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Abstract
Few indexes are available for nuclear medicine image quality assessment, particularly for respiratory blur assessment. A variety of
methods for the identification of blur parameters has been proposed in literature mostly for photographic pictures but these methods
suffer from a high sensitivity to noise, making them unsuitable to evaluate nuclear medicine images. In this paper, we aim to calibrate
and test a new blur index to assess image quality.
Blur index calibration was evaluated by numerical simulation for various lesions size and intensity of uptake. Calibrated blur index

was then tested on gamma-camera phantom acquisitions, PET phantom acquisitions and real-patient PET images and compared to
human visual evaluation.
For an optimal filter parameter of 9, non-weighted and weighted blur index led to an automated classification close to the human

one in phantom experiments and identified each time the sharpest image in all the 40 datasets of 4 images. Weighted blur index was
significantly correlated to human classification (r=0.69 [0.45;0.84] P< .001) when used on patient PET acquisitions.
The provided index allows to objectively characterize the respiratory blur in nuclear medicine acquisition, whether in planar or

tomographic images and might be useful in respiratory gating applications.

Abbreviations: 18F-FDG = 18F-Fluorodeoxyglucose, MTV = metabolic tumor volume, PET = positron emission tomography,
SUL = standardized uptake value normalized to lean body mass, SUV = standardized uptake value, TLG = total lesion glycolisis.
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1. Introduction

Nuclear medicine is a domain in full expansion, broadening the
spectrum of its applications. The administered activity of
radiopharmaceuticals is kept as low as possible to limit patient
radiation exposure. Imaging times are increased accordingly to
compensate low count rates and decreased signal-to-noise ratio.
A complete nuclear medicine acquisition thus takes usually
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several minutes and is subject to respiratory blur. Diaphragm
motion amplitude can reach 10cm during respiratory cycle[1] and
this phenomenon may have clinical consequences. The concen-
tration of radiopharmaceutical within a given structure is in
particular spread out over a larger area leading to a respiratory
blur and an underestimation of lesion uptake.
A wide range of indexes has been developed to characterize

radiopharmaceuticals uptake in nuclear medicine[2]: intensity of
the uptake (SUV, SUL), volume (MTV, TLG) and more recently
textural parameters.[3] Few indexes are however available for
image quality assessment once the image acquired, particularly
for respiratory blur assessment. This question might be of interest
with the development of respiratory gating, particularly on PET/
CT systems.
Motion blur, caused by the relative motion of a structure

during image capturing, has 2 main components: angle and
amplitude. In this paper, we focus exclusively on amplitude
estimation as the predominant axis of respiratory motion is
craniocaudal.
A variety of methods for the identification of blur parameters

has been proposed in literature,[4] mostly on photographic
pictures. Edge detection techniques are widely documented
whether with first or second order derivative, Sobel operator,[5]

Canny detector[6] or wavelet transform methods.[4] However
these methods are very sensitive to noise.[7] Nuclear medicine
acquisitions have a lower signal-to-noise ratio than photographs
which can mislead the edge detection. In their review article,
Tiwari and al[4] tested 2 methods based on frequency domain
(radon transform method and cepstral methods) that showed a
similar sensitivity to noise adding, making them unsuitable to
nuclear medicine image evaluation.
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In this paper we test an automated estimation index to assess
the respiratory blur in nuclear medicine images, whether planar
or tomographic.
2. Methods

2.1. Blur index calculation
2.1.1. Thresholding. Let I be the original image of sizemx n x p.
The first step is the creation of a binary mask M of I whose value
is 0 when the voxel value is less than 100 counts. The threshold
was determined on ad hoc basis. This step is performed in order
to avoid any influence from pixels/voxels outside the phantom or
patient body on the blur index.

2.1.2. Blur index calculation. Blur index is based on the article
of Crete and al[8] and adapted to accept 2D and 3D nuclear
medicine images. A blurred image B is created using a low-pass
filter h of length L in the direction of the respiratory movement
(z axis in 3D images, y axis in 2D image). B is cropped to be of the
same size as I. The adequate L parameter is evaluated in the first
part of this article.

h ¼ 1
L
½1; . . . ; 1� ð1reapeated L timesÞ

B ¼ h � I

Index calculation: The absolute difference images DI and DB
studying the variations of neighboring pixels are initialized as all
zeros matrix of m x n x p and then computed as follow:

DI ði; j; kÞ ¼ Abs ðIði; j; kÞ � I ði; j; k� 1ÞÞ f or i ¼ 1 tom; j ¼ 1 to n; k ¼ 1 to p� 1
DB ði; j; kÞ ¼ Abs ðBði; j; kÞ � B ði; j; k� 1ÞÞ f or i ¼ 1 tom; j ¼ 1 to n; k ¼ 1 to p� 1

In order to analyze the variations of the neighboring pixels
after the blurring effect, an image DV is created: if the variation is
low then the original image was already blur.

DV ði; j; kÞ ¼ Max ð0; DIði; j; kÞ �DBði; j; kÞÞ f or i ¼ 1 tom;

j ¼ 1 to n; k ¼ 1 to p

The comparison of the variations from the initial picture is
computed as follow, using the binary mask M:

sI ¼ Pm;n;p
i;j;k¼1 DIði; j; kÞ � Mði; j; kÞ

sV ¼ Pm;n;p
i;j;k¼1 DVði; j; kÞ � Mði; j; kÞ

The final index Blur varies from 0 (sharp) to 1 (blurred) and is
given by:

Blur ¼ sI � sV
sI

2.1.3. Blur index ponderation. High intensity lesions can
artificially decrease the blur index by increasing the contrast at
the interface of the lesion and the background. This phenomenon
can theoretically decrease the blur index when patients exhibit
lots of high intensity voxels. An estimation of the number of high
intensity voxels is given by the ratio R between the number of
voxels exceeding a predetermined threshold (expressed as a
percentage P of themaximum intensity value in the original image
I) and the number of voxels corresponding to the patient (voxels
whose value is 1 in the mask M).

Weighted blur ¼ R � Blur
2

2.2. Experiments
2.2.1. Filter calibration and high intensity voxel threshold (P)
determination. The length L of the low pass filter was
determined based on a numerical 2D simulation. A moving disk
was simulated on a 128� 128 matrix with pixel size of 2� 2mm
(motion length 20mm, 10 cycles per second). Two dynamic
acquisitions consisting of 200 frames of 1 second were generated:
1 with and 1 without disk movement. Poisson noise was added to
each frame. Blurred random images were obtained by summing
40 randomly selected frames in the 200 frames available in the
simulated moving acquisition. Static random images were
obtained by summing 40 randomly selected frames in the 200
frames available in the simulated non-moving acquisition.
Five hundred datasets of 4 images were reconstructed, each

composed of 1 static random image and 3 blurred random
images. The sharpest image was then identified based on the blur
index calculated for different values of L.[3,5,7,9,11,13] Sharpest
image identification was considered successful if it identified the
static random image.
This process was tested for several disk diameter values (5mm,

10mm, and 20mm) and several pixel intensities (2, 5, and 10
times the background whose value had been fixed to 1 arbitrary
unit).
The threshold P was determined based on 30 consecutive PET/

CT performed for clinical purpose. All were acquired on a
Discovery 710 system (General Electrics, Milwaukee, WI) after
an intravenous injection of 3MBq/kg of 18F-FDG. An external
observer was asked to rate the respiratory blur from 1 (absent) to
5 (major blur). Correlation between perceptual blur and
weighted blur index were computed using Pearson correlation
coefficient for all threshold value (ranging from 0% to 100%
SUVmax).
2.3. Phantom experiments
2.3.1. Input data. We used a dynamic thorax phantom (Model
008A, Computerized Imaging Reference System, Inc.) with a
spherical insert of 8 ml (2.5cm of diameter) filled with 20MBq of
[99mTc] Pertechnetate (gamma camera acquisition) or 20 MBq
of [18F] FDG (PET/CT acquisition). The phantom was
positioned at the center of the field of view: the center of the
insert was located 65mm right from the center. Motion length of
the phantom was set to 20mm at 10 cycles per minute.

2.3.2. Image acquisitions. For gamma-camera acquisitions,
200 images of 1 second were acquired in planar mode on a 128�
128 matrix using a Symbia T2 system (Siemens Medical
Solutions, USA). For PET acquisitions, a 200 second volume
was acquired in list-mode on a Discovery 710 system (General
Electrics, Milwaukee, WI) and reconstructed to obtain 200
frames of 1 second (OSEM: 24 subsets and 2 iterations, no
attenuation correction, reconstructed slice thickness of 3.27mm,
Butterworth post-filter with 6.4mm cut-off).
Random blurred images were obtained by summing 40

randomly selected frames in the 200 frames available in each
acquisition. Thirty datasets of 4 random blurred images were
reconstructed for gamma-camera acquisition and another 30
datasets for PET acquisition.

2.3.3. Images rating. Each dataset of 4 images was sorted in
ascending order of blurriness (from 1 to 4) by an independent
observer –considered as the gold standard– and afterwards along
the automated weighted and non-weighted blur index. An error



Figure 1. Example of a dataset rating with error score calculation between human and automated rating. This dataset is sorted in ascending order of blurriness
(from 1 to 4) based on observer evaluation and blur index. An example of error score calculation between the 2 methods is provided.
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score was calculated between the 2 ratings, corresponding to the
sum of the absolute difference of rank of each image, as shown
below. By construction, this error score is always even and ranges
from 0 to 8 with 0 (perfect agreement), 2 (slight disagreement), 4
(mild disagreement), 6 (subtotal disagreement), 8 (complete
disagreement). An example is provided in Figure 1.

2.3.4. Patient experiments. Thirty consecutive PET/CT, differ-
ent from those used for threshold determination, were retrospec-
tively selected. All were acquired on a Discovery 710 system
(General Electrics, Milwaukee, WI) after an intravenous injection
of 3MBq/kg of 18F-FDG. An external observer was asked to rate
the respiratory blur from 1 (absent) to 5 (major blur). Correlation
between perceptual blur and blur index were computed using
Pearson correlation coefficient on R software.[9]
3. Results

3.1. Filter calibration

We report the rate of successful identification of the sharpest
image on simulated acquisitions in Table 1. We retained an
optimal L value of 9 with a mean of 88.7% of successful
identification throughout all simulations.
Optimal threshold P was 42% of the SUVmax (r=0.64) as

seen in Figure 2.
Table 1

Success rate of sharpest image identification for various blur index

L=3 L=5

Diameter: 5 mm/Intensity: 2 30.8% 37.0%
Diameter: 5 mm/Intensity: 5 12.2% 30.2%
Diameter: 5 mm/Intensity: 10 10.0% 13.0%
Diameter: 10 mm/Intensity: 2 9.0% 13.6%
Diameter: 10 mm/Intensity: 5 1.0% 2.0%
Diameter: 10 mm/Intensity: 10 0.0% 0.0%
Diameter: 20 mm/Intensity: 2 53.4% 55.8%
Diameter: 20 mm/Intensity: 5 22.0% 57.8%
Diameter: 20 mm/Intensity: 10 2.2% 19.4%
Total 15.6% 25.4%

3

3.2. Phantom experiments

No ranking differences were seen between weighted and non-
weighted blur index.
For gamma-camera 2D acquisitions: mean error score value

was 0.5 with perfect agreement (error score 0) for 30/40 datasets
and slight disagreement (error score 2) in the remaining 10. No
mild, subtotal or complete disagreements were noted. The
sharpest image was always concordant between visual and
automated ranking.
For PET 3D acquisitions: mean error score value was 0.6 with

only slight disagreement (error score 2) in 12/40 datasets. The
sharpest image was again always concordant between visual and
automated ranking.

3.3. Patient experiments

Non-weighted blur index was not correlated to perceptual blur
(r=0.08 [�0.28;0.43] P= .64). Weighted blur index was
significantly correlated to perceptual blur (r=0.69 [0.45;0.84]
P< .001), Figure 3.

4. Discussion

Low signal-to-noise ratio relative to photographs is the main
concern in blur estimation in nuclear medicine acquisition. We
L-parameter values.

L=7 L=9 L=11 L=13

59.4% 68.8% 48.2% 50.4%
92.6% 92.0% 87.6% 82.6%
100% 100% 99.6% 99.6%
48.8% 79.2% 85.4% 86.2%
92.2% 100% 100% 100%
98.2% 100% 100% 100%
21.6% 58.6% 47.8% 75.4%
65.8% 100% 100% 100%
42.6% 100% 100% 100%
69.0% 88.7% 85.4% 88.2%

http://www.md-journal.com
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Figure 2. Pearson correlation between perceptual blur and weighted blur index along threshold value (P).
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adapted the blur index published by Crete and al[8] by using a
threshold eliminating the area of the image with the lowest signal-
to-noise ratio and taking into account the number of high
intensity voxels. The thresholding excludes most of the voxels of
the background, where no signal is expected: the background can
indeed increase the blur index value as it is a large area of low
contrast between neighboring voxels. By construction, the blur
index is sensitive to high intensity voxels which can artificially
decrease its value due to the high contrast between the lesion and
the neighboring voxels. An estimation of the ratio of high
intensity voxels over total patient voxels was proposed to
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compensate this phenomenon. High intensity voxels were defined
as voxels exceeding 42% of the SUVmax of the image based on a
first training dataset. Pearson correlation between perceptual blur
and weighted blur index decreased when using a higher
percentage presumably because of the low number of voxels
selected. With a lower percentage, low intensity voxels are also
selected and lead to a decreased Pearson correlation as well.
In phantomexperiments, the revised non-weighted andweighted

blur index led toanautomated classification close to thehumanone
withperfect agreement in theorder inbetween70%and75%of the
datasets. The remaining discrepancies gathered only slight
3 4 5
eptual blur

nd human based blur evaluation (perceptual blur).
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disagreements, that is to say a permutation of 2 consecutive images
relative to the human ranking. The sharpest image was always
concordant. The high performance of these indexes to select the
sharpest arrangement of frame in phantom experiments might be
promising to propose a derived respiratory gating algorithm.
In patient experiments, non-weighted blur index did not show

any correlation with perceptual blur: this is probably mainly due
to the interpatient variability. The number of high intensity
lesions varies from one patient to another by contrast to the
phantom experiments in which only 1 high intensity lesion was
tested. Once this correction made, weighted blur index was
significantly correlated to perceptual blur (P< .001).
Respiratory blur is a cause of image degradation in nuclear

medicine.[10] The provided weighted blur index allows to
objectively evaluate its severity. This fully automated index
can be a first step toward a machine-learning based blur
estimation which is a field of mounting interest.[11–13]
5. Conclusion

The provided index allows to objectively characterize the
respiratory blur in nuclear medicine acquisitions, whether in
planar or tomographic images and might be useful in respiratory
gating quality assessment.
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