
viruses

Article

Investigating the Diversity and Host Range of Novel
Parvoviruses from North American Ducks Using Epidemiology,
Phylogenetics, Genome Structure, and Codon Usage Analysis

Marta Canuti 1,* , Joost T. P. Verhoeven 1, Hannah J. Munro 1,†, Sheena Roul 1,†, Davor Ojkic 2,
Gregory J. Robertson 3 , Hugh G. Whitney 1, Suzanne C. Dufour 1 and Andrew S. Lang 1,*

����������
�������

Citation: Canuti, M.; Verhoeven,

J.T.P.; Munro, H.J.; Roul, S.; Ojkic, D.;

Robertson, G.J.; Whitney, H.G.;

Dufour, S.C.; Lang, A.S. Investigating

the Diversity and Host Range of

Novel Parvoviruses from North

American Ducks Using Epidemiology,

Phylogenetics, Genome Structure,

and Codon Usage Analysis. Viruses

2021, 13, 193. https://doi.org/

10.3390/v13020193

Academic Editors: Karla Helbig and

Subir Sarker

Received: 24 December 2020

Accepted: 26 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave.,
St. John’s, NL A1B 3X9, Canada; verhoevenjtp@googlemail.com (J.T.P.V.);
munro.hannah@gmail.com (H.J.M.); sheenaroul@hotmail.com (S.R.);
hughwhitneynl@gmail.com (H.G.W.); sdufour@mun.ca (S.C.D.)

2 Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St.,
Guelph, ON N1G 2W1, Canada; dojkic@uoguelph.ca

3 Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street,
Mount Pearl, NL A1N 4T3, Canada; greg.robertson@canada.ca

* Correspondence: marta.canuti@gmail.com (M.C.); aslang@mun.ca (A.S.L.);
Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)

† Current address: Northwest Atlantic Fisheries Centre, Ecological Sciences Division, Department of Fisheries
and Oceans, 80 East White Hills Rd., St. John’s, NL A1A 5J7, Canada.

Abstract: Parvoviruses are small single-stranded DNA viruses that can infect both vertebrates and
invertebrates. We report here the full characterization of novel viruses we identified in ducks,
including two viral species within the subfamily Hamaparvovirinae (duck-associated chapparvovirus,
DAC) and a novel species within the subfamily Densovirinae (duck-associated ambidensovirus,
DAAD). Overall, 5.7% and 21.1% of the 123 screened ducks (American black ducks, mallards, northern
pintail) were positive for DAC and DAAD, respectively, and both viruses were more frequently
detected in autumn than in winter. Genome organization and predicted transcription profiles of
DAC and DAAD were similar to viruses of the genera Chaphamaparvovirus and Protoambidensovirus,
respectively. Their association to these genera was also demonstrated by subfamily-wide phylogenetic
and distance analyses of non-structural protein NS1 sequences. While DACs were included in a
highly supported clade of avian viruses, no definitive conclusions could be drawn about the host
type of DAAD because it was phylogenetically close to viruses found in vertebrates and invertebrates
and analyses of codon usage bias and nucleotide frequencies of viruses within the family Parvoviridae
showed no clear host-based viral segregation. This study highlights the high parvoviral diversity in
the avian reservoir with many avian-associated parvoviruses likely yet to be discovered.

Keywords: parvovirus; chaphamaparvovirus; densovirus; avian viruses; insect viruses; virus discov-
ery; codon usage; dinucleotide frequencies

1. Introduction

Parvoviruses (family Parvoviridae, order Piccovirales) are small, non-enveloped, icosahe-
dral virions comprised of capsid viral proteins (VPs) surrounding a linear, single-stranded
DNA genome with a size range of approximately 4–6 kb. The genomes include two main
coding regions with the one in 5′ encoding non-structural (NS) proteins and the one in 3′

coding for the VPs. These are included between two short non-coding palindromic regions
that fold into terminal hairpin structures, which are similar in homotelomeric viruses and
differ from one another in heterotelomeric viruses. Parvoviruses maximize their genome
usage by using alternative splicing to generate multiple mRNAs, which are capped and
polyadenylated, that are then translated into the different viral proteins. These include the
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replication initiator protein NS1, ancillary proteins essential for various stages of the virus
life cycle (NS2-4 and NP1), and a variable number of VPs, the smallest of which (VP2-5)
share the same sequence with the largest VP1 but present different degrees of N-terminal
truncations [1].

Viruses within the family Parvoviridae are currently grouped into three phylogeneti-
cally defined subfamilies: Parvovirinae (10 genera), which includes thus far only viruses
infecting vertebrates; Densovirinae (11 genera), which comprises viruses infecting inverte-
brates; and Hamaparvovirinae, a recently established taxon that contains viruses identified
in both vertebrate (2 genera) and invertebrate (3 genera) hosts [2,3]. This diversity of
host species is also matched by a high genetic diversity among viral members, which
are characterized by a wide array of genome arrangements, including monosense and
ambisense gene organizations, and of auxiliary proteins. Furthermore, their capsid pro-
teins are very divergent and it has been speculated that they might have originated from
different ancestral proteins [4], although the unique region of the VP1 from most genera
across subfamilies contains a conserved phospholipase A2 (PLA2) enzymatic domain [1,4,5].
What all parvoviruses have in common, however, is the presence of a highly conserved
helicase superfamily 3 (SF3) domain, with helicase and ATPase activity, within the NS1.
As a result of its high sequence conservation, this domain is used to define the phylogenetic
relationships among all parvoviruses and to establish family-wide taxonomy [2].

Several parvoviruses have been identified in the avian reservoir, but probably the
most famous examples are viruses within the species Anseriform dependoparvovirus 1 (genus
Dependoparvovirus, subfamily Parvovirinae). These include the goose parvovirus (GPV)
and the Muscovy duck parvovirus (MDPV) that cause Derzsy’s disease, a fatal disease
characterized by watery diarrhea, lethargy, anorexia and prostration in goslings and duck-
lings (GPV) and Muscovy ducklings (MDPV), and an emerging disease known as short
beak and dwarfism syndrome in mule ducks [6]. Within the same genus is the much
less characterized and non-pathogenic avian adeno-associated virus (species Avian depen-
doparvovirus 1) [7]. Also within the Parvovirinae are the chicken parvovirus and turkey
parvovirus (Galliform aveparvovirus 1) that have been reported in association with various
enteric syndromes, as well as in healthy gut viromes, and are classified within the genus
Aveparvovirus together with the two recently discovered red-crowned crane parvovirus
(Gruiform aveparvovirus 1) and pigeon parvovirus (Columbid aveparvovirus 1) [3,6,8,9].

In recent years, several avian parvoviruses have been identified within the subfamily
Hamaparvovirinae. All these viruses are included within the recently established genus
Chaphamaparvovirus, which takes its name from the host groups in which its members
were initially discovered (chiropteran, avian, and porcine) and so far includes viruses
identified in mammals and birds [2,3], although recent studies also report phylogenetically
related viruses in fish and reptiles [10,11]. Currently this genus includes 16 species, with
six identified in the avian reservoir. Specifically, the Psittacine chaphamaparvovirus 1 that
was found through metagenomics analysis in feces of parakeet [12] and the Galliform
chaphamaparvovirus 1-5 that have been found in feces of turkeys and chickens [13–15] and
deceased peafowls [16]. Furthermore, chaphamaparvoviruses have been reported in fecal
specimens collected from red-crowned cranes [9] and ducks [17] and there is in silico
evidence for the presence of these viruses in canaries and mesites [18].

The majority of avian parvoviruses have been discovered in recent years thanks to
the widespread application of metagenomic sequencing and the number of known species
keeps increasing every year [2,3]. It is, therefore, likely that what is currently known
is a fraction of the overall viral diversity and a vast repertoire of avian parvoviruses is
still waiting to be discovered. This is especially likely considering that there are over
10,000 living avian species [19] and parvoviruses have been investigated in only a few of
these. In this study we molecularly characterized novel parvoviruses from two different
subfamilies, Hamaparvovirinae and Densovirinae, that we discovered in a population of wild
North American ducks and studied their diversity, distribution, and genomic features.
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2. Materials and Methods
2.1. Sample Collection

This study included archived samples from 144 birds collected for other studies in 2014
(n = 92), 2015 (n = 39), and 2018 (n = 13) in Newfoundland and Labrador, Canada [20–22].
Sampling was performed in accordance with the recommendations of the Canadian Council
on Animal Care.

The majority of samples were collected at different locations next to ponds within
the city of St. John’s (32 at Quidi Vidi Lake, 107 in Bowring Park, 2 at Burton’s Pond,
1 at Commonwealth Pond) and 2 birds came from a nearby city (Bay Roberts). Sampled
birds included: 109 American black ducks (Anas rubripes), 9 mallards (Anas platyrhynchos),
1 northern pintail (Anas acuta), 4 American black duck × mallard hybrids, 8 American
herring gulls (Larus smithsonianus), 9 ring-billed gulls (Larus delawarensis), and 4 Iceland
gulls (Larus glaucoides). Most birds were adults (102/141, 72.3%), and the ducks were evenly
distributed between sexes (63/120 female, 52.5%) while sex was not recorded for gulls.
Samples were paired oropharyngeal and cloacal swabs (polyester swabs, Starplex Scientific,
Etobicoke, ON, Canada) preserved together (samples from 2014 and 2015) or separately
(samples from black ducks collected in 2018) into 3 mL universal transport medium (Star-
swab Multitrans System, Starplex Scientific, Etobicoke, ON, Canada). Additionally, seven
serum samples from American black ducks were also included. All animals appeared
healthy and showed no signs of disease.

2.2. Virus Discovery

The chapparvovirus strain B6 was discovered with the ViDiT (Virus Discovery with
Ion Torrent) method and its discovery is described in [23] while the densovirus strain BE8
was discovered with the VidION method, an adaptation of ViDiT for MinION (Oxford
Nanopore Technologies, Oxford, UK) sequencing. Briefly, sample pre-treatment (centrifu-
gation and DNase treatment) and nucleic acid (NA) isolation with the DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany) were performed according to the ViDiT protocol,
while cDNA was prepared with the M-MLV Reverse Transcriptase (Promega Madison, WI,
USA) and random hexamers using 12 µL NA as input. Library preparation, which included
three different polymerase chain reactions (PCRs; random amplification, sequencing library
generation, library enrichment) followed by AMPure XP (Beckman Coulter, Brea, CA, USA)
purifications (with a ratio of bead solution:sample of 0.7:1 v:v) was performed according to
the ViDiT protocol with primers modified to be compatible with MinION sequencing (Sup-
plementary Table S1). Additional modifications to the protocol included an extension time
of 1 min instead of 30 s in all PCRs and annealing temperatures of 45 ◦C and 57 ◦C during
the sequencing library generation PCR and 50 ◦C during the enrichment PCR. The MinION
PCR Barcoding Expansion 1-96 kit (Oxford Nanopore Technologies, Oxford, UK) was used
to barcode samples in a PCR mix containing 15 µL library, 15 µL DreamTaq Green PCR
Master Mix (ThermoFisher Scientific, Waltham, MA, USA) and 0.6 µL primer. The reaction
was performed for 25 cycles using an annealing temperature of 62 ◦C and an extension
time of 1 min. Library concentration was measured with the Qubit™ dsDNA HS Assay
Kit (ThermoFisher Scientific, Waltham, MA, USA) and sequencing was performed with
the Ligation Sequencing Kit (SQK-LSK109) on a Flow Cell (R9) using a MinION sequencer
(Oxford Nanopore Technologies, Oxford, UK). Raw sequence data were base-called and
demultiplexed using the Guppy base caller software (Oxford Nanopore Technologies,
v4.0.15). Subsequently, National Center for Biotechnology Information (NCBI) DustMasker
1.0.0 [24] was used to detect low complexity regions within sequences which, if found,
were trimmed and used as breakpoints to split sequences into multiple high-quality sub-
sequences. Resulting sequences were then compared to the NCBI nucleotide database
(retrieved 21 June 2020) using the standalone BLASTn 2.11.0+ application from the NCBI
BLAST+ suite (package: blast 2.11.0, build October 6, 2020) [25], with settings as described
in [23].
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2.3. Screening and Sequencing

Primers were designed based on fragments identified during virus discovery and
used for viral screening through hemi-nested PCRs. In the case of chapparvoviruses,
degenerate primers were designed keeping into account sequences of other closely re-
lated avian viruses (Galliform chaphamaparvovirus 2 and 3) and primers AvChap_F (5′-
GGAYTWGGWAAGTGYTGTCC-3′) and AvChap_R1 (5′-GTCCTTYTTGATTHKGACACC-
3′) were used during the first PCR to amplify a 259-nt fragment, while primers AvChap_F
and AvChap_R2 (GTGTNCKWGG- TAACATATAYGG-3′) were used during the nested
PCR to amplify a 202-nt fragment. For the densovirus, primers DensoSc_F1 (5′-CTCTCCCA
TAGGAACATTTCC-3′) and DensoSc_R (5′-GGAGTACAACCAGTTCCAGC-3′) were used
for the first PCR (amplified product size: 174 nt), and primers DensoSc_F2 (5′-GCGTAAGGC
CATGCGGTTGG-3′) and DensoSc_R were used for the hemi-nested amplification (am-
plified product size: 146 nt). Screening PCRs were performed with the DreamTaq Green
PCR Master Mix (ThermoFisher Scientific, Waltham, MA, USA) using NA isolated from
swab samples available from previous investigations [20–22] and from NA isolated from
150 µL sera with the DNeasy Blood and Tissue Kit (Qiagen Hilden, Germany). All positive
samples were confirmed by Sanger sequencing.

The complete genome sequences of the identified viruses were obtained through
the genome walking approach ViDiWa described in [20]. An attempt to obtain the
complete coding sequences of different strains was performed for all chapparvovirus-
positive samples and a few densovirus-positive samples through a combination of genome
walking and specific PCRs performed with primers designed on already sequenced
genomes. Finally, a 722-nt fragment was obtained from several densoviruses to study
their molecular epidemiology through hemi-nested PCRs with primer pairs Denso_F14
(5′-TGCAACACGTGTGTTGAGCC-3′) and DensoSc_R, and Denso_F14 and Denso_R1
(5′-AGATACTCGTGCGTATTGGG-3′). All amplified products were purified with AMPure
XP beads and outsourced for Sanger sequencing.

2.4. Sequence and Phylogenetic Analyses

Sequence analyses and annotations were performed in Geneious R11 (Biomatters,
Auckland, New Zealand). Splicing donor and acceptor site prediction was achieved with
NNSPLICE 0.9 [26] and promoter prediction with NNPP 2.2 [27]. Similarity plots were
performed with Simplot 3.5 [28].

For the phylogenetic analysis of the Hamaparvovirinae a dataset was built with all
reference sequences of viruses within this subfamily plus all full chaphamaparvoviral NS1
sequences identified in GenBank by a BLASTn search on 21 October 2020 using the settings
described in [23]. An exception was the porcine parvovirus 7 for which only two of the 60
highly identical sequences were included. The final dataset contained 95 sequences and
their accession numbers are available in Supplementary Figures S1 and S2. For the phylo-
genetic analysis of the Densovirinae we built a dataset with all reference sequences of viruses
within this subfamily plus all full NS1 sequences identified through a BLASTp search (ex-
pect threshold: 10; word size: 3; gap costs existence: 6, extension:2) on 9 November 2020
that showed homology to the virus of this study with >70% sequence coverage. After
removing 17 sequences that were listed in the database as invertebrate DNA/RNA and
could be derived from endogenous parvoviral elements, a final set of 114 unique sequences
was selected and their accession numbers are available in Supplementary Figure S3.

Protein alignments were performed with MAFFT 7.450 [29] with the L-INS-I algo-
rithm while nucleotide alignments were performed with ClustalW 2.1 [30] and alignments
were manually trimmed to remove regions with extended gaps and poorly aligned areas.
Maximum-likelihood trees were inferred with IQ-TREE 2 [31] using the best model for
genetic distance estimates identified as the one with the lowest BIC (Bayesian information
criterion) with the ModelFinder function and both ultrafast bootstrap approximation (uf-
Boot) [32] and SH-like approximate likelihood ratio test (SH-aLRT) [33] were used to assess
branch support. Trees were annotated with FigTree (http://tree.bio.ed.ac.uk/software/

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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figtree/, downloaded on 7 November 2020) and final figures prepared with INKSCAPE
(https://inkscape.org/, downloaded on 19 June 2020).

2.5. Codon Usage and Nucleotide Frequency Analyses

For these analyses we built a database of 266 sequences, which included the full NS1
and VP1 coding sequences from 133 reference viral species [3] from all the three subfamilies
for which the host was known.

Sequences were imported into R (version 4.0.2) for the analyses [34]. The GC content
for each sequence was calculated as number of guanine (G) and cytosine (C) over the
total number of nucleotides using the GC function available within the seqinR R package
version 4.2.4 [35] and data were visualized with box-and-whisker plots using ggplot2 [36].
The relative synonymous codon usage (RSCU) quantifies the influence of a synonymous
codon without the confounding influence of amino acid composition and sequence length
and is defined as the ratio of the observed frequency of codons to the expected usage
frequency under the assumption that all codons for the particular amino acid are used
equally [37]. The RSCU for each codon was calculated for all sequences using the seqinR
uco function, and relationships of codon usage patterns among different viruses were
determined through principal component analyses (PCA), using the prcomp function, to
establish if viruses of vertebrates and those of invertebrates have differences in codon usage
bias, which would allow the use of this property to predict the parvovirus host type [38].
The recently proposed synonymous dinucleotide usage (SDU), which calculates the ratios
of the observed proportion of synonymous dinucleotides to that expected under equal
synonymous codon usage for a given dinucleotide frame position, was used in a similar
way [39]. The dinuq python package version 1.1.1 [39] was used to calculate the SDU
values for each sequence, which were then imported into R and used for PCA analyses.
Final figures were edited with INKSCAPE.

2.6. Statistical Analyses

Differences among viral positivity rates in different groups (number of positive ani-
mals over the total number of individuals) were performed using R 4.0.2 [34]. Data were
analyzed using a generalized linear model with a binomial distribution, a logit link func-
tion, and categorial response variables. Variables considered were sampling location, year,
season, sex, and age. Positivity rates were only analyzed for ducks, as rates were not
high enough to make meaningful comparisons for gulls. Due to the unbalanced distri-
bution of data in some categories (e.g., not all locations were sampled in every year and
season) analyses were performed on relevant subsets of the data that were reasonably
well balanced.

3. Results

During a previous virus discovery study performed with the in-house developed
method ViDiT on oropharyngeal–cloacal swabs collected from 36 wild birds, including
8 ducks, a 221-nt fragment was identified in one sample that showed homology to viruses
within the recently established genus Chaphamaparvovirus [23]. Later, during the develop-
ment of the VidION method, during a test run performed on three samples (two samples
from ducks and one from a gull) a second parvoviral fragment (416 nt) was discovered that
showed homology to viruses within the subfamily Densovirinae. We named these viruses
duck-associated chapparvovirus (DAC) and duck-associated ambidensovirus (DAAD).

3.1. Positivity Rates

After the initial discovery of DAC and DAAD, we screened archived NA isolated
from samples collected from 123 ducks. Overall, DAC and DAAD were identified in 5.7%
and 21.1% of samples, respectively, and both viruses were detected in both mallards and
American black ducks. Additionally, DAAD was also identified in one sample available
from a northern pintail (Table 1). One ring-billed gull also tested chaphamaparvovirus-

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://inkscape.org/
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positive, but subsequent sequence analyses revealed that the gull was infected with a
different virus (see below). Both DAC and DAAD showed higher positivity rates during
the autumn months (September-November) compared to the winter months (February-
April), but these differences were not statistically significant (Supplementary Table S2).

Table 1. Percentage of birds from different species that tested positive for duck-associated chappar-
vovirus (DAC) and duck-associated ambidensovirus (DAAD).

Host DAC 1 DAAD 1

Ducks Total, n = 123 7 (5.7%) 26 (21.1%)
American black duck, n = 109 6 (27.3%) 22 (20.2%)

Mallard, n = 9 1 (11.1%) 2 (22.2%)
Northern pintail, n = 1 0 (0%) 1 (100%)

Hybrids, n = 4 0 (0%) 1 (25%)

Gulls Total, n = 21 0 (0%) 0 (0%)
Herring gull, n = 8 0 (0%) 0 (0%)
Iceland gull, n = 4 0 (0%) 0 (0%)

Ring-billed gull, n = 9 0 (0%) 0 (0%)
1 DAC: duck-associated chapparvovirus; DAAD: duck-associated ambidensovirus.

Positivity rates for DAC varied significantly between locations and 27.3% (3/11) of
ducks sampled at Quidi Vidi Lake were positive, while only 1.9% (2/107) of the ducks
sampled at Bowring Park tested positive (χ2 = 9.16, df = 1, p = 0.002). Furthermore, the
two samples from Bay Roberts were also positive. Six of the seven positive samples were
collected in 2015 but samples from 2014 and 2018 were mostly collected from low-positivity
areas. Finally, 4 of the 7 positives were adults, 4 were females, 2 were males, and the
sex of one was unknown. Differences in positivity rates between males and females and
adults and juveniles were not statistically significant (Supplementary Table S2). DAC was
only found in 2014 and 2015, with the positivity rate not differing significantly between
years (Supplementary Table S2). Two animals presented co-infection by two DAC strains,
and, based on previous results, four animals showed co-infections with a different virus.
Specifically, one animal was also infected with influenza A virus [22] and three animals
presented co-infection with DAAD and a third virus (influenza A virus, duck calicivirus
B6, and duck papillomavirus 3) [20–22] (Supplementary Table S3).

The positivity rate for DAAD was also higher at Quidi Vidi Lake (5/11, 45.5%) com-
pared to Bowring Park (21/107, 19.6%), but the difference was not significant, and the
virus was not found in any other location. DAAD was detected in all sampled years, and
the positivity rate differed significantly between years (χ2 = 6.91, df = 2, p = 0.02). There
were no differences in positivity rates considering sex or age of the ducks (Supplementary
Table S2). Six of the infected animals were juveniles, 19 were adults, 9 were females, and
15 were males. Six animals presented double infections, two with influenza A virus [22]
and four with duck papillomavirus-3 [20], and three animals presented triple infections
(Supplementary Table S3). For three positive animals the oral and the cloacal swabs were
preserved in separate collection tubes and in all cases the cloacal swab was positive, while
the oral swab was positive in only two of the three. Finally, serum samples were available
for seven positive animals, but none of these tested positive.

3.2. Molecular Features of the Novel Chaphamaparvoviruses
3.2.1. Genome Organization

Through genome walking [20] we managed to obtain the near complete genomic
sequence of six viruses, including five DAC strains and a virus identified in a gull. These
sequences encompassed the full NS1 and VP1 coding regions while lacking the terminal
non-coding portions. By comparing the genomes of viruses closely related to DACs (see
below), a similar genome organization could be observed. Specifically, besides the two
main open reading frames (ORFs) corresponding to the SF3-domain containing replica-
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tion initiator protein NS1 and the structural proteins of the capsid, VPs, two additional
ORFs overlapping the NS1 ORF were detected. These have been previously reported
for chaphamaparvoviruses and they could encode ancillary nonstructural proteins [16,40]
(Figure 1A). Finally, the conserved Walker and rolling circle replication (RCR) motifs typical
of parvoviral helicases could be distinguished within the deduced NS1 protein sequences
(Figure 1B). Chaphamaparvoviruses lack a PLA2 domain in VP1.
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Based on in silico predictions and by comparing identified signals to expression maps
experimentally determined for other avian chaphamaparvoviruses [16], we were able to
propose hypotheses about splicing sites and protein expression (Figure 1A). As observed
for the peafowl parvovirus 1 (PePV1), we could identify a highly supported (score = 1)
donor site at the beginning of the genome, just upstream of the first ORF, and two highly
supported acceptor sites, one located at the beginning of the second small ORF (score = 0.85–
0.95) and one just upstream of the VP ORF (score = 0.76–0.96). Unfortunately, the genomic
sequences of most viruses were incomplete and a potential 5′ promoter could only be
identified in the gull virus, while the predicted location of the splicing donor for viruses
BE8A, B55, and B57 was outside of the sequenced region. However, this suggests that
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one unique promoter drives the transcription of all the mRNAs. Finally, the presence of a
conserved poly-adenylation signal 197 nt downstream of the stop codon of the first small
ORF might indicate the presence of an additional transcript and gives support for the
expression of an ancillary protein encoded by this ORF.

3.2.2. Phylogenetic Analyses

A phylogenetic tree was built with an alignment of 101 NS1 amino acid sequences of
viruses from the subfamily Hamaparvovirinae and in this tree the clade defining the genus
Chaphamaparvovirus was highly supported (Figure 2 and Supplementary Figure S1 for the
tree in extenso). Within this genus we could observe the presence of two highly supported
and closely related clades almost exclusively composed of avian viruses (indicated in red
in Figure 2), one of which also contained all the sequences of this study. These included
in total 61 sequences from avian viruses and a sub-clade of three sequences identified in
Tasmanian devils [41], while no other virus of avian origin was identified in other clades.
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Figure 2. Phylogenetic analysis of the duck associated chapparvoviruses (DAC) within the Hamaparvovirinae. The phyloge-
netic tree based on 101 full NS1 protein sequences was built with the maximum-likelihood method based on the General
matrix (LG) + F + R6 model with IQ-Tree [31]. The outcomes of the SH-aLRT and bootstrap test are shown for the main
nodes. The branches of the unrooted tree are color-coded based on the host in which viruses have been identified and red
represents avian hosts, while black includes all other vertebrate and invertebrate hosts. The black circle indicates viruses
within the genus Chaphamaparvovirus while the red circle shows the clade containing the viruses studied here, which is also
shown enlarged on the right side. The viruses identified in this study are labelled with a colored full circle (red for those
found in ducks and black for the one found in a gull), while viruses found by others in ducks (genus Anas) are indicated by
an empty red circle. Species designations, when available, are indicated on the right.

All five DACs for which we could obtain the full sequence (indicated by full red circles)
clustered together but formed two independent sub-clades (DAC-1 and DAC-2) close to
viruses from the species Galliform chaphamaparvovirus 2 and 3. Interestingly, viruses recently
identified in Australian wild ducks [17] (indicated by an empty red circle) clustered in the
same major avian-related clade, but only one of them formed a supported cluster with
DACs. In contrast, the virus we identified in a gull was clearly part of the species Galliform
chaphamaparvovirus 3. Unfortunately, due to co-infections and low viral load, we were not
able to obtain the complete sequences of four additional strains, but preliminary analyses
based on partial nucleotide sequences show that these viruses are also included in the same
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avian clade. However, three of them were more divergent and likely more closely related
to one of the Australian viruses (Supplementary Figure S2).

Based on the complete NS1 amino acid sequences, DACs were most closely related to
the Chestnut teal chaphamaparvovirus 1 (64.5–65.3% identity). Furthermore, the two DAC-
1 strains B6 and BE7 presented only one nucleotide difference across the whole genome
that resulted in an amino acid substitution in NS1, while DAC-2 strains B55, B57, and BE8a
were 98.3–99.2% identical over the whole genome and 98.2–98.5% identical within the NS1
protein. Finally, the identity between DAC-1 and DAC-2 NS1 proteins was 82.5–82.8% and
the VP protein was more variable (within-group identity: 96.6–99.3% for DAC-2 and 100%
for DAC-1; between-groups identity: 77.8–79.9%).

3.3. Molecular Features of the Novel Ambidensoviruses
3.3.1. Genome Organization

The near complete genomic sequence of three DAADs were obtained and these were
from American black ducks sampled at two different locations. According to in silico
predictions, the genome organization of DAAD was similar to that of the Culex pipiens
densovirus (CpDNV, species Dipteran protoambidensovirus 1), which was experimentally
determined [42]. DAAD, in fact, possesses an ambisense gene organization with two
predicted promoters, one regulating the expression of the non-structural genes and likely
one promoter on the other strand at the other end of the genome regulating the expression
of the capsid protein genes. However, the promoter for the expression of capsid protein
genes, which was previously determined for CpDNV, could not be identified with the
prediction software for any of the viruses.

While we could identify an intact ORF coding for the capsid proteins, there was no
clear full NS1 ORF, but the presence of at least 4 conserved smaller ORFs was observed
instead (Figure 3A). However, highly supported splicing donor and acceptor sites, whose
positions were conserved in all genomes and experimentally confirmed in CpDNV, were
identified and would lead to the creation of two additional ORFs coding for NS1 and NS2.
Finally, an additional small ORF downstream of the first promoter could be identified that
encodes a hypothetical NS3, although the predicted NS3 proteins of DAAD and CpDNV
do not share detectable sequence homology. Finally, although both NS1 and NS2 of DAAD
and CpDNV were very dissimilar, we were able to identify in their NS1 proteins the typical
motifs of parvoviruses. Specifically, the rolling circle replication (RCR) motifs II and III
could be identified at the N-terminal side of the protein and encoded upstream the splicing
donor site, while the Walker domains A, B, B’, and C could be identified on the C-terminal
side of the protein, encoded downstream of the splicing acceptor site (Figure 3B). This
provides support for the predicted genome configuration and splicing pattern. Finally,
a PLA2 domain was present in the VP1 of DAAD (Figure 3B).

3.3.2. Phylogenetic Analysis

A phylogenetic tree was built with an alignment of 117 NS1 amino acid sequences
from viruses in the subfamily Densovirinae and in this tree DAADs were included in a highly
supported clade that also included members of the genus Protoambidensovirus (Figure 4 and
Supplementary Figure S3 for the tree in extenso). This formed another highly supported
clade with members of the genus Scindoambidensovirus, its closest related group of viruses.
Within the protoambidensoviruses, sequences found during metagenomic analyses of
samples from birds (indicated by an empty red circle) and a drill monkey living in a
wildlife sanctuary in Nigeria [43] (empty black circle) were also included and DAADs (full
red circles) were the closest to the root of the clade.
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calcium binding loop; Catalytic: catalytic site) motifs typical of parvoviral VP1. GmDNV: Galleria mellonella densovirus.

The complete NS1 amino acid sequences of DAADs were equally distant from most
members of the Protoambidensovirus clade (33.3–34.5% identity) and they were the least
identical to the Drosophila melanogaster Viltain virus. However, based on a BLASTn analysis,
DAADs were the closest to viruses identified via metagenomic investigations of insect-
eating Chinese bats [44] (accession numbers JN857346 and JN857337), but these viruses
were only partially sequenced and the full NS1 sequences were not available for the
phylogenetic analysis.

Among our sequences, we identified two different viral strains, one represented by
the sequence 23A and one represented by the two other sequences BE8 and s1564. These
two strains were approximately 98% identical to each other but, while the ends of the
genome were almost identical, the middle part (between nucleotides 1289 and 2741 of the
s1564 strain) was more divergent, a feature that suggests recombination as indicated by the
similarity plot (Supplementary Figure S4). Finally, to evaluate the distribution of the two
variants, we sequenced an approximately 700 nt-long fragment of the variable region from
an additional 10 viruses. We observed that the variant BE8/s1564 was the predominant
one as only three animals were positive for the variant 23A, including the northern pintail
and an American black duck that presented both variants simultaneously. Both variants
were identified at the two different sampling sites.
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Figure 4. Phylogenetic analysis of the duck associated ambidensovirus (DAAD) within the Densovirinae. The phylogenetic
tree based on 117 full NS1 protein sequences was built with the maximum-likelihood method based on the General matrix
(LG) + F + R6 model with IQ-Tree [31]. The outcomes of the SH-aLRT and bootstrap test are shown for main nodes. The
branches of the unrooted tree are color-coded based on the taxonomy and red represents putative members of the genus
Protoambidensovirus (enclosed in a red circle and shown in extenso on the right), while black includes all other viruses. The
black circle indicates viruses within the genus Scindoambidensovirus. The viruses identified in this study are labelled with a
full red circle, while viruses found by others in vertebrates are indicated by an empty red and black circle for avian and
mammal studies, respectively. Species designations, when available, are indicated on the right.

3.4. Codon Usage and Nucleotide Frequency Bias Analyses

The GC content and the variance among the RSCU and SDU of sequences from
141 parvoviruses, including the eight viruses we describe in this study, were evaluated to
determine whether viruses infecting vertebrates and those infecting invertebrates showed
different properties and whether we could use this to predict the host of the viruses we
discovered. All parameters were calculated for VP1 and NS1 separately and, to account
for potential variations both between sub-families and host types, viruses within the
Hamaparvovirinae were divided into two groups, those infecting vertebrates and those
infecting invertebrates (Figure 5).

All analyses performed with VP1 sequences produced clearer separations between
groups. In fact, the five groups considered overlapped significantly in the two PCA plots
obtained with the NS1 sequence, while a clear distinction between densoviruses and all
other groups could be observed in the VP1-based plots with a significant overlap between
parvoviruses and hamaparvoviruses, regardless of the host type. In terms of GC content,
members of the Hamaparvovirinae occupied an intermediate position between parvoviruses
and densoviruses, which showed the highest and lowest GC contents, respectively. In-
terestingly, while the NS1 GC contents for the two hamaparvovirus groups were similar,
the VP1 GC contents were lower in vertebrate hamaparvoviruses than in invertebrate
hamaparvoviruses, making vertebrate hamaparvoviruses more similar to densoviruses in
this respect.
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4. Discussion

Like many other viral families, the number of known Parvoviridae members has ex-
perienced substantial growth in recent years with the definition of several novel viral
species and genera [2] as more and more novel viral genomes have been discovered, espe-
cially thanks to the increasing accessibility of next-generation sequencing techniques [23].
In particular, the discovery of parvoviruses of vertebrates that showed a high genetic
identity to viruses of invertebrates, now known as chaphamaparvoviruses, stimulated the
very recent definition of a new viral subfamily, the Hamaparvovirinae, the only one of the
three parvoviral subfamilies to include viruses capable of infecting both vertebrates and
invertebrates [2]. The discovery of this lineage not only led to a reevaluation of the ecology
and evolutionary history of these parvoviruses [40], but also facilitated the discovery of
many viruses that were previously too divergent from known ones to be identifiable on the
basis of sequence identity. This is especially true for avian parvoviruses whose number
grew significantly in the past few years.

4.1. Duck-Associated Chapparvovirus (DAC) and Duck-Associated Ambidensovirus (DAAD) Are
Novel Viral Species

In our study we report the molecular characterization of avian parvoviruses belonging
to two different viral subfamilies that we discovered within the same duck populations
using metagenomic methods [23]. All viruses defined in this study possessed all molecular
markers typical of parvoviruses, which include the presence of two main ORFs coding for
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structural and non-structural proteins and the presence of RCR and helicase domains in
the NS1.

One of these viruses, which we named DAAD, belongs to the Densovirinae and was
identified through a MinION sequencing-based virus discovery approach (VidION). DAAD
is highly divergent from all known parvoviruses, sharing only 34.5% NS1 protein sequence
identity with its closet relative, the Mythimna loreyi densovirus, a member of the genus
Protoambidensovirus. According to the ICTV demarcation criteria for genera definition [2],
DAAD could be considered a member of the genus Protoambidensovirus as it is included
in a highly supported clade with other members of this genus based on the phylogeny of
NS1 amino acid sequences. It also possesses the same genome organization as the CpDV,
the best characterized virus in this genus whose protein expression and splicing profile
were determined in vitro [42]. All three DAAD genomes showed high genetic identity and
could be considered the same novel viral species.

The other viruses, which we identified with the ViDiT method during a previous
study [23] and named DAC, belong to the subfamily Hamaparvovirinae. They demonstrate
higher NS1 identities to their closest relatives (approximately 65%) and were, therefore,
undoubtedly considered part of the genus Chaphamaparvovirus. The criterion for species def-
inition established by the ICTV defines a species-level NS1 protein identity cut-off of 85% [2]
and therefore the chaphamaparvoviruses identified in this study for which a complete
genomic sequence was obtained (DAC-1 and DAC-2) have to be considered two separate
and novel species. Also, the DAC genome organization is similar to other chaphama-
parvoviruses for which the transcription profile has been determined in vitro [16].

4.2. Potential Hosts and Epidemiology of DAC and DAAD

Approximately 64% (61/95) of full NS1 chaphamaparvoviral sequences we retrieved
from GenBank were labelled as being of avian origin, although most of these sequences orig-
inate from metagenomic investigations and are not associated with a published manuscript
yet. This huge diversity of avian chaphamaparvoviruses indicates that these viruses are
likely pervasive, more diverse than currently recognized, and common in the avian reser-
voir. All avian chaphamaparvoviruses clustered within two highly supported and closely
related clades, indicating a strong virus-host relationship. This was also revealed by the
presence of smaller clades that included viruses infecting closely related birds, as seen for
the viruses of turkeys and peafowls and the close relationships among viruses from ducks.
Interestingly, DAC-1 and DAC-2 were closely related to a virus identified in chestnut teals
in Australia [17], indicating that genetically related viruses circulate among closely related
birds that live long distances apart and that, potentially, bird migration has a role in virus
dispersal.

There were many other instances, however, of closely related viruses identified in birds
from different orders (e.g., Passeriformes and Psittaciformes). One example is the Galliform
chaphamaparvovirus 3, a virus originally identified in chickens (order Galliformes) that we
also found in a gull (order Charadriiformes). The positive gull was sampled at a location
which is near a chicken processing plant and this could indicate waste products derived
from farmed chicken processing as a possible source of infection. This viral promiscuity
is likely linked to the capability of these viruses to infect different bird species when the
opportunity for cross-species infections occurs, for example when different birds share
the same ecological niche. These epidemiological characteristics of high viral prevalence,
frequent co-infection, and relaxed host-specificity are characteristics shared with other
avian viruses from other families [21,45,46].

Although the number of tested birds was small and future studies will have to investi-
gate this further, we observed that DAADs and DACs had very similar epidemiological
profiles: both were found in ducks but not in gulls, both were identified between September
and April, positivity rates for both were higher during autumn compared to winter, both
were more frequent at one of the two locations, and no significant differences were identi-
fied when considering sex and age of positive ducks for both, although the positivity rate
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for DAC was a little higher in juvenile birds, which is consistent with previous reports [17].
Furthermore, although positivity rates were high, not all animals were positive, all infected
animals showed no sign of disease, and we observed genetic variation among identified
strains with no specific segregation of strains between different locations. To clarify whether
these viruses are duck pathogens and to establish viral tropism and replication dynamics,
follow-up epidemiological investigations in animals showing signs of disease as well as
studies evaluating viral presence and distribution in tissues in combination with assessing
viral loads in bodily fluids will be required.

Nonetheless, based solely on epidemiological data, it is tempting to label both DAC
and DAAD as avian viruses. However, while the phylogenetic placement of the DAC
sequences within a clade that is dominated by avian viruses within a genus that includes
many vertebrate viruses, some of which even proven to be pathogenic [47,48], clearly
points towards ducks as DAC hosts, such a clear conclusion cannot be made for DAAD.
Densoviruses are frequently identified during metagenomic investigations of samples col-
lected from vertebrates [43,44,49], including human plasma and cerebrospinal fluid [50,51],
and some of the densoviruses genetically close to DAAD were also vertebrate-associated
as they were detected in fecal specimens of birds, monkeys, and bats [43,44]. However,
dipteran and lepidopteran viruses were also included in the same clade as DAAD and no
proof exists that densoviruses can replicate in vertebrate hosts. Furthermore, we found
DAAD in both cloacal and oral cavities of ducks, but the negativity of the sera excludes a
detectable systemic infection. Unfortunately, the RSCU, SDU, and GC content analyses did
not help in determining the host type since no pattern was observed that could discrimi-
nate between vertebrate and invertebrate viruses, corroborating previous findings for the
Parvovirinae [52]. However, results from these analyses partially reflect the phylogenetic
relationships of these viral subfamilies and discriminate densoviruses from the other taxa
(based on RSCU and SDU analyses performed with VP1) and parvoviruses from the other
taxa (based on a higher GC content) and leave hamaparvoviruses as an intermediate group
(with a low GC content and a codon usage bias similar to that of parvoviruses). Overall,
VP1 performed better at defining groups and this could reflect the alleged paraphyletic
origin of this genomic region in these viruses [4].

Although it seems most likely that DAAD is a virus of invertebrates that made its way
in samples from ducks through food or parasites, it should not be definitively excluded
without further studies that densoviruses could be capable of infecting both vertebrates
and invertebrates, once again challenging the paradigm of classical parvovirus segregation
based on host association.

5. Conclusions

In this study we report the discovery and full molecular characterization of three novel
duck-associated parvoviral species belonging to two different subfamilies, expanding our
knowledge of parvoviral diversity and distribution. Epidemiological data showed similari-
ties between the distribution of these viruses with infection rates varying among locations
and between seasons and with the circulation of multiple strains. However, epidemiology
alone was not sufficient to provide conclusive answers about viral hosts, highlighting the
importance of examining novel viruses from multiple points of view to be able to draw
meaningful conclusions and avoid false predictions [53–55]. Molecular characterization
and phylogenetic analyses provided detailed information about similarities with other
viruses allowing speculations about viral hosts and showed how parvoviral diversity in the
avian reservoir is much higher than anticipated with many avian-associated parvoviruses
likely yet to be discovered, as also predicted for viruses within other families [20,21].
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