (m/z:70–470). Each result was normalized to the peak height of norleucine
(0.02 nmol/µL) for amino acids and tetradeuteroacetic acid (0.02 nmol/µL) for SCFAs [20].

2.5. Quantification of Free Fatty Acids in the Soleus Muscle

The soleus muscle composition of free fatty acids was determined by using the same
gas chromatography-mass spectrometry (GC/MS) system as that used for SCFA and amino
acid quantification. and an Agilent 7890B/7000D (Agilent Technologies, Santa Clara, CA,
USA). Soleus muscle (15 µg) was methylated with a fatty acid methylation kit (Nacalai
Tesque, Kyoto, Japan). The final product was loaded onto a Varian capillary column
(DB-FATWAX UI; Agilent Technologies). The capillary column used was CP-Sil 88 for
FAME (length, 100 mm; membrane thickness, 0.20 µm; inner diameter, 0.25 mm; Agilent
Technologies) for fatty acid separation. The column temperature was maintained at 100 ◦C
for four minutes, increased gradually at a rate of 3 ◦C/min to 240 ◦C, and maintained for
seven minutes. The samples were injected in the split mode at a ratio of 5:1. The fatty
acid methyl esters were detected in the selected ion monitoring mode. Each result was
normalized to the peak height of the C17:0 internal standard.
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2.6. Gene Expression in the Soleus Muscle

The soleus muscle of fasting mice was resected, immediately frozen in liquid nitrogen,
homogenized in ice-cold QIAzol Lysis reagent, and total RNA was isolated as described in
the manufacturer’s recommendations. Total RNA (0.5 µg) was reverse-transcribed using a
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA)
for first-strand cDNA synthesis with an oligonucleotide dT primer and random hexamer
priming, as instructed by the manufacturer. We performed the reverse transcription (RT)
reaction at 37 ◦C for 120 min, and the inactivation of RT at 85 ◦C for five minutes. The
mRNA expression levels of Foxo1, Trim63, Fbxo32, Hdac4, Il-6, Il-1β, and Scd1 were
quantified with real-time reverse transcription polymerase chain reaction (RT-PCR). The
relative expression levels of genes were normalized to the gapdh cycle threshold (CT)
values and quantified using the comparative threshold cycle 2−∆∆CT method, as previously
described. Signals from db/db mice without SGLT2i were assigned a relative value of 1.0.
We performed RT-PCR with TaqMan Fast Advanced Master Mix (Applied Biosystems), by
following the manufacturer’s instructions. The following PCR conditions were applied:
1 cycle at 50 ◦C for two minutes and at 95 ◦C for twenty seconds, followed by 40 cycles of
one second at 95 ◦C, and s0 s at 60 ◦C.

2.7. Metagenomic Analysis

Fecal samples were obtained from the appendix and collected in a cryotube. Immedi-
ately following this, the samples were attached to liquid nitrogen for cryopreservation and
stored in liquid nitrogen until DNA extraction. We collected three fecal samples one at a
time from the appendix of three mice, excluding one large and one small mouse in a cage
of each group. Microbial DNA was obtained from frozen fecal samples with the QIAamp®

DNA Stool Mini Kit (Qiagen, Venlo, The Netherlands) according to the manufacturer’s
instructions [21].

We performed whole-genome shotgun sequencing by using a HiSeq 2000/2500/4000
system (Illumina) at the Bioengineering Lab. Co., Ltd., Sagamihara, Japan).

2.8. Statistical Analyses

We analyzed data with the JMP software (version 14.0; SAS, Cary, NC, USA). Differ-
ences between two groups were evaluated using the unpaired t-test, and differences among
more than three groups were evaluated with Tukey’s multiple comparison test. Statistical
significance was defined at p < 0.05. Each figure was created using the GraphPad Prism
software (version 9.0; San Diego, CA, USA).

3. Results
3.1. Effect of SGLT2i on Body Weight and Glucose Homeostasis

The body weight of the LCD group mice was lower than that of the Ctrl and SGLT2i
groups after the 8-week treatment (28 weeks: Ctrl, p = 0.002; SGLT2i, p < 0.0001) (Figure 1B).
The fasting blood glucose levels in the SGLT2i group tended to be lower than those in the
other two groups after the age of 22 weeks (Figure 1C). Compared to the Ctrl group and
LCD group, the AUCs of ITT and iPGTT in the SGLT2i group were lower (Figure 1D–G).

3.2. Effect of SGLT2i on Muscle Strength

Grip strength and the grip strength/body weight ratio measured at 28 weeks of age
were both significantly higher in the SGLT2i mice compared to those in the other two
groups (Figure 1H,I).

3.3. Effect of SGLT2i on Visceral Fat and Skeletal Muscle

The weight and organ weight/body weight ratios were examined. A significant
decrease in epididymal fat was observed in the SGLT2i group compared with that in the
other two groups, whereas the LCD group showed a significant increase in epididymal
fat compared with that in the other two groups (Figure 2A,B). Soleus muscle weight and



Nutrients 2022, 14, 3531 7 of 16

soleus muscle weight/body weight ratio (×1000) and plantaris muscle weight and plantaris
muscle weight/body weight ratio (×1000) were not significantly different between the
Ctrl and LCD groups but were significantly higher in the SGLT2i group than those in the
Ctrl and LCD groups (Figure 2C–F). The cross-sectional areas of the soleus and plantaris
muscles was decreased in the LCD group and increased in the SGLT2i group, compared to
the Ctrl group (Figure 2G,H).
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One-way ANOVA was conducted for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, and
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3.4. Effect of SGLT2i on Amino Acid Concentrations in the Sera, Liver, and Skeletal Muscle

Further, branched-chain amino acid concentrations in the serum, liver, and skeletal
muscle were investigated. The levels of valine, leucine, and isoleucine concentrations in the
serum, liver, and skeletal muscle of the SGLT2i mice were significantly higher than those
in the Ctrl and LCD mice (Figure 3A–I). Leucine concentrations tended to be lower in the
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LCD mice than that in the Ctrl mice, and the concentrations of valine and isoleucine in the
skeletal muscle were significantly lower in the LCD mice than those in the Ctrl mice.
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Figure 3. The amino acid concentrations in the sera, liver, and muscle. Concentration of valine in
(A) serum, (B) liver, and (C) muscle. Concentration of leucine in (D) serum, (E) liver, and (F) muscle.
Concentration of isoleucine in (G) serum, (H) liver, and (I) muscle. Data are mean ± SD. Statistical
analyses were conducted with ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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3.5. Effect of SGLT2i on SCFAs in Feces and Saturated Fatty Acids in the Skeletal Muscle

The LCD mice had significantly lower fecal concentrations of SCFAs including acetic
acid, propanoic acid, and butanoic acid than the Ctrl mice, while those in the SGLT2i group
were higher than those in the Ctrl group and LCD group (Figure 4A–C).
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Figure 4. The fecal concentration of short-chain fatty acid and the concentration of saturated fatty
acid and unsaturated fatty acids in the soleus muscle. The fecal concentration of (A) acetic acid,
(B) propanoic acid, and (C) butanoic acid. The concentrations of (D) lauric acid, (E) myristic acid,
(F) palmitic acid, (G) stearic acid, and (H) oleic acid in the soleus muscle. Data are mean ± SD.
Statistical analyses were conducted using ANOVA. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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The concentrations of saturated fatty acids, including lauric, myristic, palmitic, and
stearic acid, in the skeletal muscle of the LCD group, were higher than those in the skeletal
muscle of the Ctrl group, whereas those of the SGLT2i group were lower than those of the
Ctrl and LCD groups (Figure 4D–G). In contrast, the concentration of the unsaturated fatty
acid, oleic acid, in the skeletal muscle of the SGLT2i group was higher than that of the Ctrl
group, while that of the LCD group was lower than that of the Ctrl group (Figure 4H).

3.6. SGLT2i-Mediated Changes in the Gene Expression Levels Involved in Muscle Atrophy,
Inflammation, and Fatty Acid Synthesis in the Skeletal Muscle

Further, the gene expression levels involved in muscle atrophy, inflammation, and
fatty acid synthesis were investigated using RT-PCR. The gene expression levels related
to muscle loss, such as Foxo1 and Fbxo32, in the LCD mice, was higher than that in the
Ctrl mice. The gene expression levels of Foxo1, Trim63, Fbxo32, and Hdac4 in the SGLT2i
group was lower than that in the LCD mice (Figure 5A–D). In addition, the gene expression
involved in inflammation, such as Il-6 and Il-1 beta, was higher in the LCD mice than that
in the Ctrl and SGLT2i groups (Figure 5E,F). Similarly, the gene expression levels involved
in fatty acid synthesis, such as Scd1, in the LCD group was higher than that in the Ctrl and
SGLT2i mice (Figure 5G).
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Figure 5. Gene expression in the soleus muscle evaluated using real-time reverse transcription
polymerase chain reaction (RT-PCR). The relative expression of (A) Foxo1, (B) Trim63, (C) Fbxo32,
(D) Hdac4, (E) Il6, (F) Il-1beta, and (G) Scd1 normalized Gapdh. Data are mean ± SD. One-way
ANOVA was used for statistical analyses. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

3.7. Changes in Gut Microbiota by SGLT2i

Shotgun metagenomic analysis of appendicular feces was performed, and LEfSe
analysis was performed to compare the gut microbiota among the three groups (Figure 6).
In the LCD group, the abundance of bacteria from the class Gammaproteobacteria, the family
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Enterobacteriaceae, the order Enterobacterales, and the species Bacteroides caccae increased
compared to that in the other two groups. In the SGLT2i group, the abundance of species
Syntrophothermus lipocalidus, the family Syntrophomonadaceae, the species Parabacteroides
distasonis, and the genus Anaerotignum increased.
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Figure 6. The composition of gut microbiota analyzed using shotgun metagenome analyses.
(A) LEfSe was used to identify the taxa with the greatest differences in abundance between the
gut microbiota of Ctrl, LCD, and SGLT2i groups (n = 3). Ctrl (Red); LCD (Green); SGLT2i (Blue). The
brightness of each dot is proportional to the effect size. Only taxa with a significant LDA threshold
value > 2 are demonstrated. (B) LDA scores of gut microbiota of Ctrl (Red), LCD (Green), and SGLT2i
(Blue) groups.
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4. Discussion

In the present study, compared to the normal diet (Ctrl) group and the luseogliflozin
(SGLT2i) administered group, the LCD group showed significantly worse glucose tolerance,
decreased skeletal muscle mass, decreased muscle strength, increased saturated fatty acids,
decreased amino acids in the blood and skeletal muscle, and altered gut microbiota. In
contrast, compared to the animals in the Ctrl and LCD groups, mice in the SGLT2i group,
who were expected to excrete glucose in the urine equivalent to the glucose restriction in
LCD, showed significantly improved glucose tolerance, increased skeletal muscle mass,
increased muscle strength, decreased saturated fatty acids, and increased amino acids in
the blood and skeletal muscle.

We performed a shotgun metagenomic analysis of the gut microbiota, and LEfSe analy-
sis demonstrated that bacterial abundance of the class Gammaproteobacteria, which increased
in the LCD group, is increased in obese and healthy human participants [22]. In addition,
an increase in the bacterial abundance of the family Enterobacteriaceae has been reported
by lipopolysaccharides and exhibits high endotoxin activity [23]. The bacterial abundance
of the order Enterobacterales is increased in the intestines of adults with severe obesity and
diabetes [24]. Increased abundance of the species Bacteroides caccae was reported in the in-
testines of diabetic patients [25]. In contrast, the SGLT2i group showed a significant increase
in the abundance of the species Syntrophothermus lipocalidus, family Syntrophomonadaceae,
and genus Anaerotignum, which are involved in the biosynthesis of SCFAs such as acetic
acid, propionic acid, and butyric acid [26–28]. In addition, the species Parabacteroides
distasonis, which is abundant in the intestines of patients on low-calorie ketogenic diets
or undergoing sleeve gastrectomy bariatric surgery, was significantly increased in the
SGLT2i group [29]; this species is also negatively correlated with obesity and metabolic
syndrome [30]. The correlation between SGLT2i and modification of the gut microbiota
is well established [31–33] however, most of these studies are focused on marker-based
amplicon sequencing, such as 16s rRNA genes. The deep shotgun sequencing performed
in this study allowed for a more detailed analysis of the gut microbiota. In this context, to
our knowledge, it was observed for the first time that the administration of luseogliflozin
results in the proliferation of gut microbiota involved in SCFA biosynthesis. However, the
mechanism by which SGLT2i administration modifies gut microbiota is still unknown. We
hypothesized that the inhibition of SGLT2 by luseogliflozin was partly responsible for the
altered intestinal metabolites by reducing the absorption of simple sugars; further studies
are needed to substantiate this hypothesis. The LCD group showed dysbiosis caused by a
decrease in carbohydrates. This was thought to be mainly due to a decrease in fiber intake,
owing to a decrease in carbohydrates (Corn starch intake of 2385 mg/day:57.24 mg/day
of fiber in the Ctrl and SGLT2i groups, and 786 mg/day:18.86 mg/day of fiber in the LCD
group). Furthermore, this was considered a mechanism for improving metabolic disorders
specific to luseogliflozin, which cannot be obtained with an LCD.

SCFAs (acetic, propionic, and butyric) in rectal feces are representative enterobacteria-
fermented metabolites, derived from dietary fiber substrates. At the molecular level,
they contribute closely to the homeostasis of living organisms, by being involved in the
energy metabolism of the host, influencing immune function, and epigenomic regulation.
Intestinal SCFAs act on pancreatic beta cells via the bloodstream to promote insulin secretion
and improve insulin resistance in adipocytes, thereby contributing to the prevention and
treatment of metabolic diseases [34,35]. Increased SCFAs in the intestine enhance the
intestinal barrier function by increasing the mucin layer of the intestinal mucosa via GPR43,
which is expressed on type 3 innate lymphocytes in the intrinsic layer of the small intestinal
mucosa [36]. One of the mechanisms of action of the anti-sarcopenic obesity effect of
luseogliflozin is the reduction of saturated fatty acid concentrations in the skeletal muscle
by improving systemic lipid metabolism [3]. In that study, we found that administration of
palmitic acid to C2C12 myotube cells promoted the expression of fatty acid synthesis-related
genes including Scd1, skeletal muscle atrophy-related genes, and inflammation-related
genes. The improvement of fatty acid metabolism as described above may contribute to
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the decreased expression of atrophy- and inflammation-related genes in skeletal muscle
by administration of SGLT2 inhibitors in this study. Simultaneously, the improvement
of amino acid metabolism throughout the body via changes in the intestinal microflora
could be also one of the mechanisms underlying the decreased expression of inflammation-
related genes. We demonstrated that luseogliflozin improved amino acid metabolism,
resulting in an increase in amino acid concentrations in the skeletal muscle in the present
study. Although it is known that SGLT2i improves amino acid metabolism by improving
mitochondrial function [37,38], to our knowledge, this is the first study to quantify amino
acid concentrations in the serum, liver, and skeletal muscle and to prove that SGLT2i causes
an increase in amino acid concentration. Insulin signaling is also essential for metabolism
and amino acid transport in skeletal muscles and is known to play an important role in
regulating muscle protein synthesis [39,40]. The increased amino acid concentrations in
the skeletal muscle of the SGLT2i mice may be due to the fact that SCFAs in the gut of the
SGLT2i mice activate ILC3 in the mucosal intrinsic layer of the small intestine, enhancing
the protective effect of IL-22 released by ILC3 on mucosa and reducing the influx of
inflammatory substances such as lipopolysaccharides and endotoxins in the body, thereby
reducing systemic inflammation and inflammation in the skeletal muscle. Inflammation
within skeletal muscles increases muscle insulin resistance [41]. It is suggested that reduced
muscle insulin resistance could enhance amino acid absorption into the skeletal muscles, as
described here. Further studies are needed to test this hypothesis, including the expression
level of ILC3 in the small intestine, measurement of short-chain fatty acid levels in the
intestine, and measurement of amino acid levels in the skeletal muscle in IL-22 knockout
mice. We analyzed the expression of genes involved in muscle atrophy, inflammation, and
fatty acid synthesis by RT-PCR, whereas protein expression was not examined in this study.

In summary, to our knowledge, this study revealed LCD-induced dysbiosis for the
first time, using db/db mice. Luseogliflozin treatment was found to increase the abundance
of intestinal bacteria involved in the synthesis of SCFAs, leading to improved amino acid
metabolism. Thus, through these mechanisms, luseogliflozin could successfully prevent
sarcopenic obesity.
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