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Abstract

Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of muscle disorders including adult and juvenile dermatomyosi-
tis, polymyositis, immune-mediated necrotising myopathy and sporadic inclusion body myositis, all of which present with variable
symptoms and disease progression. The identification of effective biomarkers for IIMs has been challenging due to the heterogeneity
between IIMs and within IIM subgroups, but recent advances in machine learning (ML) techniques have shown promises in identifying
novel biomarkers. This paper reviews recent studies on potential biomarkers for IIM and evaluates their clinical utility. We also
explore how data analytic tools and ML algorithms have been used to identify biomarkers, highlighting their potential to advance
our understanding and diagnosis of IIM and improve patient outcomes. Overall, ML techniques have great potential to revolutionize
biomarker discovery in IIMs and lead to more effective diagnosis and treatment.
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INTRODUCTION
Idiopathic inflammatory myopathies (IIMs) encompass a diverse
group of disorders, including adult dermatomyositis (ADM),
juvenile dermatomyositis (JDM), anti-synthetase syndrome (ASS),
overlap myositis (OM), polymyositis (PM), immune-mediated
necrotising myopathy (IMNM) interchangeably referred to as
necrotising autoimmune myopathy and sporadic inclusion
body myositis [1]. Biomarkers are ‘a defined characteristic that
is measured as an indicator of normal biological processes,
pathogenic processes or responses to an exposure or intervention’
[2]. They have emerged as powerful tools for diagnosis, predicting
disease prognosis and identifying therapeutic targets. For
example, lymphocytes-expressing Bcl-2 and CCR4 are indicative
of anti-HMGCR+ IMNM [3], and DM skeletal muscle biopsies
have upregulated interferon (IFN)-stimulated gene signatures,
indicating a role for type 1 IFNs in DM pathogenesis [4, 5]. These
findings have led to promising mechanism-based treatments,
such as tofacitinib or ruxolitinib (JAK/STAT inhibitors), which
have been shown to reduce serum IFN-I levels and improve skin
lesions and muscle weakness in DM patients [6, 7].

However, the heterogeneity in symptoms and disease progres-
sion within IIM subgroups often poses additional challenges to
identifying effective biomarkers. Thus, a successful biomarker
would not only accurately distinguish IIM from other conditions
that can present with similar symptoms, such as muscular dystro-
phies or metabolic myopathies but also differentiate one IIM from
another [8]. In addition, the capacity to identify patients across the

spectrum of disease severities or to stratify rapidly progressing
patients would be invaluable for disease management. Currently,
a thorough evaluation that includes a combination of clinical, lab-
oratory, radiological and pathological assessments is necessary to
establish an accurate diagnosis.

This paper reviews recent studies on potential biomarkers for
IIM and assesses their clinical utility. We also explore data analytic
tools and machine learning (ML) algorithms that have proven
valuable for biomarker discovery, highlighting their potential to
advance our understanding of IIM and improve patient outcomes.

ML approaches for biomarker discovery
ML algorithms have revolutionized this field of biomedicine.
Inflammatory myopathies have been investigated using var-
ious ML techniques, such as clustering algorithms, principal
component analysis (PCA) and deep neural networks. These
models learn complex relationships between variables, handle
missing or noisy data, and assist in making real-time predictions
[9]. In addition to diagnosing diseases, ML algorithms provide
valuable insights into therapeutic outcomes in various diseases,
allowing clinicians to tailor treatment plans based on a patient’s
predicted response to therapy. It is important to note, however,
that further research is still needed to validate their accuracy and
determine their clinical utility. Nonetheless, the potential for ML
to revolutionize biomarker discovery and therapeutic outcomes
in various diseases including IIM is becoming increasingly
evident.
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Figure 1. Interactive starburst plot showing machine learning categories, subsets, and algorithms. The interactive starburst plot displays the main
categories of machine learning, including supervised and unsupervised learning, and their corresponding subsets and algorithms. Users can explore
the plot to gain insights into the various machine learning techniques and their applications. This is an interactive plot: follow link: https://chart-
studio.plotly.com/~Emilymc/3.embed GAN: generative adversarial networks, RNN: recurrent neural networks, CNN: convolutional neural networks, AE:
autoencoders, BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies, OPICS: Ordering Points To Identify the Clustering Structure, SARSA:
State-Action-Reward-State-Action.

ML algorithms can be classified into five main categories
(Figure 1): supervised, unsupervised, semi-supervised, reinforce-
ment learning and deep learning [9, 10].

In supervised learning, the algorithm is trained on labelled data
to learn mapping from inputs to outputs. This approach is best
applied for classification or regression tasks [9]. Examples include
decision trees and support vector machines (SVMs).

In unsupervised learning, the algorithm is trained on unla-
belled data to find patterns or relationships within the data [10].
This method is used for clustering or dimensionality reduction
tasks. Examples include k-means clustering and PCA.

Semi-supervised learning involves training an algorithm from
both labelled and unlabelled data. In this approach, the algorithm
is provided with some labelled data to learn from, and then it
translates this knowledge to make predictions on the unlabelled
data.

In reinforcement learning, the algorithm learns to make deci-
sions based on feedback from its environment [10]. This is often
used in game playing or robotics. Examples of these algorithms
include Q-learning and deep reinforcement learning networks.

Deep learning involves training artificial neural networks to
recognize patterns in data. These neural networks are made up of
layers of interconnected nodes that process and transform input
data to produce an output [11]. These networks often possess
multiple layers, allowing them to learn complex representations
of the input data. Deep learning has been particularly successful
in applications such as image and speech recognition, natural
language processing and autonomous driving [11].

ML modelling versus statistical modelling
ML and statistical modelling (SM) are two popular approaches for
analyzing medical and scientific data (Figure 2). Although ML and
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Figure 2. The relationship between artificial intelligence, machine learning, deep learning and data science. The diagram highlights how these fields
build on each other to provide advanced solutions for data-driven problems. Figure created with Biorender.com

SM are related fields, they are not synonymous. Statistics is a
branch of mathematics that deals with collecting, analyzing and
interpreting data. ML, on the other hand, constitutes a branch of
artificial intelligence dedicated to devising algorithms and mod-
els that enable computers to acquire knowledge from data and
generate predictions [12]. Although ML has a strong mathematical
foundation, incorporating statistical techniques like inference,
hypothesis testing and regression analysis, it also extends beyond
traditional methods with techniques like neural networks, deep
learning and natural language processing to address complex
problems.

In some cases, ML and SM overlap, as seen with logistic regres-
sion (LR) analysis. LR is conventionally considered a statistical
model that determines the odds ratio (OR) based on binary out-
comes, where the dependent variable has two possible categorical
values [13]. For example, the binary outcome of not having or
having a disease can be represented as 0 and 1, respectively.
However, LR can also be viewed as a supervised ML model since
it utilizes a training dataset to learn the relationship between
predictor variables and the binary outcome. Once trained, the
LR model can make predictions on new data by estimating the
probability of the binary outcome [14].

One of the key differences between ML and SM is the focus
of each field. Statistics is primarily concerned with comparing
and summarizing data, while ML is focused on building predic-
tive models [12, 15]. Furthermore, statistics typically deal with
relatively small and carefully defined datasets, while ML mostly
involves working with large and complex datasets.

ML models are powerful tools for exploratory research because
they identify complex patterns in large and high-dimensional
datasets; they can also handle missing data. They make no prior
assumptions about the data and are flexible as they can be

trained on new data input that becomes available. SM is a valuable
approach, particularly when the underlying mechanisms of the
data are known, and when the research question is confirma-
tory [12]. Both methods have their advantages and disadvan-
tages, and researchers must consider their research aims and the
nature of their data before deciding which approach is the most
appropriate.

ML models for diagnosis of IIM and subgroups of
IIM
Accurate diagnosis of a type of IIM is often challenging, as
many muscle conditions possess overlapping clinical features
and laboratory findings [8]. Recent ML models have been
applied to multiple different patient datasets, including clinical,
histopathological and imaging data and have provided new
opportunities for improving the accuracy and speed of IIM
diagnosis.

Earlier diagnostic criteria for IIM such as the Bohan and Peter
criteria predominantly focused on distinguishing between DM
and PM as many other myopathies such as IBM and IMNM had
not yet been separated from PM [16]. These initial classifica-
tions heavily relied on clinical presentation and histology, both
of which required a high level of medical expertise for interpre-
tation (Table 1: Polymyositis and dermatomyositis diagnostic criteria).
However, later adaptions of the Bohan and Peter criteria uti-
lized ‘computer-assisted analysis’ although it was unclear what
methods specifically this refers to in this study [17]. More recent
criteria for IIM combine the clinical, histological and serology (pre-
dominantly myositis-specific or myositis-associated antibodies
(MSA); see below). However, in many of these earlier publications,
validation of the specificity and sensitivity for these criteria were
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Table 1: Specificity, sensitivity and characteristics of various diagnostic and classification criteria for IIM adapted from Lundberg
et al. [34]

Criteria Symptom
duration

Age Muscle
weakness

Muscle
pain

Muscle
biopsy

EMG Muscle
enzymes

Extramus-
cular
features

MSA Sensitivity and specificity

Polymyositis and dermatomyositis diagnostic criteria

Medsger et al. [19] X X X X X X Not validated
DeVere and Bradley [20] X X X X X X Not validated
Bohan and Peter [16] X X X X X 94.3%; 29.4%

Validated by [18]
Dalakas [21] X X X X X 88.6%; 47.1%

Validated by [18]
Tanimoto et al. [22] X X X X X X X 88.6%; 29.4%

Validated by [18]
Targoff et al. [23] X X X X X X 97.1%; 29.4%

Validated by [18]
Dalakas and Hohlfeld [24] X X X X X 77.1%; 99.9%

Validated by [18]
Hoogendijk et al. [25] X X X X X X X 71.4%; 82.4%

Validated by [18]
Oddis et al. [26] X X X X X 93%; 93%

IBM-specific diagnostic criteria

Griggs criteria [27] X X X X X X Sensitivity: 11%–100%
Specificity: 73%–100%
Validated by [29] [38]

2000 European
Neuromuscular Centre
(ENMC) criteria [28]

X X X X X X Sensitivity: 46%–65%
Specificity: 98%–100%
Validated by [38]

2010 MRC Centre for
Neuromuscul. Dis. [30]

X X X X X X Sensitivity: 11%–73%
Specificity: 98%–100%
Validated by [38]

2013 European
Neuromuscular Centre
(ENMC) criteria [32]

X X X X X X Sensitivity: 15%–84%
Specificity: 98%–100%
Validated by [38]

Lloyd et al. [38] X X 90%; 96%

aCriteria based on high-performing features from other criteria.

IMNM-specific diagnostic criteria

Triplett et al. [37] X X X X X X AUC ROC 97.1%
224th ENMC International
Workshop (32)

X X X X X X X 93%; 88%
Validated by [1]

Overlap myositis specific criteria

Troyanov et al. [39] X X X X Sensitivity 87%

aModified Bohan & Peter clinic-serological classifications

All IIM diagnostic criteria

2017 EULAR/ACR [1] X X X X X X 93%; 88%; Reviewed by [33]
Sensitivity 80.9–99.6%;
Reviewed by [36]

Mariampillai et al. [40] X X X X 77%; 92%
Eng et al. [35] X X X X AUROCs between 78% and

97% and AUPRCs between
55% and 96% for individual
MSA

either not performed at the time or have been conducted in later
studies [18–34] (Table 1).

A recent diagnostic data-derived criteria for IIM is the 2017
European League Against Rheumatism/American College of
Rheumatology (EULAR/ACR) classification criteria [1] (Table 1: All

IIM diagnostic criteria). This criterion includes 12 clinical features
including age, gender, the pattern of muscle weakness, skin mani-
festations,
laboratory features such as elevated serum creatine kinase (CK)
concentrations, presence of autoantibodies and histopathological
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Figure 3. Number of publications using ML algorithms in IIM research.
Bar graph showing the number of publications investigating the use of
ML in the field of IIM between 2014 and between January and October
2023∗. The data presented herein have been derived from PubMed and are
reflective of publications available as of 4 October 2023. These publica-
tions were identified using specific search criteria, employing the terms
‘Inflammatory myopathies and Machine Learning’. Figure created with
Biorender.com

features including the pattern of inflammation, perifascicular
atrophy and vacuoles [1]. Each feature is scored, and the total
value translates into diagnosis classification as either ‘definite’,
‘probable’ or ‘possible’ JDM, DM, ADM, IBM, or PM. The sensitivity
and specificity of the 2017 (EULAR/ACR) classification were
evaluated at 93% and 88%, respectively, and were greater when a
muscle biopsy had been performed. Nonetheless, the criteria still
performed well without a biopsy [1].

Despite significant progress in the diagnostic criteria of IIM, it
is not exempt from limitations. One notable example is its failure
to account for the disease heterogeneity and distinguish between
IMNM and PM, while also being unable to assess myositis-specific
autoantibodies other than beyond anti-Jo-1. As a result, there are
still challenges to accurately classify and subtype patients [35, 36].
This has highlighted the need for identifying novel biomarkers
that can aid in the diagnosis, classification and prognostication
of IIM, and ultimately improve patient outcomes. Over the last
two decades, significant advances in computational capabilities
have resulted in the development of more powerful ML models
that are increasingly being applied in the medical field. The
number of yearly publications that used ML for diagnostic and
subclassification of IIMs increased by nearly 10 times between
2014 and May 2023 (Figure 3). ML has the potential to effectively
tackle the heterogeneity of IIMs, offering a promising avenue
to enhance the accuracy of predicting disease progression and
outcome.

In 2020, a study by Triplett et al. [37], (Table 1: IMNM specific
diagnostic criteria) described a novel criterion for diagnosing IMNM
using ML regression analysis. In a cohort of 119 IMNM patients
and 938 with other types of myopathy, a multivariate regres-
sion analysis of 20 variables identified eight predictors, including
statin exposure, increased CK levels (>1000 U/l), and muscle
weakness in the deltoid gluteus maximus and finger extensors;
while finger flexor and ankle dorsiflexor were unaffected, and
lastly electrical myotonia could also accurately distinguish IMNM
from other myopathies (97% area under the curve for receiver

operating characteristic [AUC ROC]). The authors determined that
electrical myotonia was much more significant in IMNM than
other forms of myopathy and could help improve the diagnosis of
IMNM, particularly in cases where the disease has a chronic and
indolent course, and where patients test negative for autoanti-
bodies against hydroxy-3-methylglutaryl-coenzyme-A reductase
(HMGCR) or signal recognition particle (SRP54) [37].

Since 1987, 24 diagnostic criteria for IBM have been proposed
by IBM experts (Table 1: IBM-specific diagnostic criteria). Although
some of these criteria showed high specificity (97% or higher),
their sensitivities varied widely. In response to this, Lloyd and
coworkers [38] developed a new diagnostic criterion for IBM based
only on the most effective features from the previous criteria
and constructed using a range of classification ML algorithms.
It includes a combination of three main parameters: weakness
of finger flexors or quadriceps, endomysial inflammation, and
invasion of non-necrotic muscle fibres or rimmed vacuoles. This
new criterion was tested on 371 patients and reported a sensitivity
of 90% and a specificity of 96%.

OM is a term used to describe patients with an inflamma-
tory myopathy that occurs together with other connective tissue
disorders (CTDs) such as systemic sclerosis (SSc, scleroderma),
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
Sjogren’s syndrome (SS), or mixed connective tissue diseases
(MCTDs) [39]. Alternatively, some authors consider a definition of
OM if certain MSA are present even without clinical features of
CTD. The diagnostic classification of OM was reviewed by Troy-
anov and colleagues who developed a new classification system,
placing overlap features at the core, and compared it with the
original Bohan and Peter classification [39]. They found that the
modified classification that includes overlap antibodies has led to
an increased frequency of OM diagnosis than the original classifi-
cation. The modified classification also showed better sensitivity
for identifying OM patients. The authors identified different types
of OM-related antibodies that can be used as biomarkers for
different disease courses and treatment responses. They pro-
posed that the new classification has diagnostic, prognostic and
therapeutic value and should replace the original classification
(Table 1: Overlap myositis specific criteria).

In a study by Eng et al. [35], IIM patients from a previous
Rituximab trial were stratified into five groups using similarity
network fusion (SNF). SNF is a powerful ML approach for combin-
ing multiple types of biological and clinical data and is designed
to uncover hidden relationships and clusters within patients by
leveraging similarity information between data points. The five
patient group assignments were then predicted using a sparse
multinomial regressor. The outcomes, denoted by area under the
receiver operating characteristic (AUROCs) ranging from 78% to
97%, and area under the precision-recall curve (AUPRCs) span-
ning from 55% to 96%, indicate the feasibility of stratifying IIM
groups based on the presence of MSA. The presence of anti-Mi-
2 and anti-synthetase autoantibodies (more commonly referred
to as anti-histidyl tRNA synthetase antibodies) was observed in
adult DM. Conversely, anti-NXP2 autoantibodies were associated
with juvenile DM. Furthermore, within the PM subgroup, notable
observations included a reduction in IgM levels and the presence
of anti-SRP autoantibodies. While these findings might align more
closely with the features of INMN, it is imperative to consider
that the study participants were enrolled prior to the introduc-
tion of the INMN classification. Consequently, their inclusion in
the PM subgroup, despite the characteristic findings, is rooted
in the context of the study’s pre-existing classification criteria
[35].
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In another study, Mariampillai and colleagues stratified IIM
patients using unsupervised multiple correspondence analysis
and hierarchical clustering [40]. This approach successfully cat-
egorized the patients into four well-defined groups DM, IBM,
IMNM and ASS; the patients who had previously been diagnosed
with PM fell into the IMNM or ASS groups, suggesting that PM
was no longer considered a separate diagnosis. Additionally, the
algorithm showed that once again, MSA and myositis-associated
antibodies (MAAs) were crucial for IIM classification, emphasizing
the utility of autoantibody detection for accurate diagnosis [40].
Further study will determine whether serological testing could
replace the need for muscle biopsies. Both of these studies have
highlighted the potential of unsupervised ML algorithms for iden-
tifying clinically and biologically homogeneous patient groups
and underscored the unique contribution of ML for identifying
biomarkers for IIM.

Clinical utility of autoantibodies in IIM
Myositis-specific antibodies being detected in approximately 60–
70% of affected IIM patients have emerged as pivotal biomarkers
and offer a unique lens to dissect the heterogeneity within the
IIM spectrum. Anti-Jo-1 autoantibodies are detected in ASS, while
anti-Mi-2, which represent the most extensively studied MSAs, is
specific for DM [41]. Other examples of MSAs that are strongly
associated with IMNM include antibodies to the SRP and to 3-
hydroxy-3-methylglutaryl CoA reductase (HMGCR) [42, 43]. Anti-
cytosolic 5′-nucleotidase 1 A (cN1A) antibodies have been found in
autoimmune diseases such as SS and SLE; however, in the context
of IIMs, they are restricted to IBM [44, 45].

The clinical utility of MSAs extends beyond their ability to
differentiate subgroups of IIMs. They have demonstrated an asso-
ciation with distinct clinical attributes, thereby aiding in prognosis
prediction and treatment planning. For instance, the presence of
certain MSAs, like anti-TIF1-γ , anti-NXP2 and anti-HMGCR, has
long been linked to an elevated risk of malignancy in IIM patients
(described more in detail below) [46–49]. Moreover, anti-MDA5
antibodies, which are often found in amyopathic DM, and are a
risk factor for rapidly progressive interstitial lung disease (ILD),
particularly among Eastern-Asian populations [41]. Furthermore,
the presence of anti-HMGCR IMNM, particularly when statin-
associated, are often associated with a good response to treatment
[42] alternatively, approximately 30% of IMNM patients with anti-
SRP antibodies are often refractory to steroid treatments [43].

Embracing the capability of unsupervised hierarchical clus-
tering analysis, Allenbach and colleagues [50] explored the phe-
notypic landscape of anti-MDA5 antibody positive patients and
found that patients could be stratified into three different sub-
groups. In the initial subset, patients faced a rapidly progress-
ing ILD which also corresponded to an elevated mortality rate.
The second cluster predominantly displayed dermatological and
rheumatological symptoms, offering a more favourable prognosis.
Lastly, the third group exhibited severe skin vasculopathy, were
mostly male, and had an intermediate prognosis in comparison
to the other two patient groups [50].

The presence of anti-cN1A antibodies has been proposed as
a potential biomarker for IBM but its diagnostic and prognostic
significance remains uncertain. Sensitivity and specificity of anti-
cN1A detection for IBM diagnosis have shown wide variability,
ranging from 32.8% to 88.6% and 80% to 100%, respectively [45].
A meta-analysis by Mavroudis and colleagues explored its diag-
nostic utility using Bayesian models [51]. Bayesian models are a
statistical approach that integrates prior knowledge, sourced from
previous studies or expert assumptions about the data. These

models are updated based on new data or information, generating
posterior probabilities. This adaptability makes them valuable in
decision-making processes and modelling scenarios with uncer-
tain or limited data. While not strictly considered ML, Bayesian
models are used in data analysis and diagnostics [52]. Contrary
to other studies, they found that anti-cN1A antibodies could not
effectively discriminate IBM from other conditions like PM/DM
and MND. However, the variability in testing methodologies used
across studies has introduced potential bias, given the lack of
standardized protocols [51]. Furthermore, the prognostic value of
anti-cN1A antibodies in IBM has produced inconsistent conclu-
sions. With several studies noting limited prognostic value [53–55],
while another study reported that seropositive patients showed
increased mortality risk, less proximal upper limb weakness at
disease onset, and an increased cytochrome c oxidase (COX)-
deficient muscle fibres [56].

The use of ML algorithms to identify unique MSA profiles
associated with distinct clinical features has greatly improved
IIM stratification. However, it is important to acknowledge that
there are various methods used for antibody detection, with
each method having varying degree of specificity and sensitivity
[57]. As discussed in the instance with anti-cN1A antibodies in
IBM, discrepancies in methodologies can lead to contradictory
results regarding the autoantibodies’ clinical utility. This illus-
trates the crucial point that computational methods’ reliability
for biomarker discovery are limited by the accuracy of the detec-
tion methods. As such, careful consideration and validation of
detection methodologies are imperative for accurate and mean-
ingful results.

Immunophenotyping as a tool for identifying
biomarkers in inflammatory myopathies
Immunophenotyping has become an essential tool for uncover-
ing novel biomarkers for inflammatory myopathies. This entails
a systematic exploration of the subsets, activation state and
differentiation pattern of immune cell across various biological
samples such as peripheral blood, muscles and other affected
tissues. This approach can also involve deciphering the cytokines
and chemokines that these cells produce. While certain studies
have utilized ML algorithms to analyze extensive immunophe-
notyping data produced by techniques like flow cytometry and
mass cytometry, there appears to be a preference for dimen-
sionality reduction techniques in the broader landscape. [58, 59].
These techniques, including Uniform Manifold Approximation
and Projection for Dimension Reduction, t-distributed stochastic
neighbour embedding (tSNE/ viSNE), are dimensionality reduc-
tion algorithms [60], whereas FlowSOM (Self-Organizing Map)
and Spanning-tree Progression Analysis of Density-normalized
Events (SPADE) cluster cells based on similarities in their sur-
face markers [61–65]. They have become a prominent feature
in the analysis of single-cell technologies, including flow and
mass cytometry, as well as scRNA-seq (Figure 4). They are often
considered an improved alternative to manual gating, as they
offer an unbiased and systematic exploration of the data [64].
For instance, Dzangué-Tchoupou and colleagues [58] performed
comprehensive immune profiling of peripheral blood cells from
18 IBM patients, 26 other IIM patients and 16 HC through mass
cytometry. By leveraging SPADE, CITRUS and classification and
regression trees (CART) algorithms, along with receiver operat-
ing characteristics curves, they identified that a frequency of
CD8+, T-bet+ cells exceeding 51.5% provided a potential diag-
nostic biomarker specific to IBM exhibiting high sensitivity and
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Figure 4. Pipeline for the main steps in the FlowSOM analysis. (A) Data Preparation and quality control checks (i) The fcs-files are read, (ii) compensated,
(iii) QC checked and (iv) concatenated. (B) FlowSOM model training and evaluation of model quality. (v) The model is trained and visualization is shown as
a minimum-spanning tree, which is composed of multiple inter-connecting nodes. (vi) Each node comprises a start chart of different colours representing
an immune marker. (vii) Example of a start chart with mean immune marker values. (C) Analysis of FlowSOM model using other visualization tools
such as (viii) clustering analysis via t-SNE map, (ix) heatmaps or (x) differential analysis which can be used to infer biological conclusions about the
data. Figure created with Biorender.com

specificity. Similarly, Wilfong et al. [59], dissected mass cytome-
try data by integrating t-SNE, CITRUS and marker enrichment
modelling (MEM). The authors revealed shared immunological
features across 17 IIM patients (6 DM, 4 PM, 7 ASS) including a
decreased expression of the activation marker CD180 on B cells
and the homing marker CXCR3 on T cells, relative to healthy
controls. Additionally, two distinct subgroups of IIM patients could
be delineated. The first group demonstrated an upregulation of
CXCR4 across all cell populations, with the authors suggesting this
upregulation may be associated with increased diseased severity.
Alternatively, increased frequency of the CD19+, CD21lo, CD11c+

and CD3+, CD4+, PD1+ delineated the second IIM subsets and
represented a pro-fibrotic phenotype [59].

Supervised classification algorithms, like SVMs and random
forests (RF), are also popular methods for analyzing immunophe-
notyping data. These algorithms recognize patterns and complex
relationships between surface and intracellular marker expres-
sion, fuelling predictive models for disease diagnosis and progno-
sis. In a study by Ye and colleagues, immune signatures were scru-
tinized in 82 amyopathic dermatomyositis with interstitial lung
disease (ADM-ILD) patients and 82 HC [66]. Patients were stratified
based on their immune cell subset frequencies using hierarchical
clustering analysis followed by supervised ML methods (Balanced
Random Forest Model) to identify the subsets of predictive value.

The study identified two distinct clusters correlating with differ-
ent disease activities and clinical outcomes in ADM-ILD. Cluster 1
was characterized by an enrichment of activated CD45RA+, HLA-
DR+ and CD8+ T cells with decreased proportion of the CD56dim

NK cell subset that correlated with a higher prevalence of rapidly
progressive ILD and higher mortality rate. In contrast, cluster 2
was characterized by abundant non-activated T cells and had
favourable clinical outcomes with survival rate over 6 years higher
than cluster 1. These findings suggest that peripheral immuno-
logical features may be used to stratify ADM-ILD patients and
correlate with differential disease severity and clinical outcomes
[66]. Through hierarchical clustering and Balanced Random For-
est Models, distinct clusters surfaced, bearing correlations with
different disease activities and outcomes. Notably, these clusters
showcased variety of immune cell subset frequencies, each tied to
divergent prognosis. Similar strategies were adopted in delineat-
ing 421 DM patients with anti-MDA5 antibodies, into three distinct
prognostic clusters based on lymphocyte counts [67]. Specifically,
the arthritis-associated cluster demonstrates elevated lympho-
cyte counts and boasts the most favourable prognosis, suggesting
a subset with a more positive disease trajectory. In contrast, the
rapidly progressive interstitial lung disease (RP-ILD) cluster is
characterized by the lowest peripheral lymphocyte levels and an
unfavourable prognosis, highlighting a subgroup with heightened
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disease severity. Additionally, the cluster associated with the typ-
ical DM rash presents a moderate peripheral lymphocyte count,
indicating an intermediate prognosis—offering a nuanced under-
standing of disease outcomes within this particular subgroup.

Overall, immunophenotyping has become an essential tool
for identifying novel biomarkers and understanding the com-
plex immune system dysregulation that occurs in inflammatory
myopathies. Dimensionality reduction and ML algorithms, partic-
ularly those involving unsupervised clustering, have revolution-
ized the way researchers approach data analysis in single-cell
technologies. They allow for the unbiased identification of cell
populations, which provides insights into the aetiopathology of
disease, offering new avenues for the more accurate diagnosis and
identification of novel therapeutic targets. Moreover, these find-
ings underscore the heterogeneity of inflammatory myopathies
and the potential utility of distinct biomarker profiles in predict-
ing and managing diverse clinical trajectories.

Leveraging the power of ML on multi-omic data
helps unveil mechanism-based pathways in IIM
Multi-omics profiling studies is a rapidly emerging field that aims
to integrate data from genomics, transcriptomics, proteomics
and metabolomics to obtain a comprehensive understanding of
biological systems. The generation of multi-omic meta datasets
has significantly increased the complexity of analysis, which
demands greater computational power for processing and anal-
ysis. The majority of multi-omic studies in IIM have utilized
supervised classification-based methods such as SVMs, linear
regression and RFs as well as dimensionality reduction methods
such as Partial Least Squares Discriminant Analysis (PLS-DA).
These methods identify patterns and complex relationships in the
data that would be difficult to identify using traditional statistical
methods alone.

Using high-throughput RNA sequencing in muscles isolated
from 18 IMNM patients and 10 HC, Chen and coworkers [68] iden-
tified 193 differentially expressed genes associated with inflam-
matory immune responses, cardiac muscle contraction, skele-
tal muscle regulation and lipoprotein metabolism. Three fea-
ture genes, LTK, MYBPH and MYL4 that are associated with the
autophagy-lysosome pathway and muscle inflammation were
identified as potential biomarker genes for IMNM with an accu-
racy of 97.3% using the least absolute shrinkage selection operator
(LASSO) and SVM-recursive feature elimination (SVM-RFE) algo-
rithms [68].

Pinal-Fernandez and colleagues applied ML algorithms to mus-
cle isolated from 20 HC and 119 myositis patients (39 with DM, 49
with IMNM, 18 with anti-Jo1-positive AS and 13 with IBM). RNA-
transcriptomic analysis found over 10,000 unique gene expression
patterns that distinguish DM, AS, IMNM and IBM from HC [69].
The support vector ML algorithm demonstrated >90% accuracy in
classifying patients. Further investigations using recursive feature
elimination identified genes that were overexpressed in one type
of myositis. For instance, CAMK1G, EGR4 and CXCL8 transcripts
were increased in AS, but neither in DM nor in other types of
myositis. Additionally, the same method identified genes uniquely
overexpressed in various MSA-defined myositis subtypes, such
as APOA4 was found to be significantly overexpressed in anti-
HMGCR positive myopathy, and mucosal vascular address in cell
adhesion molecule 1 (MADCAM1) was found overexpressed in
anti-Mi2 positive DM. These findings demonstrated the potential
of ML to identify genes related to specific myositis types and MSA-
defined subtypes [69].

In addition to genomics, other investigative approaches include
metabolomics. It can be applied to various biofluids, including
blood and urine that are more easily accessible compared to
invasive muscle biopsies and traditional histological analysis. ML
models have emerged as valuable tools for identifying biomarkers
and unravelling molecular mechanisms from metabolomic data.
In a recent study conducted by Liu et al., supervised classification
algorithms such as RF and AdaBoost were effectively employed
to detect perturbations in metabolic pathways across various
subtypes of IIMs. The study encompassed 52 healthy donors
and 79 major IIM subtypes, including DM, ASS, IMNM and MSA-
defined subtypes, such as anti-Mi2+, anti-MDA5+, anti-TIF1γ +,
anti-Jo1+, anti-PL7+, anti-PL12+, anti-EJ+ and anti-SRP+. The anal-
ysis revealed significant disturbances in fatty acid biosynthesis in
both plasma and urine samples, with several metabolites exhibit-
ing differential expression across various IIM subtypes. Notably,
creatine in plasma was identified as a potential specific biomarker
for the INMN while tiglylcarnitine in urine showed promise as
a distinctive biomarker for anti-glycyl tRNA synthetase (anti-Ej)
subtype of ASS. Additionally, 16 shared metabolites were detected
among the plasma and urine samples of different IIM subtypes
[70].

Kang et al. [71] conducted a comparative study using ML
techniques to identify metabolic differences among IIM patients,
30 ankylosing spondylitis (AS) patients and 10 HC. They employed
supervised ML models, including linear regression, RF and SVMs,
and discovered seven distinct metabolites, including branched-
chain amino acids (BCAAs), biogenic amines and lipids, that
effectively distinguished IIM patients from both healthy controls
and AS groups. Notably, elevated levels of specific amino acids,
like BCAAs, were associated with inflammation through mTORC1
activation. The study also explored metabolic changes in skeletal
muscles using a mouse model of IIM induced by C-protein
immunogens, identifying 68 significantly altered metabolites.
Pathway analysis indicated a significant decrease in spermine
and spermidine levels, indicative of polyamine pathway down-
regulation. Furthermore, changes in metabolites related to beta-
alanine and histidine metabolisms suggested potential muscle
cell damage during inflammation [71].

In another study, a combined metabolomic and transcrip-
tomic analysis of 14 IBM muscle samples revealed specific
metabolic alterations. [72]. Employing the widely used Partial
Least Squares Discriminant Analysis (PLS-DA) model, the
researchers deciphered complex relationships, identifying 198
metabolites linked to upregulated histamine biosynthesis and
were associated with an accumulation of mast cells in IBM.
The glycosaminoglycan pathways were notably upregulated,
as evident from the excessive chondroitin sulphate levels
observed in both metabolomic and transcriptomic analyses.
Histopathological examinations further corroborated these find-
ings, confirming the presence of substantial chondroitin sulphate
accumulations within the muscle tissues of IBM patients. Notably,
deficiencies in key energy metabolism molecules, carnitine and
creatine, were also unveiled, suggesting potential biomarker
avenues for IBM treatment through diet supplementation
[72].

The field of multi-omics profiling has rapidly evolved to gain
a comprehensive understanding of IIM by integrating data from
genomics, transcriptomics, proteomics and metabolomics. Note-
worthy findings include identification of genetic biomarkers asso-
ciated with the autophagy–lysosome pathway and muscle inflam-
mation in IMNM. Pinal-Fernandez and colleagues utilized ML
algorithms to classify distinct myositis subtypes based on unique
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Figure 5. Building blocks of typical CNN from an image. Convolutional layer: (A) set of filters are learned during training and applied to the input image
to extract features at different spatial locations. Each filter convolves over the input image to produce a feature map. Pooling layer: The pooling layer is
used to down-sample the output of the convolutional layer, reducing the spatial dimensions of the feature maps while retaining the important features.
Fully connected layer: The fully connected layer is used to produce the final output of the network. It takes the flattened output from the previous layer
and applies a set of weights to produce a vector of outputs.Figure created with Biorender.com

gene expression patterns [69]. Metabolomic studies revealed per-
turbations in metabolic pathways across IIM subtypes, with spe-
cific biomarkers identified for IMNM and different MSA-defined
IIM subtypes [69, 70]. The combined metabolomic and transcrip-
tomic analysis in IBM uncovered specific metabolic alterations
associated with histamine biosynthesis, glycosaminoglycan path-
ways and deficiencies in key energy metabolism molecules pre-
senting potential therapeutic avenues. These studies collectively
highlight the power of multi-omics approaches and ML tech-
niques in uncovering intricate molecular signatures, biomarkers
and potential therapeutic targets.

ML approaches for analyzing medical images
in IIMs
ML has been widely used to analyze medical images for tasks
such as segmentation, classification and diagnosis. Deep learning
models, particularly convolutional neural networks (CNN), have
shown great success in various medical imaging applications,
including radiology, ophthalmology and pathology [73]. CNNs
are specifically designed to work with images, and their suc-
cess lies in their ability to learn hierarchical representations of
visual features directly from the raw input data (Figure 5). They
have shown superior performance compared to traditional ML
methods such as SVMs and RFs. Kabeya and colleagues trained
a CNN on muscle biopsy images from patients with PM, DM
and IBM, as well as healthy controls. This model accurately dif-
ferentiated these IIMs from hereditary muscle diseases, with a
sensitivity and specificity that outcompeted specialist physicians
[74].

Texture image analysis (TA) is a common method used
in radiomics, which involves the extraction of quantitative
features from digital imaging data (CT, MRI, ultrasound, PET) to
characterize the underlying tissue properties [75]. TA quantifies
texture attributes like roughness or smoothness, furnishing

supplementary diagnostic or prognostic insights. Nagawa et al.
[76] employed TA on MRI data from 55 IIM and 19 non-IIM
patients. Several ML models classified TA features, unveiling
disease activity trends in IIM subgroups and distinguishing anti-
Jo-1 and anti-aminoacyl tRNA synthetases (ARS) IIM subgroups.
However, it showed limited ability to differentiate IIM from non-
IIM samples.

Deep learning, like unsupervised novelty detection (ND), aids
medical image analysis by training on healthy data to detect
deviations. For example, Burlina and colleagues used ND on 3586
ultrasound images obtained from 89 subjects, including 35 con-
trols and 54 with myositis, achieving a baseline (ROC AUC of
71.92% and 95% CI error margin). These promising results indi-
cated the potential of implementing this method as a prescreen-
ing tool for myopathies [77]. In a similar study, a DL neural
network applied to whole-body MRI achieved correct classifica-
tion percentages of 69–77%, and comparable diagnostic prowess
to radiologists in distinguishing facioscapulohumeral muscular
dystrophy (FSHD1) from myositis. DL even corrected radiologists’
misclassifications, showcasing its efficacy to generate accurate
diagnosis from MRI data [78].

In conclusion, ML has shown its potential to become an indis-
pensable tool in medical image analysis, providing significant
advantages over classical human-made analysis of IIM biopsies.
DL models such as CNNs have proven to be highly effective in
distinguishing between different types of muscle diseases, and in
some instances outcompeted specialist physicians. TA analysis
provides additional information to aid in diagnosis or prognosis
by quantifying the underlying tissue properties. Unsupervised ND
provides a promising prescreening tool for myopathies given its
effectiveness at identifying abnormal or novel patterns in imaging
data. These advanced ML techniques applied to imaging have the
potential to, providing faster and more accurate diagnoses and
prevent patient discomfort associated with invasive conventional
muscle biopsy.
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Machine learning models for predicting patients’
response to treatments
Beyond biomarker discovery for disease diagnosis and progno-
sis, biomarkers can assist clinicians to make informed decisions
regarding patient treatment strategies. ML has also proven useful
in predicting treatment responses. For instance, in a study of
51 IIM (DM, PM, ASS, INMN) patients. Demographic, clinical and
serological parameters were evaluated to determine the most
effective predictors of patients’ response to intravenous and sub-
cutaneous administration of immunoglobulins [79]. Previously,
the evaluation of five supervised ML models showed that elastic
net regression, which combines features of both Ridge regres-
sion and Lasso regression, was the most effective model for this
application [80]. The authors determined that dysphagia, skin
disorders and the myositis activity index (MITAX) were good pre-
dictors of muscle strength (as measured by the manual mus-
cle testing of eight groups (MMT8)) and found that IVIg ther-
apy yielded better results in patients with more active systemic
disease [79].

Anti-SRP antibody-positive IMNM patients are refractory to
corticosteroids [43], and several clinical risk factors are identi-
fied with refractory disease including, being male, severe muscle
weakness and concurrent ILD. In addition, the extent of fatty
infiltration of thigh muscles over time have been identified as
predictors of treatment response. ML algorithms have been used
to analyze these pathological factors. Elevated expression of B
cell activating factor receptor (BAFF-R) in muscle tissue has been
identified as predictors of refractory SRP-positive IMNM patients.
Leveraging these refractory related factors and using ML-based
predictive models may critically help healthcare professionals to
better identify risk-patients and adjust care plans.

ML approaches for predicting comorbidities
IIM’s are complex multisystem autoimmune disorders, involving
inflammation and immune system dysfunctions that mainly not
only impact skeletal muscle but also affect other tissues and
organs, including skin, joints and lungs [81]. Given the spec-
trum of systems that can be affected, individuals with IIM often
experience comorbidities. These comorbidities can range from
rheumatic diseases to ILD, reinforcing the multifaceted nature
of IIM. Understanding and managing these comorbidities are
essential aspects of comprehensive patient care.

As previously mentioned, certain subtypes of myositis are asso-
ciated with an increased risk of malignancy, such as DM patients
with anti-TIF1-γ [46]. It is estimated that one third of myositis
patients will develop a malignancy. In fact, malignancy is the
leading cause of death in adults with IIM [81]. Zhao et al. employed
various ML techniques, including Sankey diagrams, elastic net, RF,

multidimensional scaling and hierarchical clustering, to catego-
rize subtypes of anti-TIF1-γ + myositis and assess the most critical
factors for predicting cancer risk [46]. Among the patients studied,
54% had cancer, typically diagnosed within 6 months of myositis
diagnosis. The anti-TIF-1γ + myositis patients were grouped into
low, intermediate, or high cancer risk subtypes. Key ML classi-
fiers included disease duration, blood lymphocyte percentage,
neutrophil percentage, neutrophil-to-lymphocyte ratio, gender, C-
reactive protein (CRP) levels, shawl sign, arthritis/arthralgia, V-
neck sign and anti-PM-Scl75 antibodies. Notably, RF achieved an
accuracy of over 90%, underscoring the potential of ML models
in aiding physicians in selecting appropriate cancer screening
strategies for anti-TIF-1γ + myositis patients [46].

Also, Zhang and colleagues performed LR modelling in a cohort
of 168 IIM patients including DM, PM, ASS and IMNM to determine
the key features that could be used for malignancy prediction [82].
Three predictors (age, alanine aminotransferase (ALT) < 80 U/L
and seropositivity for anti-TIF-1-γ antibodies) were identified as
positive predictors for malignancy while, ILD was found to be a
negative predictor of malignancy. The LR model was as good or
better than the other ML models including RF, neural network and
extreme gradient boosting at predicting malignancy. The AUC of
the ROC was determined at 78.4% [82].

In another study, the researchers examined the medical
records of 397 patients with IIM to identify potential risk
factors for ILD, other rheumatic diseases and malignancies
[83]. Antibodies such as anti-PM/Scl, anti-Ro52, anti-aminoacyl-
tRNA synthetase and anti-MDA5 constituted risks for ILD.
Patients with Raynaud’s phenomenon, arthralgia and anti-
nuclear antibodies were found to be prominent risk factors for
other overlapping rheumatic diseases. For IIM patients with
associated malignancies, being male and the presence of anti-TIF-
1-γ antibodies were risk factors. Hierarchical clustering generated
a subclassification into six subgroups including (1) malignancy
overlapping DM, (2) classical DM, (3) PM with severe muscle
involvement, (4) DM with ILD, (5) PM with ILD and (6) overlapping
of myositis with other rheumatic diseases [83].

Overall, biomarkers can help serve as ML modelling provides
numerous benefits to healthcare providers, such as rapidly identi-
fying patients who stand to gain from specific treatments, or alter-
natively may be susceptible to adverse reactions. Additionally, ML
models can help discern patients at risk of certain comorbidities,
enabling implementation of targeted interventions.

Advantages and limitations of ML for biomarker
discovery
As ML algorithms become increasingly prevalent in the biomedi-
cal field, it is important to note that the implementation and inter-
pretation of these models requires both expertise in data analysis

Table 2: Advantages and limitations of ML for biomarker discovery

Advantages Limitations

Can handle large amounts of data May require significant computational resources
Can detect complex patterns in data May be prone to overfitting or underfitting data
Can be used for real-time prediction May require significant training time
Can improve diagnostic accuracy May be limited by the quality and completeness of data
Can identify new biomarkers and disease subtypes May require expertise in data analysis and machine learning
Can tailor treatment plans for individual patients May not be able to capture all relevant variables in the data
Can reduce human error and bias May raise ethical concerns about the use of AI in healthcare
Can be applied to diverse types of data (e.g. imaging, genomics) May be limited by the availability of high-quality data
Can accelerate drug discovery and development May require collaboration between researchers with different expertise
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and domain-specific knowledge. Additionally, the accuracy and
generalisability of these models rely heavily on the quality and
quantity of data available for training and testing [9]. For instance,
in transcriptomics studies, reference genomes may lack complete
annotations for certain genes or regions, leading to the complete
omission of important transcripts. Furthermore, quantification
challenges, such as accurate measurement of low-abundance
transcripts and susceptibility to noise, further compound these
issues. Additionally, data acquisition method transparency with
detailed methodology description is essential to enable methods
generalization, and data reproducibility is essential, as varia-
tions in sequencing platforms and bioinformatics pipelines can
introduce biases. While the potential benefits of using ML for
biomarker discovery are numerous, it is important to carefully
consider the limitations and potential biases inherent in these
models (Table 2).

Furthermore, the lack of standardization in ML modelling for
biomarker discovery is a significant challenge. There is often
variability in the selection of features, model training and evalu-
ation metrics, leading to inconsistent or conflicting results. More-
over, different ML algorithms may perform differently depending
on the dataset and the specific research question, making it
difficult to identify the best approach. Efforts are being made to
address these issues, including the development of standardized
protocols for data sharing and analysis, and the establishment
of benchmark datasets for evaluating the performance of ML
algorithms [84].

Overall, using ML algorithms to assist and complement con-
ventional human interpretation can help to improve the accuracy,
efficiency of biomarker discovery, and may lead to new insights
into disease mechanisms and potential therapeutic targets for IIM
patients. While ML algorithms have the potential to revolutionize
biomarker discovery, it is important to carefully consider the
caveats, limitations and ethics of using these algorithms and to
validate the results with conventional human interpretation.

CONCLUSION
In conclusion, the integration of ML in biomarker discovery for
IIMs holds tremendous promise for advancing our understanding
of these complex diseases. ML techniques have demonstrated
efficacy in predicting features that can be incorporated into
innovative diagnostic criteria and evaluating the specificity and
sensitivity of these criteria. Numerous studies have underscored
the clinical significance of MSAs as diagnostic, prognostic and
predictive biomarkers, enabling clinicians to tailor treatment
plans and address patient comorbidities effectively. Furthermore,
advancements in medical image analysis present non-invasive
alternatives for diagnosing IIM rapidly and effectively. Overcom-
ing the challenges posed by the heterogeneity among patients,
ML-based predictive modelling, driven by high-dimensional data
from immunophenotyping and multi-omic studies, has unveiled
novel biomarkers.

However, the diverse landscape of experimentation and testing,
particularly in autoantibody detection and RNA-based transcrip-
tomic approaches, calls for the establishment of standardized
protocols as imperative to ensure the reproducibility and com-
parability of results across studies. This is especially crucial for
the robust implementation of ML-based predictive modelling,
which relies heavily on consistent and high-quality data inputs.
Addressing these standardization challenges is essential for fos-
tering collaboration among researchers and clinicians, facilitating

the pooling of data and ultimately enhancing the reliability of
biomarker discoveries.

Looking forward, the establishment of patient registries
becomes crucial for comprehensive data collation, and the
integration of AI/ML into these registries can provide direct
feedback to clinicians, contributing to personalized treatment
strategies. While challenges and limitations persist, the ongoing
application of ML in IIM research has the potential to revolutionize
our understanding of these diseases, paving the way for more
targeted and efficacious therapies, provided that standardized
protocols are implemented and adhered to across the scientific
community.

Key Points

• Integrating of ML into biomarker discovery for IIMs
holds great potential for refining current diagnostic
paradigms, predicting prognosis and tailoring targeted
and effective treatment strategies.

• ML-driven predictive modelling with high-dimensional
data reveals novel biomarkers, providing nuanced
insights into the diverse IIM patient population and
overcoming challenges presented by its heterogeneity.

• By leveraging ML, medical image analysis offers rapid
and effective non-invasive alternatives for diagnosing.

• Careful consideration must address the limitations and
biases inherent to ML models, emphasizing robust val-
idation strategies, transparent documentation of data
sources and continuous refinement to ensure reliable
outcomes.

• Implementing standardized protocols across all data,
especially in autoantibody detection and transcrip-
tomics, is essential. This standardization plays a critical
role to ensuring the reproducibility of ML-driven predic-
tive modelling, thereby bolstering the overall reliability
of biomarker discovery in IIMs.
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