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α/β-Tubulin inhibitors that alter microtubule (MT) dynamics are commonly used in cancer
therapy, however, these inhibitors also cause severe side effects such as peripheral
neuropathy. γ-Tubulin is a possible target as antitumor drugs with low side effects, but the
antitumor effect of γ-tubulin inhibitors has not been reported yet. In this study, we verified
the antitumor activity of gatastatin, a γ-tubulin specific inhibitor. The cytotoxicity of
gatastatin was relatively weak compared with that of the conventional MT inhibitors,
paclitaxel and vinblastine. To improve the cytotoxicity, we screened the chemicals that
improve the effects of gatastatin and found that BI 2536, a Plk1 inhibitor, greatly increases
the cytotoxicity of gatastatin. Co-treatment with gatastatin and BI 2536 arrested cell cycle
progression at mitosis with abnormal spindles. Moreover, mitotic cell death induced by the
combined treatment was suppressed by the Mps1 inhibitor, reversine. These findings
suggest that co-treatment with Plk1 and γ-tubulin inhibitors causes spindle assembly
checkpoint-dependent mitotic cell death by impairing centrosome functions. These results
raise the possibility of Plk1 and γ-tubulin inhibitor co-treatment as a novel cancer
chemotherapy.
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INTRODUCTION

Microtubules (MTs) are dynamic polymers that are formed by the polymerization of α/β-tubulin
heterodimers fromMT nucleator γ-tubulin (Kollman et al., 2011). In mitosis, MTs form the essential
scaffolding elements of the bipolar spindle that separates chromosomes with high precision. Errors in
spindle function stimulate the spindle assembly checkpoint to block mitotic progression until all
chromosomes are properly attached by MTs (Kops et al., 2005). Because a long-term blocking of
bipolar spindle formation eventually leads to apoptosis, several α/β-tubulin inhibitors including
taxanes and vinca alkaloids are used for cancer chemotherapy (Dumontet and Jordan, 2010).
However, these inhibitors also cause severe side effects such as peripheral neuropathy. Furthermore,
resistance mechanisms against α/β-tubulin agents such as expression pattern changes of tubulin
isotypes and efflux pump systems have been reported. For these reasons, new antimitotic drugs with
low side effects needed to be developed. Inhibitors against Eg5, CENPE, Aurora kinases and Polo-like
kinase 1 (Plk1) are currently in clinical trials (Jackson et al., 2007; Casaluce et al., 2013).
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Previously, we reported glaziovianin A (Chinen et al., 2013)
derivatives gatastatin (Chinen et al., 2015) and gatastatin G2
(Shintani et al., 2020) as γ-tubulin specific inhibitors that induce
short mitotic spindles with misaligned chromosomes without
disrupting interphase MT networks. In addition to our
observations, several studies have suggested that γ-tubulin may
be a good candidate for the development of antitumour
compounds with low side effects. First, γ-tubulin accumulates
on the centrosome in prometaphase to facilitate bipolar spindle
assembly (Khodjakov and Rieder 1999; Hutchins et al., 2010).
Second, γ-tubulin is overexpressed in glioblastoma cells (Katsetos
et al., 2007). Third, increasedMT nucleation activity enhances the
invasion activity of cultured cells (Godinho et al., 2014). Finally,
centrosomal MT nucleation has been shown to be an attractive
drug target (Yao et al., 2013). Thus, MT nucleation is an attractive
target for new anticancer drug.

In this study, we evaluated the cytotoxicity of gatastatin and
showed that co-treatment with Plk1 inhibitor BI 2536 exhibits
strong toxicity. This combination induces mitotic cell death by
activation of mitotic checkpoints and degradation of Mcl-1, an
antiapoptotic protein. Therefore, our study raises the possibility
that γ-tubulin and Plk1 are suitable drug targets for antitumor
medicine development.

METHODS

Cell Culture and Chemicals
HeLa cells were cultured in DMEM (Nacalai Tesque, Kyoto,
Japan) supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/
ml streptomycin. HL60 and Jurkat cells were cultured in RPMI
1640 (Nacalai Tesque, Kyoto, Japan) supplemented with 10%
FBS, 100 U/mL penicillin, 100 μg/ml streptomycin. Paclitaxel
(Cat# 163-18614), vinblastine (Cat# 221-00751) and
staurosporine (Cat#197-10251) were purchased from FujiFilm
Wako Pure Chemical Corporation. BI 2536 was purchased from
Funakoshi (Cat# A10134-5). Reversine was purchased from
Sigma (Cat# R3904). RO-3306 was purchased from AdipoGen
(Cat# AG-CR1-3515). Gatastatin was synthesized as previously
described (Hayakawa et al., 2012). All chemicals were dissolved in
dimethylsulfoxide (DMSO).

Analysis of Cytotoxicity and Cell Cycle
Progression
Cell viability was determined using the WST-8 assay. HeLa cells
(3 × 103 cells/well in 96 well plate) were treated with each
compound (final DMSO concentration was 1.0%) for 48 h.
10 μL of the WST-8 assay reagents (Dojindo, Kumamoto,
Japan) was added to the culture. After 1–4 h incubation, the
absorbance at 450 nm was measured with an iMark microplate
reader (BioRad), and the cell viability (control %) was
determined. For the cell cycle progression analysis, HeLa cells
(3 × 104 cells/mL) were treated with the compounds (final DMSO
concentration was 0.1%) for 24 h. After washing with phosphate-
buffered saline (PBS), cells were fixed with 70% EtOH (−20°C).
Fixed cells were subsequently stained with Muse Cell Cycle

Reagent. DNA content were detected using a Muse Cell
Analyzer (Luminex Corporation). Synergism was evaluated
according to the Chou–Talalay CI method using CompuSyn
software (CompuSyn, Inc.) (Chou, 2010).

Fluorescent Microscopy
HeLa cells (3 × 104 cells/mL) were treated with the
compounds (final DMSO concentration 0.1%) for 24 h.
Cells were fixed with cold MeOH for 5 min (−20°C). Cells
were incubated with anti-pericentrin (1:2,000 dilution,
Abcam, Cat# ab4448) and anti-α-tubulin (1:1,000 dilution,
Santa Cruz, Cat# sc-32293) antibodies. After staining with
Alexa488-conjugated anti-mouse IgG (1:2,000 dilution,
Invitrogen, Cat#A11001) and Alexa568-conjugated anti-
rabbit IgG (1:2,000 dilution, Invitrogen, Cat#A11011), cells
were washed four times with PBS and mounted with ProLong
Glass Antifade Mountant with NucBlue (Invitrogen,
#P36981). The spindle MT and centrosome structures were
observed under a Leica AF 6000 fluorescence microscope
(Leica Microsystems, Wetzlar, Germany) equipped with a
×63 objective lens. Images of 40 sections at 0.25 μm
intervals were collected. The position of the two pericentrin
signals of mitotic cells were analyzed using ImageJ software
and then their distance was calculated. Pericentrin signals on
centrosomes were quantified with ImageJ using raw data with
max projection from 40 z-stacks. For cell death analyses by
time-lapse imaging, HeLa cells (3 × 104 cells/mL) were seeded
onto 35 mm glass-bottom dishes (Greiner-Bio-One,
#627870). Before imaging, cells were treated with the
respective compounds (final DMSO concentration was
1.1%). Time-lapse imaging of the cells was performed using
a Confocal Scanner Box, the Cell Voyager CV1000 (Yokogawa
Electric Corp.) equipped with a ×20 objective lens and the
stage incubator for a 35 mm dish. Bright field images were
taken every 15 min. Images were analyzed using the FIJI
distribution of ImageJ.

Immunoblotting
HeLa cells (3 × 104 cells/mL) were treated with the compounds
(final DMSO concentration 0.1%) for 24 h. Cells were washed
once with PBS and lysed with lysis buffer. After sonication, the
cells were placed on ice for 15 min. The cell extracts were boiled at
100°C for 3 min, separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, transferred to a
polyvinylidene fluoride microporous membrane
(FujiFilmWako, #033-23813), and blocked with 5% skim milk
(Megmilk Snowbrand, Sapporo, Japan). They were then probed
with the appropriate primary antibody and HRP-conjugated anti-
IgG secondary antibody, and detected by enhanced
chemiluminescence (Nacalai Tesque, #02230-30). Images were
visualized using Sayaka Imager (DRC, Tokyo). The band
intensities of PARP, Mcl-1, BubR1, BubR1(phospho S670),
and actin were measured with ImageJ and normalized by actin.

Statistical Analysis
Statistical analysis of pole-to-pole distances and fluorescence
intensities on centrosomes was performed with GraphPad
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Prism 6.1. A one-way ANOVA with Tukey’s multiple
comparisons’ test was used to compare samples and to
obtain adjusted p-values. The numbers of repeated
experiments and sample sizes are indicated in the figure
legends.

RESULTS

Combination of Gatastatin and BI 2536
(gatastatin-BI 2536) Shows Synergic
Cytotoxicity
To examine the antitumor activity of gatastatin, we investigated
the cytotoxicity of gatastatin and other clinically used
microtubule inhibitors, paclitaxel and vinblastine, against HeLa
cells. The individual IC50 values of gatastatin, paclitaxel, and
vinblastine were 9.02, 0.004, and 0.005 μM, respectively,
indicating that gatastatin possesses only weak anti-proliferative
activity. Onemethod to increase the cytotoxicity of gatastatin is to
combine it with other mitotic inhibitors. Therefore, we tested co-
treatment with gatastatin and other mitotic kinase inhibitors,
Cdk1 inhibitor RO-3306, Mps1 inhibitor reversine, and Plk1
inhibitor BI 2536. At the concentrations of each compound
resulting in ∼80% cell viability, BI 2536, but not RO-3306 or
reversine, drastically increased the cytotoxicity of gatastatin
(Figure 1B). In paticular, 5 μM gatastatin and 1 nM BI 2536
(gatastatin-BI 2536) showed strong cytotoxicity (15% cell
viability, Figure 1B). Because IC50 value of gatastatin and BI
2536 were 9.02 μM and 2.1 nM, respectively, these concentrations
are about half of IC50 values of each compound. This effect was
synergistic because 5 μM gatastatin and 1 nM BI 2536 showed
only weak cytotoxicity on their own (86.2 ± 1.6% and 86.7 ± 7.7%
cell viability, respectively; Figure 1C) and the combination index
of combination treatment was 0.64. The synergic effects of
gatastatin and BI 2536 were also observed in HL60 and Jurkat
cell lines (Supplemental Figures 1A,B). Gatastatin-BI 2536
arrested cell cycle progression at the G2/M phase but the
individual treatments did not when gatastatin or BI 2536 were
used at that concentrations mentioned above (Figure 1D). The
mitotic index of the combination-treated cells was 0.42 but that of
the DMSO-treated cells was 0.08 (data not shown), indicating
that the cell cycle arrest point in the combination-treated cells was
mitosis. Because the same synergic effect was also observed in
combination of gatastatin and HMN-214, another Plk1 inhibitor
(Supplemental Figure 2), these results suggest that the Plk1
inhibitor increases the toxicity of a γ-tubulin inhibitor, and
inhibits cell cycle progression in the M phase.

Combination of Gatastatin and BI 2536
Inhibits Clustering of Pericentriolar
Materials in Mitotic Cells
To investigate the mode of action of the synergic effect of
gatastatin and BI 2536, we observed the spindle structure in
the M phase (Figures 2A,B). Most spindles in DMSO-treated
control cells showed normal bipolar spindles (52.6 ± 10.8%), and
some bipolar spindles with chromosome misalignment were
observed (14.1 ± 12.8%). In contrast, gatastatin, BI 2536, or
gatastatin-BI 2536 treatment increased the amount of
abnormal spindles, such as bipolar spindles with chromosome
misalignment, and monopolar/multipolar spindles. Gatastatin
significantly increased the quantity of bipolar spindles with

FIGURE 1 | Co-treatment of gatastatin and Plk1 inhibitors shows
improved cytotoxicity. (A) Chemical structure of gatastatin. (B) Plk1 inhibitor
BI 2536, but not Cdk1 inhibitor RO-3306 and Mps1 inhibitor reversine,
increased the toxicity of gatastatin. HeLa cells were treated with several
drug combinations for 48 h and cell viability (DMSO control %) was
determined with WST-8 assay. The concentrations of BI 2536, RO-3306 and
reversine were 1 nM, 1 μM, and 0.3 µM, respectively. Gatastatin
concentrations were 0, 5, and 10 µM. Error bars represent S.D. ANOVA was
used to obtain p value. ns, no significance; *p < 0.05; **p < 0.01, ***p < 0.001;
****p < 0.0001. (C)Dose-dependent response of HeLa cells against gatastatin
and BI 2536. HeLa cells were treated with each drug for 48 h and cell viability
(DMSO control %) was determined with WST-8 assay. Error bars represent
S.D. ANOVA was used to obtain p value. ns, no significance; *p < 0.05;
**p < 0.01, ***p < 0.001; ****p < 0.0001. (D) Cell cycle profile of gatastatin-
and/or BI 2536-treated cells. HeLa cells were treated with each drug for 24 h.
After fixed with 70% EtOH, cells were stained with Muse Cell Cycle Reagent.
DNA contents were analyzed with flow cytometer. The concentrations of BI
2536 and gatastatin were 1 nM and 5 μM, respectively.
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chromosome misalignment (43.5 ± 4.7%), and this effect was
enhanced by co-treatment with BI 2536 (54.1 ± 9.9%). Because
it has been reported that Plk1 regulates the recruitment of γ-tubulin
and pericentriolar materials on centrosomes (Haren et al., 2009), we
quantified the pericentrin on spindle poles. However, we could not
find any differences in pericentrin intensity at the spindle poles
between DMSO-, BI 2536-, gatastatin-, or gatastatin-BI 2536-
treated cells (Supplemental Figure 3A). We also found that
there were no differences in the distances between the two
centrosomes (pole-to-pole distance; Supplemental Figure 3B) or
planar spindle orientations (Supplemental Figure 3C) at least at the
concentrations we used. Instead, we noticed that gatastatin, BI 2536,
or gatastatin-BI 2536 treatment increased the number of pericentrin
signals, which was normally two signals per cell, indicating the

fragmentation of pericentriolar materials (PCM) (Figure 3A).
Within the bipolar spindle cells, the population containing
fragmented PCM signals (multiple PCM in Figure 3B) increased
in both gatastatin- and BI 2536-treated cells. Most of the
fragmented PCM signals were observed in gatastatin-BI 2536
treated cells, suggesting that this effect was synergistic. Moreover,
the number of bipolar spindles with chromosome misalignment
significantly increased in gatastatin-treated cells, and this increase
was further enhanced by co-treatment with BI 2536 (Figure 3B).
These results suggest that the inhibition of Plk1 and γ-tubulin
resulted in the impairment of proper PCM organization and
induced abnormal spindle formation.

Gatastatin-BI 2536 Induces Mitotic
Cell Death
Mitotic inhibitors are known to kill cancer cells by inducing
mitotic and post-mitotic cell death (Colin et al., 2015; Ohashi

FIGURE 3 | Combination treatment of gatastatin and BI-2536 impairs
the proper PCM organization in mitotic cells. (A) Structure of mitotic spindle
focusing on PCM organization and chromosome misalignment in the drug
treated cells. HeLa cells were treated with the drugs for 24 h. Red, green
and blue in the image represent pericentrin, α-tubulin and DNA, respectively.
Scale bar, 10 µm. The concentrations of BI 2536 and gatastatin were 1 nM
and 5 μM, respectively. (B) Classification of the morphology of the drug
treated cells in (A). Values represent average ±SD of three independent
experiments. Greater than 44 cells of drug treated samples are examined for
each experiment. Error bars represent S.D. ANOVA was used to obtain p
value. n.s., no significance; *p < 0.05; **p < 0.01.

FIGURE 2 | Combination treatment of gatastatin and BI-2536 induces
spindles with chromosome misalignment. (A) Structure of mitotic spindle in
the drug treated cells. HeLa cells were treated with the drugs for 24 h. Red,
green and blue in the image represent pericentrin, α-tubulin and DNA,
respectively. Scale bar, 10 µm. The concentrations of BI 2536 and gatastatin
were 1 nM and 5 μM, respectively. (B) Classification of the morphology of the
drug treated cells in (A). Values represent average ±SD of three independent
experiments. Greater than 56 cells of drug treated samples are examined for
each experiment. *p < 0.05; **p < 0.01.
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et al., 2015; Topham et al., 2015). To understand the mechanism
of cell death induced by the combination of gatastatin and BI
2536, we performed time-lapse observation. Compared with the
results in DMSO-treated cells, gatastatin- or BI 2536-treatment
slightly increased cell death in mitosis, as indicated by cell death
that occurred after the rounding up of cells (Figure 4A). On the
contrary, gatastatin-BI 2536 co-treatment drastically increased
mitotic cell death. Furthermore, gatastatin-BI 2536-treated cells,

but not gatastatin- or BI 2536-treated cells, showed a decrease in
antiapoptosis factor Mcl-1 and an increase in the cleavage of
PARP, suggesting that this drug combination induces mitotic
apoptosis (Figure 4B). It is known that mitotic cell death is
induced by prolonged mitosis, which is caused by the activation
of the spindle assembly checkpoint (SAC). Consistent with the
observations in Figures 4A,B, phosphorylation of BubR1, a
spindle checkpoint protein, was observed in gatastatin-BI
2536 co-treated cells (Supplemental Figure 4), and cell death
caused by gatastatin-BI 2536 was completely averted by the Mps1
inhibitor reversine, which allows cells to progress into G1 phase
by inhibiting the SAC (Figure 4C). Thus, gatastatin-BI 2536
triggered mitotic cell death by inducing mitotic checkpoint
activation and decreasing Mcl-1 expression.

DISCUSSION

In this study, we revealed that the dual inhibition of γ-tubulin and
Plk1 induces mitotic cell death by impairing mitotic spindle
assembly. MT nucleation in mitotic spindles depends on
centrosomes, chromatin, and the augmin complex (Prosser
and Pelletier, 2017), and this process relies on γ-tubulin
complex activity to nucleate MTs. Plk1 is an essential kinase
for mitotic progression and regulates the recruitment of γ-tubulin
and PCM on centrosomes (Haren et al., 2009; Johmura et al.,
2011). However, there was no significant difference in the cell
cycle progression and amount of pericentrin at spindle poles in BI
2536-treated cells compared with in DMSO-treated cells
(Figure 1D, Supplemental Figures 3A,B, respectively). This
suggests that BI 2536, at least at the concentrations used, did
not have a strong impact on the recruitment of PCM or cell cycle
progression. On the contrary, the occurrence of abnormal spindle
morphology (bipolar spindles with chromosome misalignment
and mono- or multipolar spindles) increased in BI 2536-treated
cells (Figure 2B). The cells treated with gatastatin also had
increased abnormal spindle morphology, but unlike with BI
2536, the number of bipolar spindles with misaligned
chromosomes was substantial as we reported previously
(Shintani et al., 2020). This phenotype was enhanced by
combination treatment (Figure 2B). Furthermore, BI 2536 and
gatastatin alone slightly increased the number of pericentrin
signals, but gatastatin-BI 2536 greatly increased the number,
which was normally two signals per cell (Figure 3B),
suggesting that the inhibition of Plk1 and γ-tubulin induces
PCM fragmentation. It is thought that PCM fragmentation
causes spindle instability and activates SAC; therefore, both
PCM fragmentation and chromosome misalignment probably
contribute to SAC-dependent mitotic cell death in gatastatin-BI
2536 treatment (Figure 4). These results suggest that the
inhibition of Plk1 and γ-tubulin results in abnormal spindle
formation via the impairment of proper PCM organization
and induces SAC-dependent mitotic cell death.

Several Plk1 inhibitors are currently in clinical trials (Jackson et al.,
2007; Casaluce et al., 2013). Our study noted that the cytotoxicity of
Plk1 inhibitors can be enhanced by a γ-tubulin inhibitor. Several
reports suggest that α/β-tubulin inhibitors increase the toxicity of Plk1

FIGURE 4 | Combination treatment of gatastatin and BI 2536 induces
mitotic cell death by degradation of Mcl-1 and activating mitotic spindle check
points. (A) HeLa cells were treated with each drugs and time lapse
observation was performed. Images were taken every 15 min for 24 h.
The cell death in interphase and mitosis were counted and shown. The
concentrations of BI 2536 and gatastatin were 1 nM and 10 μM, respectively.
Greater than 463 cells from two independent experiments are examined. (B)
Gatastatin-BI 2536 co-treatment induced decrease of Mcl-1 and cleavage of
PARP. HeLa cells were treated with the drugs for 24 h and Mcl-1 decrease
and PARP cleavage were analyzed byWestern blotting. The concentrations of
BI 2536 and gatastatin were 1 nM and 5 μM, respectively. Staurosporine
(STS) was used as positive control (1 μM, 4 h treatment). Values represent
average ±SD of three independent experiments. *p < 0.05. (C) Mitotic cell
death induced by gatastatin-BI 2536 co-treatment was canceled by reversine.
HeLa cells were treated with drug combinations for 48 h and cell viability
(DMSO control %) was determined with WST-8 assay. The concentrations of
BI 2536, gatastatin and reversine were 1 nM, 5 μM, and 50 nM, respectively.
Values represent average ±SD of three independent experiments. ***p <
0.001; ns, no significance.
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inhibitors (Stehle et al., 2015; Weiß et al., 2015; Abbou et al., 2016;
Czaplinski et al., 2016; Noack et al., 2018; Giordano et al., 2019).
Therefore, the antitumor activity of Plk1 inhibitors is generally
enhanced by both α/β-tubulin- and γ-tubulin-targeting drugs.
Thus, Plk1 inhibitors may have potential for applications in
combined treatment with α/β-tubulin and γ-tubulin inhibitors for
cancer chemotherapy.
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