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A B S T R A C T

As understanding of the genetics of bipolar disorder increases, controversy endures regarding whether the
origins of this illness include early maldevelopment. Clarification would be facilitated by a ‘hard’ biological
index of fetal developmental abnormality, among which craniofacial dysmorphology bears the closest embry-
ological relationship to brain dysmorphogenesis. Therefore, 3D laser surface imaging was used to capture the
facial surface of 21 patients with bipolar disorder and 45 control subjects; 21 patients with schizophrenia were
also studied. Surface images were subjected to geometric morphometric analysis in non-affine space for more
incisive resolution of subtle, localised dysmorphologies that might distinguish patients from controls. Complex
and more biologically informative, non-linear changes distinguished bipolar patients from control subjects. On a
background of minor dysmorphology of the upper face, maxilla, midface and periorbital regions, bipolar dis-
order was characterised primarily by the following dysmorphologies: (a) retrusion and shortening of the pre-
maxilla, nose, philtrum, lips and mouth (the frontonasal prominences), with (b) some protrusion and widening
of the mandible-chin. The topography of facial dysmorphology in bipolar disorder indicates disruption to early
development in the frontonasal process and, on embryological grounds, cerebral dysmorphogenesis in the
forebrain, most likely between the 10th and 15th week of fetal life.

1. Introduction

Increased understanding of the genetics of bipolar disorder is re-
vealing shared genetic risk for other illnesses that include the neuro-
developmental condition of attention deficit/hyperactivity disorder as
well as schizophrenia (Bipolar Disorder and Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2018;
Brainstorm Consortium, 2018). While the neurodevelopmental model
continues to hold ‘centre stage’ in relation to schizophrenia
(Waddington et al., 2012; Weinberger, 2017), controversy endures re-
garding the extent to which bipolar disorder might also have

developmental origins (Sanches et al., 2008; Demjaha et al., 2012;
Parellada et al., 2017).

Clarification of this controversy would be facilitated by a ‘hard’
biological index of developmental abnormality. Anatomical dys-
morphologies, both major congenital abnormalities (Waddington et al.,
2008) and minor physical anomalies (Xu et al., 2011), indicate devel-
opmental disruption during early fetal life; however, they are hetero-
geneous, difficult to quantify, and their status in bipolar disorder is
evolving (Akabaliev et al., 2014; Berecz et al., 2017). Craniofacial
dysmorphologies bear the closest embryological relationship to brain
dysmorphogenesis (DeMyer et al., 1964; Schneider et al., 2001;
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Marcucio et al., 2015), but even when analysed anthropometrically
(Lane et al., 1997; Deutsch et al., 2015) they lack the topographical
resolution that can only come from detailed quantification of dysmor-
phology of the whole facial surface in its intrinsic 3-dimensional (3D)
space.

We and others have previously applied 3D laser surface imaging and
geometric morphometrics to resolve and quantify craniofacial dys-
morphology in psychotic illness (Buckley et al., 2005; Hennessy et al.,
2007) and subsequently we reported preliminary evidence for cranio-
facial dysmorphology in bipolar disorder (Hennessy et al., 2010). Re-
cently, we have applied more advanced geometric morphometric
techniques to craniofacial dysmorphology in 22q11.2 deletion syn-
drome, which carries an approximately 25-fold increase in risk for
psychiatric illness, including psychosis (Prasad et al., 2015). In the
studies outlined above, craniofacial dysmorphology was quantified in
terms of overall differences in craniofacial shape between cases and
controls. These analyses, involving generalised Procrustes registration
in order to describe the variation of individual shapes around a mean
(Goodall, 1991), have focussed conventionally on all types of de-
formations at given locations on surfaces, including those that operate
uniformly across the surface at large scale. However, as recently de-
scribed (Katina, 2012), it is now possible to resolve more complex
changes in non-affine space in which deformation at given locations is
not assumed to be uniform, to reflect the practical reality that each
location often has a distinct structural environment (Wen et al., 2012;
Hufnagel, 2015).

Such changes may considerably extend the incisiveness of geometric
morphometrics for resolving craniofacial dysmorphology in greater
topographical detail and hence enhance biological interpretation of
craniofacial dysmorphology as an index of brain dysmorphogenesis.
Therefore, given the enduring controversy regarding an early devel-
opmental basis to bipolar disorder, we here report an initial study of
craniofacial dysmorphology in this illness in non-affine space.

2. Methods

2.1. Participants

Approval for this study was obtained from the Research Ethics
Committee of St. John of God Hospital, Stillorgan, Co. Dublin, in ac-
cordance with the Declaration of Helsinki. All subjects were adults
between the ages of 18–65 who gave written, informed consent to their
participation following a complete description of the study.

Patients with bipolar disorder were recruited among those having
this clinical diagnosis on admission to St. John of God Hospital, a
general adult psychiatry hospital in Dublin, Ireland, or treated as out-
patients by the Cluain Mhuire Centre, an outpatient mental health
service in Dublin associated with St. John of God Hospital. A diagnosis
of bipolar I disorder was established using the Structured Clinical
Interview for DSM-IV. Participants included patients with either a first
manic episode or a recent manic relapse of bipolar disorder in-
dependent of previous polarity or psychotic features. Additionally, we
recruited schizophrenia patients with either a first psychotic episode or
a recent psychotic relapse using similar procedures.

Control subjects were recruited from the administrative, clinical and
ancillary staff of St John of God Hospital, Cluain Mhuire Centre and
associated community facilities. Each prospective control was inter-
viewed and excluded if they had a personal or family history of major
affective disorder, psychosis or suicide in a first-degree relative ac-
cording to Family History Research Diagnostic Criteria (Baker et al.,
1987).

To exclude ethnic differences in craniofacies, all subjects, their
parents and grandparents originated from and were born on the island
of Ireland [Republic of Ireland or Northern Ireland], Scotland, Wales or
England; all were white. Subjects were questioned about any cranio-
facial trauma or surgery and individuals who reported such events or

evidenced beards or moustaches were excluded. Patients, together with
control subjects, were recruited and assessed in an identical manner, in
close temporal contiguity, by the same investigators over the course of a
common study protocol. There were 21 patients with bipolar disorder
[13 males, 8 females; mean age 35.8 (standard deviation (SD) 10.8),
range 20–59 years] and 45 control subjects [18 males, 27 females;
mean age 33.3 (SD 11.3), range 18–64 years]. Twenty-one patients with
schizophrenia [17 males, 4 females; mean age 32.6 (SD 12.3), range
18–62 years] were also studied.

2.2. 3D Laser surface imaging and image processing

Facial surfaces were recorded by a single investigator (BK), using a
portable, hand-held 3D laser imaging system (Polhemus FastScan,
Vermont, USA), as described previously (Hennessy et al., 2007, 2010;
Prasad et al., 2015). Typical surfaces, consisting of ~80,000 points
[~160,000 triangles] (Fig. 1), are as shown previously in detail
(Hennessy et al., 2007; Prasad et al., 2015). Incomplete data due to hair
and complex folded surfaces were resolved using a fully automatic al-
gorithm (Hu et al., 2012), which we have shown to achieve an optimal
balance between performance and triangle manipulation (Rojas et al.,
2014).

2.3. Facial landmarks

Following preprocessing, craniofacial shape was characterised first
by locating manually 23 biologically homologous anatomical land-
marks [nine on the midline and 14 as right and left counterparts of each
of seven lateralised points (Prasad et al., 2015); these landmarks, shown
in Fig. 1, were identified by a single investigator (SK), who was una-
ware of patient-control status.

Fig. 1. Anatomical landmarks (red) and semi-landmarks on anatomical and
intermediate curves (black) on facial surfaces in (a) coronal, (b) coronal-sagittal
oblique and (c) sagittal views, with (d) x, y and z axes used in Figs. 2 and 3
superimposed on coronal-sagittal oblique view. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)
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This landmark set was augmented by 725 geometrically homo-
logous semi-landmarks [also known as pseudo- or interpolated land-
marks] on anatomical and intermediate curves (ridges, valleys, geo-
desic; Fig. 1) to improve description of the face in regions where
anatomical landmarks are not present (Katina et al., 2016). If semi-
landmarks were missing on both the right and left sides of the face,
these were estimated by thin-plate spline (TPS) warping (see
Dryden and Mardia, 2016) of a symmetric facial template onto a given
facial surface using the anatomical landmarks and semi-landmarks as
anchoring points (Gunz et al., 2008; Senck et al., 2015); if semi-land-
marks were missing only on one side of the face, the opposite side of the
face was warped to the side of interest. The positions of the semi-
landmarks on each face were adjusted iteratively by sliding to create
points that are geometrically homologous with respect to the template;
this was achieved by minimising bending energy between the template
and each facial shape, which has the effect of removing artificial de-
formation (Katina et al., 2016).

This sliding technique was applied together with generalized
Procrustes analysis (GPA; Dryden and Mardia, 1998) to match the en-
tire set of faces by minimising the Procrustes shape distance across
location, orientation, and scale. This also allows Procrustes mean shape
to be computed, which was used as a template for a second stage of
iterative adjustment in order to improve accuracy. These processes
were repeated until convergence. For subsequent analysis, Procrustes
shape co-ordinates (PSC) were used.

2.4. Geometric morphometrics and visualisation

The nature of variation in samples of shapes is commonly explored
through principal component analysis (PCA), based on the covariance
matrix of the PSC (Dryden and Mardia, 2016); this represents the ma-
jority of the variation in the data through a smaller number of new
variables that are constructed as linear combinations of the original
variables (Prasad et al., 2015). As applied to 2D shapes
(Bookstein, 1989), the concept of bending energy, which measures
shape change by analogy with the physical process of surface de-
formation, was implemented. This specified that PCA was applied to
resolve the more complex changes (non-linear, non-uniform) in non-
affine space.

In all instances, PCA was applied to resolve and visualise differences
between (a) bipolar patients and controls and (b) schizophrenia pa-
tients and controls, with adjustment for age and sex by a linear re-
gression model in principal component (PC) scores (Prasad et al.,
2015). These geometric morphometric methods and statistical analyses
were implemented by direct coding in the R statistical computing en-
vironment (Core Team, 2020). Further details on these methods, and
code to implement them, are available from the authors on request. For
statistical tests, the significance level α was set at 0.05 and the results
presented in terms of t-statistics [t, using 82 degrees of freedom cal-
culated as the number of patients and control subjects (87) minus the
number of parameters in the regression model (5, i.e. PC scores, age,
sex, diagnosis and sex × diagnosis interaction)] and conventional p-
values (p); Bonferroni adjustments were applied to control the family-
wise (generalized Type I) error rate in a conservative manner for
comparison of each patient group across the five PCs examined.

3. Results

3.1. Geometric morphometrics

PCA in non-affine space identified PCs 1–5 as explaining 51.0% of
variance in facial morphology (Table 1; in this table only five PCs, i.e.
those each accounting for > 5% of variance, are included). A regression
model with terms for age and sex was adopted to ensure that these
possible effects were incorporated. PC1 and PC3 varied with age, while
PC2 and PC3 distinguished the sexes (each p < 0.01; Bonferroni

adjustment was not used as age and sex were included in regression
models regardless of significance). These relationships are in ac-
cordance with a long-standing and extensive literature on sex- and age-
related variations in normal human craniofacial shape by ourselves and
others (Hennessy et al., 2002; Ilankovan, 2014; Kersterke et al., 2016)
and thus are not considered further. Following adjustment for age and
sex, PC1 distinguished bipolar disorder cases from controls (p = 0.003,
Table 1; Bonferroni significance level 0.05/10 = 0.005), with no di-
agnosis × sex interaction; no PC was informative in distinguishing
schizophrenia cases from controls at the indicated level of significance.
Following primary analyses in non-affine space, secondary analyses in
overall shape space and affine space were conducted and were not in-
formative (see Supplementary material Tables S1 and S2).

3.2. Visualisation

These findings for bipolar disorder in non-affine space were given
biological import through visualisations of PC1 as bipolar-control dif-
ferences in facial shape. The magnitude of the absolute difference be-
tween control and case means is relatively small and the corresponding
shape change is subtle. In order to visualise the nature of these differ-
ences more effectively, the displayed images magnify the difference
between cases and controls by a factor of three in each direction. More
specifically, if the control and case means on the PC scale are re-
presented as z1 and z2 respectively, where z1 has the smaller value, then
the displayed control shape lies at z1 – 3(z2 – z1) and the displayed case
shape at z2 + 3(z2 – z1). Plain surfaces that correspond to magnified
control shape and case shape, after adjusting for age and sex, are shown
in Fig. 2. More quantitatively, data are shown as Euclidean distances
from control shape to bipolar shape at each point on the facial surface
for the normal [n] direction, i.e. perpendicular to the local surface area,
and for orthogonal [x, y, z] components, after adjusting for age and sex
(Fig. 3).

Table 1
Principal component analysis for non-affine space.

Variance Bipolar vs controls Schizophrenia vs
controls

PC Explained% Cumulative% t p t P

PC1 18.0% 18.0% 3.015 0.003 –1.055 0.295
PC2 11.2% 29.2% –0.075 0.940 0.255 0.800
PC3 8.4% 37.6% –0.898 0.372 –0.282 0.779
PC4 7.0% 44.7% 1.719 0.090 –0.192 0.848
PC5 6.3% 51.0% –0.937 0.352 0.507 0.614

Variance and cumulative variance explained by each principal component (PC),
with probability values adjusted for age and sex by a linear regression model for
each PC in distinguishing bipolar and schizophrenia patients from controls; p
values should be compared to the Bonferroni adjusted significance level 0.05/
10 = 0.005.

Fig. 2. Visualization of PC1 of non-affine space as plain surfaces on coronal-
sagittal oblique view for (left) control shape and (right) patient shape (each
magnified × 3).
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Using terminology for phenotypic variations that includes cranio-
facial topographies from Elements of Morphology (Allanson et al., 2009;
Prasad et al., 2015) these visualisations indicate the following ecto-
dermally derived surface features of (i) head and face, (ii) periorbital
region, (iii) nose and philtrum, and (iv) lips, mouth and oral region to
statistically distinguish bipolar cases from controls:

3.2.1. Face
Upper face: slight (i.e. lower ranges of colour scales in either di-

rection from zero) prominence of forehead and supraorbital ridges
(Fig. 3, row n, columns a and b; row z, columns a–d).

Maxilla and midface: slight prominence of cheeks (Fig. 3, row n,
columns a, b and d; row z, columns a and d); slight retrusion, narrowing
and elongation of upper posterior midface (Fig. 3, row n, column c;
rows x and y, column c; row z, column c); slight widening of lower
midface (Fig. 3, row x, columns a–d).

Premaxilla: marked (i.e. upper ranges of colour scales in either di-
rection from zero) retrusion and shortening of premaxilla (Fig. 3, row n,
columns a-d; row y, column b; row z, columns a–d).

Mandible and chin: marked prominence and elongation of anterior
jaw and chin (Fig. 3, row n, columns a–d; row y, columns a and b; row z,
columns a–d); slight shortening of the posterior jaw (Fig. 3, row y,
columns c and d).

Each of the above dysmorphologies appeared symmetrical, with the
exception of slight prominence of the forehead, which appeared more
evident on the left side (right side of images, in accordance with radi-
ological convention).

3.2.2. Periorbital region
Slight prominence of the eyes (Fig. 3, row n, columns a and b; row z,

columns a–d). This dysmorphology appeared symmetrical.

3.2.3. Nose and philtrum
Marked retrusion and shortening of nasal tip, nostrils, nasal base

and philtrum, with narrowing of nasal ridge and philtrum (Fig. 3, row
n, columns a–d; row y, columns a–d; row z, columns a–d). These dys-
morphologies appeared symmetrical.

3.2.4. Lips, mouth and oral region
Marked retrusion of upper and lower lips and mouth, with nar-

rowing of upper lip and mouth (Fig. 3, row n, columns a–d; row y,
columns a–d; row z, columns a–d). These dysmorphologies appeared
symmetrical.

Fig. 3. Visualisation of PC1 of non-affine space as control mean with colour-coded directional differences from control mean to bipolar mean (all magnified × 3).
Euclidean distances: n, Euclidean distance in normal direction, i.e. along perpendicular direction from each point on the facial surface; x, distance in x-axis direction
from each point on the facial surface; y, distance in y-axis direction from each point on the facial surface; z, distance in z-axis direction from each point on the facial
surface. Views: (a) coronal; (b) transverse-coronal 22.5°; (c) sagittal; (d) coronal-sagittal oblique; left side of subject shown on right side of image, in accordance with
radiological convention. Inset: colour scale for 3D distances where positive [from mid-green, through yellow to brown] indicates values for bipolar cases > controls
and negative [from mid-green, through blue to purple] indicates values for bipolar cases < controls. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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4. Discussion

In this study we report the 3D topography of craniofacial dysmor-
phology in bipolar disorder in non-affine space. This analysis reveals
complex deformations that can be related to the known developmental
biology of the human face and its relationship to brain morphogenesis,
so as to provide information on putative mechanisms of brain dys-
morphogenesis in this disorder. It should be emphasised that the term
‘deformations’ is used in its technical sense: these findings are too subtle
to be noted qualitatively on visual inspection of any individual patient,
and are evident only on quantitative assessment of patient groups using
3D imaging technology and analysis by geometric morphometrics. On a
background of minor dysmorphologies of the upper face, maxilla,
midface and periorbital region, the main features in bipolar disorder are
(a) retrusion and shortening of the premaxilla, nose, philtrum, lips and
mouth (the frontonasal prominences), with (b) protrusion and widening
of the mandible-chin.

Over early fetal life, the brain and face share a common embry-
ological origin during which tissues from ectodermally derived pri-
mordia interact intimately in terms of molecular signalling and physical
influences; thus, disruption to processes regulating early brain devel-
opment are accompanied by facial anomalies (DeMyer et al., 1964;
Marcucio et al., 2015). Five primordia give rise to five developmental
fields that ultimately fuse over early fetal life to create facial form: the
frontonasal process, which enjoys the most intimate relationship with
development of the forebrain; paired maxillary processes; paired
mandibular processes that relate less intimately to brain development
(Schneider et al., 2001; Marcucio et al., 2015).

Critically, the topography of dysmorphology in bipolar disorder
implicates impairment of early development in the frontonasal process
that would predict cerebral dysmorphogenesis, particularly in the
forebrain; recent studies and meta-analyses in bipolar disorder have
indeed reported reductions in frontal grey matter volume (Birur et al.,
2017; Chang et al., 2018), reductions in frontal white matter con-
nectivity with more posterior regions (Birur et al., 2017), and reduc-
tions in functional integrity in frontoparietal and cingulo-opercular
networks that correlate with extent of cognitive impairment
(Sheffield et al., 2017). This impairment of early development in the
frontonasal process was accompanied by the prominence of early de-
velopment in the mandibular processes. This may reflect compensatory
events, either embryologically to sustain overall facial morphology via
an adjacent developmental field less closely related to brain develop-
ment, or involving physical interactions between adjacent develop-
mental fields.

Though our findings in bipolar disorder appeared robust, given
previous findings of ourselves and others (Buckley et al., 2005;
Hennessy et al., 2007, 2010; Prasad et al., 2015) the marginality of
findings in schizophrenia was unexpected. This may reflect, at least in
part, the present paucity of female schizophrenia cases relative to fe-
male controls and these few female schizophrenia cases being among
the older subjects ascertained, as such variations can distort geometric
morphometric analyses by increasing age-related confounding effect on
shape. Notably, other investigators using conservative diagnostic cri-
teria, such as were applied here, have remarked on the increasing
paucity of female SZ cases in research studies (Lewine et al., 1984;
Iacono and Beiser, 1992; Longenecker et al., 2010). Confining analyses
to males did not provide clarification; the findings were similar to those
across both sexes.

Embryological data on the timeline of brain-face relationships over
fetal life (Diewert and Lozanoff, 1993; Diewert et al., 1993) indicate
that these evolve and approach postnatal morphology during gesta-
tional weeks 6 through weeks 19–20. On this basis, we have speculated
(Hennessy et al., 2010) that primary dysmorphogenic events may take
place during this period. The present findings refine these notions by
emphasising frontonasal dysmorphology in bipolar disorder, whether
due to genetic or environmental factors or involving gene-environment

interactions. Frontonasal dysmorphology enjoys the most intimate re-
lationship with development of the forebrain during the period of ge-
stational weeks 9–10 through weeks 14–15 (Diewert and
Lozanoff, 1993; Diewert et al., 1993). Indeed, using alternative em-
bryological considerations, other authors have recently proposed si-
milarly that abnormal development between the 10th and 15th week of
gestation appears related to reduced brain volume in bipolar disorder
(Vonk et al., 2014).

In the context of enduring controversies regarding the extent to
which bipolar disorder does or does not have developmental origins
(Sanches et al., 2008; Demjaha et al., 2012; Parellada et al., 2017), the
present findings constitute ‘hard’, quantitative evidence for disruptive
events operating over early fetal life. More specifically, these findings in
non-affine space provide resolution of the topography of facial dys-
morphology in bipolar disorder and, on embryological grounds, greater
insight into brain dysmorphogenesis, including the putative timing of
these events. Future studies should seek to disentangle the relative roles
of early genetic and environmental adversities in the dysmorphogenic
process(es) of bipolar disorder and the extent to which this may gen-
eralise across psychotic diagnoses.
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