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SUMMARY

Fragile X syndrome (FXS) is a leading cause of inherited intellectual disability and autism. 

Whereas dysregulated RNA translation in Fmr1 knockout (KO) mice, a model of FXS, is well 

studied, little is known about aberrant transcription. Using single-molecule mRNA detection, we 

show that mRNA encoding the AMPAR subunit GluA2 (but not GluA1) is elevated in dendrites 

and at transcription sites of hippocampal neurons of Fmr1 KO mice, indicating elevated GluA2 

transcription. We identify CPEB3, a protein implicated in memory consolidation, as an upstream 

effector critical to GluA2 mRNA expression in FXS. Increased GluA2 mRNA is translated into an 

increase in GluA2 subunits, a switch in synaptic AMPAR phenotype from GluA2-lacking, Ca2+-

permeable to GluA2-containing, Ca2+-impermeable, reduced inhibitory synaptic transmission, and 

loss of NMDAR-independent LTP at glutamatergic synapses onto CA1 inhibitory interneurons. 

These factors could contribute to an excitatory/inhibitory imbalance—a common theme in FXS 

and other autism spectrum disorders.

Graphical Abstract

In brief
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Using single-molecule FISH and patch-clamp recording, Hwang et al. show that dysregulation of 

GluA2 transcription is critical to synaptic function in an animal model of autism. The increase 

in GluA2 results in a switch in AMPAR phenotype and deficits in synaptic transmission and 

plasticity at synapses onto CA1 inhibitory interneurons.

INTRODUCTION

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and 

autism (Bagni and Zukin, 2019; Bhakar et al., 2012; Darnell and Klann, 2013; Richter et al., 

2015) and is caused by the expansion of a CGG repeat sequence in the 5′ untranslated 

region (UTR) of the FMR1 gene, resulting in silencing and loss of its gene product 

fragile X mental retardation protein (FMRP), an RNA binding protein (Fu et al., 1991; 

Pieretti et al., 1991). Patients with FXS exhibit mild to severe cognitive impairment, a 

decrease in the threshold for seizures, emotional instability, heightened sensitivity to sensory 

stimulus, sleep disorders, attentional deficits, and autism (Hagerman and Hagerman, 2013; 

Hagerman et al., 2017; Ronesi and Huber, 2008). FXS and other autism spectrum disorders 

(ASDs) are characterized by a heightened excitation/inhibition (E/I) imbalance throughout 

the brain, which is thought to underlie some symptoms associated with FXS (Antoine et al., 

2019; Nelson and Valakh, 2015). FMRP plays a critical role in the translational repression 

of >1,000 putative target mRNAs, many of which encode synaptic proteins (Ascano et 

al., 2012; Darnell et al., 2011) (but see Sawicka et al., 2019). Whereas elevated protein 

translation (Darnell and Klann, 2013) and impaired protein degradation (Hwang et al., 2019; 

Yan et al., 2018) are well established in neurons of Fmr1 knockout (KO) mice, little is 

known about dysregulation of transcription.

AMPA receptors (AMPARs) mediate fast excitatory transmission and are comprised of 

four subunits, GluA1–4. The AMPAR GluA2 subunit governs AMPAR Ca2+ permeability 

and rectification properties, thereby determining the phenotype of synaptic AMPARs (Liu 

and Zukin, 2007). The GluA2 subunit also influences channel kinetics, conductance, 

AMPAR assembly, forward trafficking from the endoplasmic reticulum, and targeting to 

and from synaptic sites (Isaac et al., 2007; Liu and Zukin, 2007). Importantly, in the mature 

brain, principal neurons of the hippocampus are thought to express GluA2-containing, Ca2+-

impermeable AMPARs (Lu et al., 2009), whereas inhibitory interneurons express primarily 

GluA2- lacking, Ca2+-permeable AMPARs (Akgul and McBain, 2016), as assessed by 

single-cell genetic analysis in the intact mouse and electrophysiology in hippocampal slices 

(Akgul and McBain, 2016; Lu et al., 2009). This functional difference is supported by 

previous evidence that pyramidal cells and other principal neurons of the hippocampus 

contain almost exclusively GluA1 and GluA2 mRNA, whereas most neighboring inhibitory 

interneurons contain almost exclusively GluA1 mRNA and, to a lower extent, GluA2 and 

3 (Geiger et al., 1995; Racca et al., 1996). Thus, a switch in AMPAR phenotype from 

GluA2-lacking to GluA2-containing at synapses onto inhibitory interneurons would likely 

require transcription of new GluA2 mRNA. Inhibitory interneurons express an NMDA 

receptor (NMDAR)-independent form of synaptic plasticity that relies on Ca2+ influx 

through AMPAR receptors (Kullmann and Lamsa, 2007). Thus, even a modest increase 
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in GluA2 mRNA would have an important impact on synaptic efficacy and plasticity at 

synapses onto these neurons.

This study was undertaken to examine mechanisms underlying GluA1 and GluA2 mRNA 

targeting to dendrites and transcription and their impact on synaptic plasticity in Fmr1 null 

versus wild-type (WT) neurons. Using single-molecule fluorescence in situ hybridization 

(FISH) to detect individual AMPAR mRNA molecules (Femino et al., 1998; Raj et al., 

2008), we show that mRNA encoding the AMPAR subunit GluA2 (but not that encoding 

GluA1) is elevated in proximal dendrites and at transcription sites in Fmr1 KO neurons. 

Because FMRP does not bind or regulate mRNAs encoding GluA2 directly in hippocampal 

neurons (Darnell et al., 2011; Sawicka et al., 2019), we focused on upstream effectors that 

might regulate GluA2 mRNA targeting or transcription. We identify cytoplasmic element 

binding protein 3 (CPEB3), a known FMRP target (Ascano et al., 2012; Sawicka et al., 

2019), as an upstream effector critical to dysregulation of GluA2 mRNA expression and 

targeting to dendrites in Fmr1 KO mice. This is significant in that CPEB3 is implicated 

in synaptogenesis, synaptic plasticity, and hippocampal-based memory (Fioriti et al., 2015; 

Pavlopoulos et al., 2011). We identify a mechanism by which CPEB3 increases GluA2 

transcription. CPEB3 localizes with STAT5b at the gria2 promoter, where it promotes 

active transcription of GluA2 through its interaction with STAT5b, an effect augmented in 

Fmr1-deficient neurons. Using immunofluorescence and whole-cell recording from acute 

hippocampal slices, we show that the increase in GluA2 transcription is translated into an 

increase in GluA2 protein, a switch in synaptic phenotype, and loss of NMDAR-independent 

LTP at glutamatergic synapses onto inhibitory interneurons in CA1, findings that may have 

strong implications for the impaired E/I balance and cognition observed in FXS.

RESULTS

mRNAs encoding AMPAR subunits are present in dendrites and at synaptic sites

Because FMRP, the gene product of the Fmr1 gene, is an RNA binding protein that 

regulates the localization and translation of a large number of target mRNAs and AMPARs 

mediate fast synaptic transmission and are critical to most forms of synaptic plasticity, 

we focused on mRNAs encoding the AMPAR subunits GluA1 and GluA2. We examined 

the precise spatial distribution of AMPAR mRNAs within somatodendritic compartments 

of the neuron by single-molecule FISH and immunofluorescence for the dendritic marker 

MAP2 and the presynaptic marker bassoon in hippocampal neurons from WT mice. GluA1 

(Figure 1A) and GluA2 (Figure 1B) mRNA molecules were clearly visible in MAP2-labeled 

dendrites (merge, Figures 1A and 1B). AMPAR RNA molecules localized to dendritic 

shafts, corroborating our earlier work (Grooms et al., 2006). A subset of GluA1 and GluA2 

AMPAR mRNA puncta were juxtaposed to synaptic sites marked by bassoon (Figures 1A 

and 1B, arrows). Thus, GluA1 and GluA2 mRNA are present in dendrites and apparent 

synaptic sites, consistent with the possibility of local translation of AMPARs at synaptic 

sites. GluA1 and GluA2 mRNA molecules imaged in the same dendrite were present 

at similar levels (Figures 1C–1E), but exhibited little to no colocalization (Figure 1D), 

consistent with the possibility that the two mRNAs are transported separately as has been 

shown for mRNAs encoding β-actin, MAP2, and CAMKIIα (Batish et al., 2012; Mikl et al., 
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2011). GluA1 and GluA2 mRNA molecules were relatively abundant in proximal dendrites, 

defined as the first 30 μm from the cell body, but declined sharply with distance from the cell 

body (Figure 1F), as reported previously (Ho et al., 2014).

Dendritic mRNAs can be packaged in translationally quiescent ribonucleoprotein granules, 

which may impair the ability of exogenous probes to hybridize with endogenous mRNAs 

(Buxbaum et al., 2014). To detect all mRNAs encoding AMPARs, neurons were treated 

with a protease cocktail, which was previously shown to unmask β-actin mRNA contained 

in granules (Buxbaum et al., 2014). Protease treatment (unmasking) did not detectably 

alter the number of AMPAR mRNAs visualized in dendrites of WT neurons (data not 

illustrated), indicating that the relatively small number of endogenous AMPAR mRNA 

molecules visualized in WT dendrites is not due to masking of mRNAs by RNA binding 

proteins.

GluA2 (but not GluA1) mRNA is elevated in dendrites and at transcription sites of Fmr1-
deficient neurons

Because FMRP is an RNA binding protein and its absence could result in unchecked 

translation of target mRNAs, we next examined individual GluA1 (Figures 2A–2D) and 

GluA2 (Figures 2E–2H) mRNAs in dendrites of hippocampal neurons from Fmr1 KO and 

WT mice by single-molecule detection. We focused on GluA1 and GluA2 because these are 

the subunits that assemble to form nearly all AMPARs in the mature hippocampus (Lu et 

al., 2009). Whereas the number of endogenous GluA1 mRNA molecules did not detectably 

differ in dendrites of hippocampal neurons from the two genotypes (Figures 2C and 2D), 

the number of GluA2 mRNA molecules was markedly greater in the dendrites of Fmr1 
KO versus WT neurons (Figures 2G and 2H). The finding that the number of GluA2, but 

not GluA1, mRNA molecules is elevated in the proximal region of Fmr1 KO dendrites is 

consistent with a model whereby the two mRNAs are differentially regulated and transported 

and that GluA2 mRNA expression, transport, and/or stability differs in Fmr1 KO versus WT 

neurons.

A possible mechanism by which GluA2 mRNA might be altered in Fmr1 KO neurons is 

that of enhanced transcription. Single-molecule FISH provides an absolute quantification 

of mRNA transcription at sites within the nucleus of hippocampal neurons, affording an 

approximate quantification of mRNA synthesis rates (Larson et al., 2009; Zenklusen et al., 

2008). To examine single GluA2 mRNA molecules at transition sites (TSSs), we performed 

single-molecule FISH with probes directed to coding and intronic sequences within the gria2 

gene. In WT neurons, we observed one to two large, bright spots in essentially all nuclei 

of all neurons within the field of view, consistent with the notion that AMPAR mRNAs 

are synthesized continuously (Figure 2I). To confirm that the bright puncta observed in 

the nucleus are indeed sites of active transcription, we performed dual FISH labeling 

with probes that target coding (Figure 2I, upper left) and intronic (Figure 2I, upper right) 

sequences within the gria2 gene (Figure 2I, lower left). Whereas coding probes label nascent 

and mature RNAs, intronic probes label only genomic DNA or pre-mRNA (“nascent RNA”), 

but not mature mRNA. We observed colocalization of GluA2 mRNA encoding AMPAR 

subunits together with genomic DNA (Figure 2I, upper left and right, indicated by arrows in 
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panels) in nuclei marked by DAPI, confirming their localization at TSSs (Figure 2I, lower 

right). To determine whether mature GluA1 and GluA2 mRNAs are present at TSSs and 

whether the number of nascent mRNA molecules differs in Fmr1 KO versus WT neurons, 

we quantified the number of mRNAs at TSSs of Fmr1 KO and WT neurons. Whereas the 

number of individual nascent GluA1 mRNA molecules at TSSs did not detectably differ in 

Fmr1 KO versus WT neurons (Figures 2J and 2K, upper), the number of nascent GluA2 

mRNA molecules at TSSs was markedly greater in Fmr1 KO versus WT neurons (Figures 

2J and 2K, lower), indicative of enhanced GluA2 (but not GluA1) mRNA transcription rate 

in Fmr1 KO neurons. To verify that these results also apply to intact tissue, we performed 

qRT-PCR for GluA1 and GluA2 on lysates of whole hippocampus (Figure 2l). Whereas 

GluA1 mRNA expression did not differ detectably between the two genotypes, GluA2 

mRNA expression was higher in Fmr1 KO mice.

CPEB3 protein is elevated in dendrites and TSSs and is critical to elevated GluA2 mRNA

The findings thus far show that the number of GluA2 mRNA molecules is elevated in 

dendrites and at TSSs of hippocampal neurons from Fmr1 KO versus WT mice, but do 

not address the mechanism underlying this increase. Because FMRP does not bind GluA2 

mRNA directly or regulate its translation in mouse brain (Darnell et al., 2011), we reasoned 

that FMRP might regulate an upstream effector of GluA2 mRNA. The sequence-specific 

RNA binding protein CPEB3 binds a recognition motif harbored within the 3ʹ UTR of 

GluA2 (but not GluA1) mRNA, thereby regulating GluA2 (but not GluA1) mRNA transport 

and polyadenylation-induced translation (Huang et al., 2006) and is a known target of 

FMRP (Ascano et al., 2012; Sawicka et al., 2019). To determine whether the increase in 

GluA2 mRNA observed in dendrites of Fmr1 KO neurons coincides with an increase in 

CPEB3 protein in dendrites, we performed immunolabeling with an antibody directed to 

CPEB3 in primary cultures of hippocampal neurons from WT and Fmr1 KO mice (Figure 

3A). Whereas GluA2 mRNA was elevated in the nucleus and proximal dendrites of Fmr1 
KO versus WT neurons (Figures 2G and 2H), CPEB3 abundance was elevated throughout 

the neuron, including the nucleus (Figures 3A–3C), consistent with its known nuclear 

localization sequence and dendrites, consistent with a role in targeting GluA2 mRNA.

To address a possible causal relation between elevated CPEB3 protein and elevated GluA2 

mRNA, we designed two shRNA constructs that target different sequences within CPEB3 

and a nontargeting (NT) shRNA that does not target any known vertebrate sequence 

(negative control; Figure 3D). To validate the specificity of shRNAs to CPEB3, we 

transduced hippocampal neurons with a self-inactivating lentivirus carrying either of the 

two shRNAs directed to CPEB3 or NT shRNA (Figure 3D). Whereas shRNA-1 to CPEB3 

(shCPEB3–1) and shCPEB3–2 (not illustrated), but not NT shRNA, knocked down CPEB3, 

they had little or no effect on the structurally related protein CPEB1, assessed by western 

blots (Figure 3E). These findings validate the efficacy and specificity of the shRNA 

constructs.

We reasoned that if elevated levels of CPEB3 increased GluA2 mRNA in Fmr1 KO neurons, 

then shRNA-mediated knockdown of CPEB3 would be expected to rescue the number of 

mRNAs encoding the AMPAR subunit GluA2 in dendrites of Fmr1 KO neurons. Toward 
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this end, we labeled GluA2 mRNA in hippocampal neurons from WT (Figure 3F) and Fmr1 
KO (Figure 3G) mice expressing shCPEB3–1 or NT shRNA (negative control) by means of 

single-molecule FISH. shCPEB3, but not NT shRNA, restored the number of GluA2 mRNA 

molecules in dendrites of Fmr1 KO neurons to levels near that observed in WT neurons 

(Figure 3H). These findings indicate that CPEB3 protein abundance is elevated and critical 

to the elevated number of GluA2 mRNA molecules in dendrites of Fmr1 KO versus WT 

neurons.

We next examined the relation between elevated CPEB3 protein and elevated nascent GluA2 

mRNA at TSSs of WT and Fmr1 KO neurons. We performed genetic manipulation of 

CPEB3, followed by quantitative single-molecule FISH to detect GluA1 or GluA2 mRNA. 

Acute knockdown of CPEB3 in Fmr1 KO neurons with shCPEB3, but not NT shRNA 

(Figures 3I and 3J), restored the number of GluA2 mRNA molecules at TSSs to near that 

observed in WT neurons (Figure 3K). In contrast, CPEB3 knockdown did not significantly 

alter the number of GluA1 mRNA molecules at TSSs (Figure S1), indicating specificity 

of the CPEB3 shRNA for its target mRNA. Overexpression of GFP-tagged CPEB3, but 

not GFP alone (Figures 3L and 3M), markedly increased the number of GluA2 mRNA 

molecules at TSSs and in the nucleus of WT hippocampal neurons to near that observed 

in Fmr1 KO neurons (Figure 3N). These data reveal a causal relationship between CPEB3 

protein and the number of GluA2 mRNA molecules in hippocampal neurons and suggest 

a mechanism by which GluA2 mRNA levels are regulated in Fmr1 KO mice. Finally, we 

examined CPEB3 protein expression in brain sections at the level of the hippocampus by 

immunofluorescence. CPEB3 immunofluorescence was robust in cell bodies and dendrites 

of CA1 neurons marked by NeuN in brain sections from WT and Fmr1 KO mice (Figure 

3O). Quantification of immunofluorescence data indicated that CPEB3 was ~2.5-fold higher 

in the CA1 of Fmr1 KO versus WT mice (Figure 3P).

Loss of FMRP is causally related to the elevated CPEB3 in fragile X neurons

Elevated CPEB3 abundance in dendrites of Fmr1 KO mice could arise as a consequence 

of altered CPEB3 transcription or post-transcriptional mechanisms. To distinguish between 

these mechanisms, we performed qRT-PCR on lysates of hippocampal neurons from WT 

and Fmr1 KO mice. CPEB3 mRNA abundance was not detectably different in hippocampal 

neurons from Fmr1 KO versus WT mice (Figure 4A), suggesting that the increase in CPEB3 

is unlikely to occur via altered transcription or mRNA stability. By contrast, CPEB3 protein 

abundance was elevated (by ~7-fold) in hippocampal neurons from Fmr1 KO versus WT 

mice, as assessed by western blot analysis (Figure 4B). Consistent with this, shRNA-induced 

knockdown of FMRP in WT neurons markedly increased CPEB3 protein abundance to near 

that observed in neurons from Fmr1 KO mice (Figure 4C). To determine whether loss of 

FMRP is causally related to elevated CPEB3 protein in Fmr1 KO neurons, we expressed 

human FMRP (hFMRP) in Fmr1 KO neurons and examined the impact of reintroduction 

of FMRP on CPEB3 protein expression. Overexpression of hFMRP in Fmr1 KO neurons 

restored elevated levels of CPEB3 protein to near those of WT neurons (Figure 4D). These 

findings suggest that FMRP regulates CPEB3 protein abundance either directly or indirectly 

at the level of protein synthesis and/or stability, consistent with the role of FMRP as a 

translational repressor.
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CPEB3 and STAT5b are enriched at the gria2 promoter

The results thus far show that CPEB3 drives the increase in GluA2 mRNA in hippocampal 

neurons, but does not address mechanism. To address this issue, we next assessed the 

mechanism by which CPEB3 might increase GluA2 mRNA transcription rate. To identify 

consensus binding motifs for transcription factors within the promoter region of gria2 
(gene encoding GluA2), we used Jaspar software set at high stringency. We identified an 

exact match to the known recognition motif for the transcription factor STAT5b contained 

within the TSS of the gria2 proximal promoter (Figure 5A). To determine whether STAT5b 

binds the putative STAT5b recognition site within the gria2 promoter and promotes 

active transcription of GluA2, we performed chromatin immunoprecipitation (ChIP) on 

hippocampal tissue from WT and Fmr1 KO mice. In the hippocampus of WT mice, STAT5b 

binding was enriched and spatially restricted to the putative Stat5b recognition motif within 

the proximal promoter of gria2; in contrast, STAT5b did not bind at other sites proximal 

(150 or 350 bp upstream) or distal (at 2 kb upstream or 10 kb downstream) to the TSS of the 

gria2 promoter, indicating specificity of STAT5b binding to the gria2 promoter (Figure 5B). 

In hippocampal tissue from Fmr1 KO mice, binding of STAT5b to the predicted STAT5b 

binding site within the TSS of the gria2 promoter and at two sites proximal (150 and 350 bp 

upstream), but not at sites distal (2or 10 kb downstream) to the TSS of the gria2 promoter, 

was intensified relative to that in the hippocampus of WT mice (Figure 5B).

We reasoned that if CPEB3 regulates GluA2 transcription, CPEB3 would likely be enriched 

at the gria2 promoter. In samples of hippocampal tissue from WT mice, CPEB3 co-localized 

with STAT5b at the TSS of the gria2 promoter (Figure 5A). In hippocampal tissue from 

Fmr1 KO mice, CPEB3 enrichment was increased at sites occupied by STAT5b, the STAT5b 

binding site, and sites proximal (150 and 350 bp upstream), but not distal (2 kb upstream 

or 10 kb downstream) to the TSS, consistent with enhanced CPEB3 expression in Fmr1 KO 

neurons (Figure 5C).

The results thus far show that the transcriptional activator STAT5b and the memory protein 

CPEB3 are enriched at the gria2 promoter and that the degree of enrichment of each factor 

is greater in the hippocampus of Fmr1 KO versus WT mice, but do not address a causal 

relation between recruitment of CPEB3 and STAT5b to the gria2 promoter. Toward this 

end, we took two approaches. First, we transduced primary cultures of cortical neurons with 

lentivirus carrying CPEB3 shRNA or NT shRNA and examined STAT5b binding to the 

proximal promoter of the gria2 gene (Figure 5D). shCPEB3 (but not NT shRNA) markedly 

reduced CPEB3 and binding of STAT5b to the putative STAT5b binding motif and at an 

additional site proximal (150 bp upstream) to the STAT5b binding site within the gria2 
proximal promoter (Figure 5E). In contrast, knockdown of CPEB3 did not detectably alter 

enrichment of STAT5b at sites distal (750 or 1,000 bp upstream) from the STAT5b binding 

site in the gria2 promoter. Second, we delivered NT shRNA into the left hippocampus and 

CPEB3 shRNA into the right hippocampus in Fmr1 KO and WT mice. Ten days later, 

hippocampi were isolated and subjected to ChIP-qPCR. CPEB3 shRNA, but not NT shRNA, 

markedly reduced binding of STAT5b to the putative STAT5b binding site of the gria2 
promoter and to additional sites in the proximal promoter of the gria2 promoter (150 and 

350 bp upstream), but not at sites distal (2 kb downstream or 10 kb upstream) from the 
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STAT5b binding site in WT and Fmr1 KO mice in vivo (Figure 5F). These findings, together 

with data in Figure 3, demonstrate that CPEB3 facilitates STAT5B binding to the gria2 
promoter, and thereby promotes GluA2 transcription. These data reveal a mechanism by 

which elevated CPEB3 and STAT5b at the gria2 promoter drive GluA2 transcription and by 

which GluA2 transcription is increased in hippocampal neurons.

CA1 inhibitory interneurons of Fmr1 KO mice express elevated GluA2 protein

We next examined whether elevated GluA2 mRNA in neurons lacking FMRP is translated 

into increased GluA2 protein. Whereas CA1 pyramidal neurons mainly (if not exclusively) 

express GluA2-containing AMPARs (Lu et al., 2009), inhibitory interneurons mainly 

express GluA2-lacking AMPARs (Isaac et al., 2007; Liu et al., 2007). Therefore, excess 

GluA2 protein in interneurons might convert GluA2-lacking to GluA2-containing AMPARs.

To directly compare changes in mRNA expression with changes in protein, we first 

performed experiments with primary cultures of hippocampal neurons at days in vitro 
(DIV) 14–17. GluA2 protein abundance was elevated in lysates from hippocampal neurons 

from Fmr1 KO versus WT mice, as assessed by western blot analysis (Figure S2A). 

GluA2 immunolabeling was present throughout cell bodies and dendrites and at synaptic 

sites (Figure S2B). Quantification of puncta indicated that GluA2 was ~2.2-fold greater at 

synaptic sites (marked by synapsin) of neurons from Fmr1 KO versus WT mice (Figure 

S2C). We next examined GluA2 expression in excitatory versus inhibitory neurons. Toward 

this end, we labeled neurons with antibodies to vGLUT, a marker for excitatory neurons, 

or GAD67, a marker for GABAergic inhibitory neurons. Whereas vGLUT(+) excitatory 

neurons make up ~80% of hippocampal neurons at DIV 14 (Figure S2D), GAD67(+) 

inhibitory neurons make up ~14% of hippocampal neurons at DIV 14 (Figures S2E). 

GluA2 was expressed robustly by vGLUT(+) (excitatory) neurons from WT and Fmr1 KO 

mice (Figure S2F). Quantification of puncta indicated that GluA2 was elevated modestly 

(~1.3-fold) in dendrites of vGLUT(+) excitatory neurons from Fmr1 KO versus WT mice 

(Figures S2G). In contrast, GluA2 protein expression was modest in GAD(+) inhibitory 

neurons from WT mice, but was greater in GAD(+) inhibitory neurons from Fmr1 KO 

mice (Figure S2H). Quantification of puncta indicated that GluA2 was markedly elevated 

(~3.4-fold) in dendrites of GAD(+) inhibitory neurons from Fmr1 KO versus WT mice 

(Figure S2I). GluA1 protein did not differ detectably in any compartment of hippocampal 

neurons between the two genotypes (Figure S3).

To determine whether deletion of FMRP also changes AMPAR subunit composition in 

brain tissue, we performed experiments with hippocampal tissue. We first examined GluA2 

protein abundance in the hippocampus by western blot analysis (Figure 6A). GluA2 protein 

levels were ~1.5 higher in the hippocampal lysates from Fmr1 KO versus WT mice, as 

assessed by western blots. We next examined GluA2 protein expression in brain sections 

in the hippocampus by immunofluorescence. GluA2 immunofluorescence was robust in 

the cell bodies and dendrites of CA1 neurons in brain sections from Fmr1 KO versus 

WT mice (Figure 6B). Quantitation of puncta indicated that GluA2 protein expression 

was ~1.4 greater in CA1 neurons from Fmr1 KO versus WT mice (Figure 6C). To 

examine GluA2 expression in specific cell types within the CA1, we first performed GluA2 
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immunolabeling of brain sections from Fmr1 KO and WT mice expressing GFP under the 

GAD67 promoter (Figure 6D). Colocalization of GluA2 immunofluorescence (red) with 

GFP-expressing (green) neurons was observed in a small number of neurons scattered in 

the stratum pyramidale and stratum radiatum of the CA1 from Fmr1 KO and WT mice 

expressing GAD-GFP. Quantification of puncta indicated that GluA2 immunofluorescence 

in GABAergic GAD67(+)-inhibitory interneurons in the stratum radiatum was ~2.4-fold 

greater in brain sections from Fmr1 KO versus WT mice (Figure 6E). We next examined 

GluA2 immunofluorescence (green) in excitatory neurons (marked by CaMKII-mCherry) in 

the CA1 from Fmr1 KO and WT mice expressing mCherry under the CAMKII promoter 

(Figures 6F and 6G). Quantification of puncta indicated that GluA2 immunofluorescence 

(green) in mCherry(+)-pyramidal neurons was ~1.4-fold greater in brain sections from 

Fmr1 KO versus WT mice (Figure 6H). Thus, whereas GluA2 protein is elevated in both 

inhibitory interneurons and excitatory (pyramidal) neurons in the CA1 of Fmr1 KO mice, 

the increase was greater in inhibitory interneurons than in principal neurons.

AMPA EPSCs at synapses onto interneurons of Fmr1 KO mice exhibit properties of GluA2-
containing AMPARs

Our findings thus far indicate that GluA2 (but not GluA1) protein is elevated in dendrites 

and at synaptic sites of GABAergic inhibitory interneurons of Fmr1 KO mice, but 

do not address synaptic function. Because AMPARs at synapses onto CA1 pyramidal 

neurons are mainly GluA2 containing (Lu et al., 2009), it is unlikely that an increase 

in GluA2 expression would significantly alter rectification or other AMPAR properties. 

On the other hand, at glutamatergic synapses onto inhibitory interneurons, which express 

mainly GluA2-lacking, Ca2+-permeable AMPARs in WT mice, excess GluA2 could result 

in a switch in AMPAR phenotype. We recorded evoked, AMPAR-mediated excitatory 

synaptic currents (AMPAR-EPSCs) from inhibitory interneurons in the stratum radiatum 
of CA1 in acute hippocampal slices from WT and Fmr1 KO mice (P14-P21) at different 

holding potentials in the presence of intracellularly loaded spermine (Figure 7A). Inclusion 

of spermine in the pipette solution confers voltage-dependent block of GluA2-lacking 

AMPARs and a characteristic inwardly rectifying I-V relationship (Bowie and Mayer, 1995; 

Kamboj et al., 1995). We focused on visually identified CA1 interneurons because our 

immunofluorescence data indicated evidence of increased GluA2 content in these neurons. 

The I-V relation of AMPAR-EPSCs recorded from WT inhibitory interneurons showed the 

expected inward rectification, indicative of GluA2-lacking, Ca2+-permeable AMPARs (Le 

Roux et al., 2013) (Figure 7B, black squares). In contrast, in Fmr1 KO mice, rectification 

of AMPAR-EPSCs was decreased (Figure 7B, red squares) and the rectification index was 

markedly increased at glutamatergic synapses onto inhibitory interneurons (Figure 7C), 

indicative of an increase in synaptic incorporation of functional GluA2-containing AMPARs 

(Isaac et al., 2007; Liu and Zukin, 2007). Thus, CA1 interneurons from Fmr1 KO mice 

exhibit the electrophysiological signature of an increase in GluA2-containing AMPARs.

Fmr1 KO mice exhibit deficits in basal synaptic transmission and LTP at synapses onto 
interneurons

To examine the consequences of increased GluA2 content on synaptic transmission and 

plasticity, we recorded EPSC peak amplitudes from visually identified interneurons at five 
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stimulation intensities from slices of Fmr1 KO and WT mice. The input-output curve was 

markedly reduced in slices of Fmr1 KO mice, relative to that of WT mice (Figure 7D), 

consistent with an increase in synaptic incorporation of low-conductance GluA2-containing 

AMPARs and a decrease in high-conductance GluA2-lacking AMPARs (Isaac et al., 

2007; Liu and Zukin, 2007). We also tested a form of synaptic plasticity termed NMDAR-

independent (or “anti-Hebbian”) long-term potentiation (LTP) at glutamatergic synapses 

onto inhibitory GABAergic interneurons using a protocol in which we paired low-frequency 

presynaptic activity (400 pulses at 5 Hz) with postsynaptic hyperpolarization to −90 mV 

in whole-cell configuration (Lamsa et al., 2007). This form of LTP relies on Ca2+ influx 

through GluA2-lacking, Ca2+-permeable AMPARs (Kullmann and Lamsa, 2008; Lamsa et 

al., 2007; Le Roux et al., 2013; Szabo et al., 2012). LTP, defined as at least 25% increase 

from baseline, at glutamatergic synapses onto inhibitory interneurons was present in six 

out of the ten cells recorded from slices of WT mice (from six mice) (Figure 7E). Not 

all WT interneurons showed plasticity, as expected given the heterogeneity of interneuron 

subtypes in CA1. In contrast and consistent with a requirement for Ca2+-permeable, GluA2-

lacking-AMPARs, this LTP was absent in slices from Fmr1 KO mice (zero out of ten 

cells from five mice) (Figure 7E). Thus, the partial switch in AMPAR subunit phenotype 

at glutamatergic onto inhibitory GABAergic interneuron synapses in Fmr1 KO mice is 

translated into functional deficits in transmission and plasticity in the intact hippocampal 

circuit.

DISCUSSION

In this study, using single-molecule FISH to visualize individual mRNAs encoding AMPAR 

subunits GluA1 and GluA2, we demonstrate elevated GluA2, but not GluA1, at TSSs and 

in dendrites of hippocampal neurons from Fmr1 KO mice. The number of GluA2 mRNA 

molecules in dendrites is relatively small and spatially restricted to the proximal region. 

We further show that CPEB3, a sequence-specific RNA binding protein known to bind and 

regulate translation of GluA2 (Ford et al., 2019; Huang et al., 2006), is elevated and causally 

related to the increase in GluA2 (but not GluA1) transcription. These findings are consistent 

with a model whereby the memory protein CPEB3 promotes targeting of GluA2 (but not 

GluA1) mRNA to dendrites and increases the rate of GluA2 transcription. We further 

show that GluA2 protein is elevated primarily in GAD(67+) inhibitory interneurons and in 

hippocampal slices from Fmr1 KO mice, AMPAR-EPSCs at glutamatergic synapses onto 

inhibitory interneurons, exhibit a switch in electrophysiological signature to that of GluA2-

containing, Ca2+-impermeable-AMPARs in slices from Fmr1 KO mice, as demonstrated 

by a marked decrease in inward rectification. Finally, we show that this “switch” in 

AMPAR phenotype is associated with reduced basal synaptic transmission and loss of 

NMDAR-independent LTP at excitatory synapses onto CA1 inhibitory interneurons. Thus, 

elevated transcription of GluA2 (but not GluA1) mRNA is translated into an increase in 

GluA2 subunit abundance, a switch in AMPAR phenotype from Ca2+-permeable- to more 

Ca2+-impermeable-AMPARs, diminished synaptic transmission, and loss of a major form of 

synaptic plasticity at synapses onto inhibitory interneurons in a key hippocampal circuit in a 

mouse model of FXS. Here, we provide a mechanism of synaptic dysfunction, which could 
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potentially underlie an E/I imbalance, a theme common not only to FXS, but a large number 

of other ASDs.

We find that increased CPEB3, a protein implicated in memory consolidation, is crucial to 

elevated GluA2 transcription in hippocampal neurons of Fmr1 KO mice. In fragile X mice, 

CPEB3 binding to the gria2 promoter is augmented, compared with WT mice, and drives 

the increase in STAT5b binding and GluA2 transcription. CPEB3 was recently identified 

by HITS-CLIP to be a direct target of FMRP in mouse brain (Sawicka et al., 2019). We 

hypothesize that in neurons of WT mice, CPEB3, is translationally repressed and GluA2 

abundance is normal, whereas in Fmr1 KO neurons, release of the translational block on 

CPEB3 results in elevated CPEB3, which drives an increase in GluA2 transcription and 

GluA2 mRNA targeting to dendrites. Thus, we provide a mechanism whereby loss of FMRP 

regulates GluA2 mRNA abundance via CPEB3. It should be noted that, whereas previous 

studies have shown a role for CPEB3 during memory formation by increasing translation 

of GluA1 and GluA2 and the number of dendritic spines (Pavlopoulos et al., 2011), 

our study provides molecular and electrophysiological evidence for a selective impact on 

GluA2 versus GluA1 in inhibitory interneurons of Fmr1 KO mice, a mouse model of FXS. 

Whereas we (this study) and others (Pavlopoulos et al., 2011) find that CPEB3 promotes 

expression of the AMPAR subunit GluA2, Liu and colleagues report that CPEB3 represses 

GluA2 translation and thereby defines a dendritic gradient of increasing GluA2-containing 

AMPARs from the cell soma of cerebellar stellate cells (Savtchouk et al., 2016).

Activity-dependent mRNA trafficking and local protein synthesis in dendrites are 

mechanisms fundamental to synaptic plasticity (Holt and Schuman, 2013; Wang et al., 

2010); but see (Ho et al., 2014). Local protein synthesis endows a neuron with the ability 

to spatially and temporally restrict gene expression within confined compartments (Wang 

et al., 2010). In support of this, a recent study involving deep sequencing of the neuronal 

neuropil, followed by high-resolution FISH, identifies >2,500 RNAs in the dendrites of 

hippocampal neurons (the “synaptic transcriptome”), including mRNAs encoding excitatory 

and inhibitory receptors (Cajigas et al., 2012). Moreover, stimulation of hippocampal 

neurons in vitro promotes dendritic localization of mRNAs encoding GluA1 and GluA2 

(Grooms et al., 2006) and local translation of AMPAR subunits in severed dendrites (Ju et 

al., 2004; Kacharmina et al., 2000). While we found that GluA2 is upregulated in Fmr1 
KO mice, previous reports using bulk transcriptomic and proteomic analysis have turned 

up conflicting results as to the regulation of GluA1 and GluA2. Some studies have not 

reported significant differences in gria2 expression in Fmr1 KO versus WT mice (Ceolin 

et al., 2017; Das Sharma et al., 2019; Ding et al., 2020; Donnard et al., 2020; Korb et al., 

2017; Sawicka et al., 2019). Of note, one proteomics study that used a very comparable time 

point in development to our immunostaining found a similar fold change increase in newly 

synthesized GluA2 as we did (CITE). These studies use a variety of preparations, including 

cortical neuron culture, whole frontal cortex lysate, and CA1 pyramidal cell-specific mRNA 

isolation, across different time windows. We therefore suspect that such discrepancies, 

which are commonplace in the FXS and transcriptomics/proteomics field, are the result of 

differences in cell-type, developmental stage, and data processing. Findings in this study that 

GluA2 transcription and targeting to dendrites are augmented in neurons from Fmr1 KO 
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mice represent a conceptual advance in that we document that AMPAR transcription and 

mRNA trafficking are altered in a disease state.

Our histological and electrophysiological data suggest that the increase in GluA2 

transcription is translated into an increase in GluA2 protein in dendrites and at synaptic 

sites, particularly of hippocampal inhibitory interneurons. Decrease in inward rectification 

of AMPA EPSCs at these synapses is consistent with a greater synaptic incorporation 

of GluA2-containing AMPARs. Whereas high-conductance GluA2-lacking AMPARs are 

permeable to Ca2+ and exhibit a characteristic inwardly rectifying current-voltage relation, 

low-conductance GluA2-containing AMPARs are Ca2+ impermeable and electrically linear. 

Our finding that the input/output function is reduced and that NMDAR-independent LTP 

is abolished at excitatory synapses onto inhibitory interneurons in FXS mice is consistent 

with the prediction that even a modest alteration in synaptic GluA2 could have profound 

implications for synaptic plasticity (Liu and Zukin, 2007). NMDAR-independent or “anti-

Hebbian” LTP is a unique form of plasticity that occurs at glutamatergic projections onto 

inhibitory interneurons at synapses that express GluA2-lacking, Ca2+ permeable AMPARs 

(Kullmann and Lamsa, 2008; Lamsa et al., 2007; Le Roux et al., 2013; Nicholson and 

Kullmann, 2014; Szabo et al., 2012). This plasticity is thought to occur in vivo during sharp 

wave ripples and lead to recruitment of interneurons during theta wave activity associated 

with exploration, thereby contributing to spatial memory formation (Lamsa et al., 2007). 

Thus, the loss of anti-Hebbian LTP in Fmr1 KO mice might lead to impaired spatial 

memory, a finding which could have profound implications for the intellectual disabilities 

associated with FXS. In addition, the reduction in input/output and the loss of LTP suggest 

that the net inhibitory output of Fmr1 KO interneurons might be reduced, potentially 

accounting for changes in E/I balance that have been reported in FXS and other ASDs.

In summary, we provide evidence at the single-molecule level that mRNAs encoding the 

AMPAR subunit GluA2 (but not GluA1) are elevated in proximal dendrites and at TSSs 

(indicative of an increased rate of GluA2 transcription [Larson et al., 2009; Zenklusen et 

al., 2008]) of hippocampal neurons from Fmr1 KO mice. The memory protein CPEB3 is 

elevated in the nucleus and in dendrites and is causally related to the increase in GluA2 

mRNA at TSSs and targeting and/or stabilization of GluA2 mRNA in dendrites—a putative 

mechanism by which the AMPAR phenotype is regulated at hippocampal synapses of 

Fmr1 KO mice. CPEB3 localizes with Stat5b at the gria2 proximal promoter and drives 

STAT5b-dependent transcription, an action that is augmented in Fmr1 KO neurons. Thus, 

GluA2 (but not GluA1) transcription is altered in FXS, a disorder typically characterized 

by aberrant translation and intellectual disabilities. Importantly, the increase in GluA2 

transcription is associated with an increase in GluA2 protein at synaptic sites and a switch 

in AMPAR phenotype from GluA2 lacking to GluA2 containing at excitatory synapses onto 

inhibitory interneurons in the hippocampus. Given the importance of the GluA2 subunit in 

determining AMPAR unitary conductance, the change in AMPAR phenotype in inhibitory 

interneurons could potentially alter the inhibitory to excitatory balance, an important theme 

in ASDs (Bagni and Zukin, 2019). These findings identify a mechanism relevant to the 

pathophysiology of FXS that may suggest another direction in research into intellectual 

disabilities.
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Limitations of the study

Our study has attempted to provide evidence for a causal role of CPEB3 in the regulation 

of GluA2 transcription in fragile X mice. Proving causality in the context of a disorder 

characterized by changes in many different proteins is challenging. To this end, we have 

used multiple shRNAs to manipulate CPEB3 levels to restore GluA2 mRNA levels in 

dendrites and TSSs and Stat5b binding at the gria2 promoter in Fmr1 KO neurons. 

Conversely, we showed that shRNA knockdown of Fmr1 in WT neurons or expression 

of human FMRP in KO neurons regulates CPEB3 abundance. One major caveat of many 

studies in the FXS field, including ours, is that people with FXS typically have CGG 

repeat expansion in the 5ʹ UTR of the Fmr1 gene that leads to hypermethylation at 

5ʹ UTR and causes transcriptional silencing of the Fmr1 gene, whereas in the mouse 

model the gene is knocked out. We have utilized multiple models of fragile X, including 

cultured neurons and acute slices from Fmr1 KO mice. That our findings remain consistent 

across models is meant to provide additional support for our model, wherein aberrant 

CPEB3-mediated regulation of GluA2 transcription leads to changes in basal function and 

plasticity of excitatory synapses onto inhibitory interneurons in the hippocampus. While 

such changes in synaptic transmission and plasticity would be expected to alter E/I balance 

in the hippocampal network, this has not been directly tested, and deserves follow-up.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Jee-Yeon Hwang 

(jeeyeonhwang@creighton.edu).

Materials availability

• Plasmids generated in this study are available from the lead contact without 

restriction or with a Materials Transfer Agreement; however, availability of 

lentiviral particles is limited.

• This study did not generate new unique reagents or mouse lines.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Fmr1 KO mice were obtained from the Jackson laboratory. We crossed 

FVB.129P2-Pde6b + Tyrc-ch Fmr1tm1Cgr/J heterozygote females with WT FVB.129P2-

Pde6b + Tyrc-ch/AntJ males to obtain littermate progeny of either genotype. GAD-GFP 

(CB6-Tg(Gad1-EGFP)G42Zjh/J) mice were purchased from the Jackson laboratory. The 
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breeding cages were maintained in a temperature and light-controlled environment with a 

14/10 h light/dark cycle and were treated in accordance with the principles and procedures 

of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Protocols were approved by the Institutional Animal Care and Use Committee of the Albert 

Einstein College of Medicine.

Hippocampal neuronal cell culture—Primary dissociated cultures of hippocampal 

neurons were prepared from individual Fmr1 KO and WT littermates at postnatal day 1. 

Tails were collected at the time of dissection so genotype could be determined. Hippocampi 

were isolated, digested with trypsin, triturated and plated on 18 mm poly-L-lysine-coated 

coverslips at relatively low density (50,000 cells per dish), and maintained in Neurobasal-A 

medium supplemented with Glutamax and B27 medium (Invitrogen) at 37°C and 5% CO2 

until 14–17 d in vitro (DIV). Neurons were treated with 2 μM AraC (Sigma) at DIV 4, and 

media replenished weekly.

Cells—HEK293T cells were purchased from ATCC (Cat#: CRL-3216) and cultured at 

37°C in 5% CO2 incubator using DMEM culturing media (Gibco, 11995-065) containing 

10% FBS, 1% penicillin and streptomycin mixture.

METHOD DETAILS

Generation of shRNA and cDNA constructs—CPEB3 shRNA, Fmr1 
shRNA, and nontargeting (NT) shRNA sequences were engineered in the 

pcDNA
™

 6.2-GW/EmGFP shRNA expression vector (Invitrogen): CPEB3 shRNA-1 

(5′-AACTTAAGCCAGACGATAAGGGT-3′); CPEB3 shRNA-2 (5′-TAAATGTACTGC 

GCGTGGA GAC-3′); Fmr1 shRNA-1 (5’-AATATTAGCACCATGAGTACC-3’); Fmr1 
shRNA-2 5’-TAAATCTTCTGGCACCTCCAG-3’); and an NT shRNA, a silencer 

resistant shRNA sequence that does not target any known eukaryotic gene (5′-
AAATGTACTGCGCGT GGAGAC-3′). These were subsequently subcloned into the self-

inactivating lentiviral vector pRRLsin.cPPT.CMV.eGFP.Wpre. CPEB3 cDNA was cloned 

from mouse brain cDNA, utilizing primers to target the 3’ and the 5’ of the coding 

region and the addition of the Bsrg1/EcoRI restriction site and GFP-hFMRP cDNA was 

a gift from Jennifer Darnell. We then utilized the EcoRI/Bsrg1 restriction site to clone 

the cDNA into the FCGW lentiviral construct (gift from Guoping Feng), cutting off the 

eGFP stop codon to generate eGFP-tagged rCPEB3 or hFMRP. The efficacy of shRNA or 

cDNA overexpression was evaluated by Western blot analysis 3–7 d after transduction of 

primary cultures of hippocampal neurons at DIV 14–17 expressing endogenous CPEB3 and 

FMRP. pAAV-CaMKIIa-mCherry construct (#114469) and AAV virus were purchased from 

Addgene.

Lentiviral production—For mRNAi-mediated silencing or cDNA overexpression of 

CPEB3 in neurons we utilized lentiviral transfer constructs containing hFMRP or CPEB3 

cDNA, or CPEB3, Fmr1 or NT shRNA. High-titer vesicular stomatitis virus-pseudotyped 

lentiviral stocks were produced in HEK293T by performing calcium phosphate transfection 

to combine our transfer constructs with the pRSV-REV packaging constructs, and the 

envelope protein construct pMD2.G as described previously (Miyawaki et al., 2009). Viral 
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titer was determined by N2A cells transduced with serial dilutions of concentrated lentivirus, 

and GFP fluorescence was evaluated by flow cytometry at 48 h, after concentration by 

ultracentrifugation.

Western blotting—Hippocampal neurons plated in 6 well plates at 14–17 DIV were 

rinsed in ice-cold 1x phospho-buffered saline supplemented with a 1% cocktail of protease 

and phosphatase inhibitors (Sigma). Cells were scraped in lysis buffer (25 mM Tris HCl 

pH 7.4, NaCl 150 mM, EDTA 5 mM pH 8.0, EGTA 5 mM pH 8.0,.5% Triton X-100, 

supplemented with a 1% (v/v) cocktail of protease and phosphatase inhibitors). Lysates 

were sonicated and centrifuged to remove insoluble material and protein concentration was 

determined by the Bradford BCA method with a standard curve. 20–25 μg of protein were 

run on SDS-PAGE Bis Tris gels (4–12%) (Invitrogen) and probed with specified antibodies. 

Band density values were normalized to β-actin and quantified in ImageJ (U.S. National 

Institutes of Health).

Stereotaxic injection of lentiviral constructs into mice—For in vivo ChIP assay, 

CPEB3 or NT shRNA was delivered by stereotaxic injection into the hippocampus of live 

mice at P10. Mice were placed in a stereotaxic device and anesthetized with isoflurane. 

Concentrated viral solution (1.5 μL) was injected into two positions in the left (NT shRNA) 

and right (CPEB3 shRNA) hippocampus at a flow rate of 0.2 μL/min. The injection sites 

were defined by the following two coordinates: 1) 2.1 mm posterior to bregma, 1.4 mm 

lateral to bregma, 1.8 mm ventral from dura; 2) 3.1 mm posterior to bregma, 2.4 mm lateral 

to bregma, 2.2 mm ventral from dura. The needle was left in place for an additional 3 min 

and gently withdrawn. To verify region-specific delivery of the virus, we observed GFP 

fluorescence in brain sections 10 d after injection. The hippocampal CA1 subfields were 

microdissected at 10 d after injection and used for ChIP assay.

Chromatin immunoprecipitation—Chromatin Immunoprecipitation (ChIP) was 

performed as described (Noh et al., 2012; Rodenas-Ruano et al., 2012). Hippocampi 

from 2-week-old WT mice were dissected and submerged in 1% formaldehyde (30 min 

at room temperature) to cross-link proteins to DNA as previously described. To stop 

the cross-linking reaction.125 M glycine was added, then the samples were lysed and 

sonicated to break up DNA in 300 bp fragments. Aliquots of chromatin were diluted with 

chromatin immunoprecipitation (ChIP) dilution buffer (167 mM NaCl, 16.7 mM Tris-HCl, 

1.2 mM EDTA, 0.01% SDS, 1.1% Triton X-100) to a final volume of 1 mL, and 80 

μL of pre-immunoprecipitated chromatin reaction was put aside. Preclearing of chromatin 

from hippocampal lysates was achieved by means of Dynabeads M-280 sheep anti-rabbit 

IgG (Invitrogen), followed by immunoprecipitation with antibody (10 μg of anti-CPEB3). 

Immuno-complexes were captured with Dynabeads and eluted in 50 mM Tris, 10 mM 

EDTA, 1% SDS. To rid samples of protein and unmask mRNAs, samples were treated with 

proteinase K (Qiagen) and RNAse H (Invitrogen). For ChIP experiments, real-time PCR was 

performed with SYBR green-tagged primers directed to sequences within the gria2 proximal 

promoter.
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RNA extraction and qRT-PCR—Neurons were washed twice with ice-cold phosphate 

buffered saline (PBS) and scraped in TRIzol (Invitrogen) and RNA was extracted by means 

of the Purelink micro to midi kit (Invitrogen) or by phenol chloroform isolation. RNA 

concentration was measured by means of a Nanodrop (NanoDrop Technologies). Aliquots 

of RNA (1 μg) were reverse-transcribed to cDNA with SuperScript III Reverse Transcriptase 

(Invitrogen) using olido d(T) primers. Real-time qPCR was performed as described (Noh 

et al., 2012; Rodenas-Ruano et al., 2012) with TaqMan probes (Applied Biosystems) 

for CPEB3 (reference number: Mm01204299_m1) and normalized to GAPDH (reference 

number: Mm99999915_g1). Reactions were performed in triplicate in a StepOnePlus real-

time PCR system (Applied Biosystems). The relative change in mRNA expression was 

determined by the equation: Fold change = 2− ΔCt (ΔCt = Ct target – Ct reference) where 

Ct refers to cycle number at which the fluorescence signal crosses a threshold (Livak 

and Schmittgen, 2001). Relative expression ratio in Fmr1 KO neurons was calculated by 

normalization to WT type levels.

Single molecule fluorescent in situ hybridization—Single molecule Fluorescent in 

situ Hybridization was performed as described (Buxbaum et al., 2014). In brief, neurons 

were fixed at room temperature in 4% paraformaldehyde in a cytoskeleton preserving 

solution consisting of in mM: 10 MES, 138 KCl, 3 MgCl2, 2 EGTA, 320 sucrose, at pH 

6.1 for 20 min. Coverslips were rinsed briefly three times in 1X PBS with 0.1 M glycine to 

quench fixative. Coverslips were dehydrated by incubation in 70% ethanol at 4°C for 16–24 

h. Coverslips were warmed to room temperature, and then rehydrated with serial dilutions in 

1X PBS with 0.1 M glycine. For prehybridization, coverslips were treated 2X with a solution 

consisting of 50% formamide and 2X SSC (300 mM sodium chloride, 30 mM sodium 

citrate), for 10 min at 37°C. Hybridization solution per 18 mm coverslip consisted of in 

μg: 20 probes, 10 sheared salmon sperm DNA (Invitrogen), 10 Escherichia coli RNase-free 

tRNA and 4 acetylated BSA (Ambion) in 35% formamide, 2X SSC. Coverslips were flipped 

onto a drop of 50 μL hybridization solution on parafilm and incubated overnight at 37°C 

in a humidified chamber. The following morning, coverslips were transferred to a 12-well 

dish, and washed 2X with post-hybridization solution consisting of 20% formamide and 2X 

SSC, for 10 min at 37°C. Post-hybridization solution was replaced with PBS, and coverslips 

were mounted with Prolong Gold antifade (Invitrogen) together with DAPI for imaging. 

20-nucleotide DNA antisense oligo-probes directed to sequences within the GluA1 coding 

region, the GluA2 coding region, or GluA2 intronic region, with 48 different Quasar 670 

(GluA1 coding region and GluA2 intronic region) or Quasar 570 (GluA2 coding region) 

from Stellaris (www.biosearchtech.com) were used to visualize single GluA2 or GluA1 

mRNAs (Sequences in Table S1).

Immunofluorescence followed by FISH—Immunolabeling was performed in a 

cytoskeleton-preserving solution as described (Grooms et al., 2006), with the exception that 

immunolabeling was performed prior to processing for FISH. In brief, primary cultures of 

hippocampal neurons were permeabilized with 0.1% Triton in PBS and then blocked with 

acetylated BSA (Ambion) for immunofluorescence-FISH or, for immunofluorescence alone, 

incubated overnight at 4°C with antibodies directed to CPEB3, MAP2, Bassoon, or GluA2, 
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followed by the appropriate secondary antibody in normal goat serum. For FISH, neurons 

were processed as described above.

Microscopy—Neurons were selected under brightfield microscopy based on cell body 

size, morphology, and overall health, assessed by the lack of nuclear protrusion, blebbing, 

disintegration or fasciculation of dendrites, and a clear origin of dendrites from the soma. 

Cells were imaged with an Upright Olympus BX61 widefield microscope equipped with a 

60×1.40 NA oil objective and Sensicam QE cooled Black and White CCD camera. 0.3 μm 

step Z-stack images were acquired with a motorized stage and 1.5–5 s exposures by means 

of IP Lab 4.0.8 software.

Dendritic mRNA analysis—To analyze the number of individual endogenous mRNAs 

in dendrites, FISH images were maximally projected and stitched together by means of 

ImageJ (U.S. National Institutes of Health), and single mRNAs were analyzed by means 

of the custom made ‘Localize’ software written by D.R. Larson (Singer Lab) for IDL (ITT 

Visual Information Solutions) as described (Buxbaum et al., 2014; Larson et al., 2009; 

Zenklusen et al., 2008). Single mRNA intensity and location along straightened dendrites 

were measured as total intensity beneath a two-dimensional Gaussian fit. The distribution of 

mRNA molecules was quantified by binning the number of mRNAs in specified regions of 

the soma along dendrites and then plotting them in Prism. The N’s from these experiments 

are the number of straightened dendrites, one coverslip per group, and at least 3 independent 

experiments from 3 different litters, performed on 3 different days. Statistical analysis was 

assessed by means of a student’s two-tailed t test.

mRNA quantification at transcription sites—To quantify the number of individual 

AMPAR mRNAs at transcription sites of single neurons in 3D, we utilized FISH-Quant 

software in the matlab platform (Mathworks) as described (Mueller et al., 2013). To process 

images for quantification of individual endogenous mRNAs at transcription sites, raw z-

stacks of the FISH image were opened, and transcription sites were outlined and saved. 

Images were filtered by convolving the raw image with a Gaussian kernel, with 5 times the 

standard deviation that would best fit the theoretical point spread function of the optical 

setup used. ROIs were automatically generated to identify transcription sites using a search 

in an area defined by the nuclear mask and an intensity-based threshold. The number of 

accumulated nascent mRNAs at transcription sites was quantified by dividing the integrated 

intensity at the transcription site by the mean intensity of individual mRNA molecules. N 

values represent the number of hippocampal neurons analyzed from at least 3 independent 

sets of experiments, each from a different litter of mice. Statistical analysis was assessed by 

means of one-way ANOVA and a post-hoc Student’s two-tailed t test.

Immunocytochemistry and immunohistochemistry—For immunocytochemistry, 

primary cultures of hippocampal neurons were fixed with 4% PFA, blocked with serum 

from the appropriate species, and subjected to reaction with primary antibodies, followed 

by reaction with Alexa Fluor 488, 555 or 647 conjugated secondary antibodies (Invitrogen). 

DAPI staining was used to reveal all cells in the section. At least three coverslips per group 

and multiple areas per slide selected on a random basis were used for counting analysis. 
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Images were obtained with a Zeiss LSM880 Airyscan Confocal Microscope (averaged four 

times). All images were processed using the Image J software (NIH). Labeled neurons were 

chosen randomly for quantification. For results including intensity normalization, intensities 

were calculated as integrated puncta intensity for the selected neuron and normalized to the 

area of the cell body. Quantification was performed by normalizing the puncta intensity of 

each neuron to that of control samples. To ensure the comparability between preparations, 

we used the same staining procedure and included all corresponding groups from each 

experiment. Laser settings of the microscope were uniform across all preparations.

Immunohistochemistry was performed on frozen brain sections from 2–3-week-old Fragile 

X and WT mice as described (Yan et al., 2018). Mice were anesthetized, transcardially 

perfused with 4% PFA, and brains were removed, post-fixed for 24 h, and infiltrated 

with sucrose. Brain sections (20 μm-thick) were blocked with serum from the appropriate 

species, treated with primary antibodies and then reacted with Alexa Fluor 488, 555 or 

647 secondary antibodies (Invitrogen). Naive IgG of the appropriate species was used as a 

negative control. DAPI staining was used to reveal all cells in brain sections. Images were 

acquired using the Zeiss LSM880 Airyscan Confocal Microscope and processed using the 

Image J software (NIH).

Electrophysiology—Acute hippocampal slices were prepared from 2–3-week-old Fmr1 
KO male mice or WT littermates. The mice were deeply anesthetized with isoflurane and 

then killed by decapitation. The brain was removed and quickly placed in ice-cold cutting 

solution containing the following (in mM): 215 sucrose, 20 glucose, 26 NaHCO3, 4 MgCl2, 

4 MgSO4, 1.6 NaH2PO4, 1 CaCl2, and 2.5 KCl. Hippocampi were mounted on an agar 

block, and transverse slices 400 μm thick were prepared with a VT1200 S microslicer 

(Leica). Slices were placed, at room temperature in a holding chamber containing 50% 

cutting solution and 50% artificial CSF (ACSF) recording solution containing the following 

(in mM): 124 NaCl, 26 NaHCO3, 10 glucose, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2, and 1.3 

MgSO4 and was bubbled with 95% O2/5% CO2 (pH 7.4 at 25.0 ± 0.1°C). After 30 min, the 

1:1 solution was switched to ACSF at room temperature. Slices recovered in ACSF for at 

least 1 h, and then were transferred to a submersion-type, temperature-controlled recording 

chamber (TC-344B, Warner Instruments) and perfused with ACSF at 2 mL/min using 

a peristaltic pump (Dynamax RP-1, Rainin). To induce excitatory postsynaptic currents 

(EPSCs), a stimulating pipette (monopolar stimulation) was positioned in stratum radiatum. 

The stimulating pipette was positioned nearby the soma of the patched interneuron within 

100 μm to evoke a monosynaptic response. CA1 stratum radiatum interneurons were 

identified and voltage-clamped using the visualized patch technique with an internal solution 

containing the following (in mM): 131 cesium gluconate, 8 NaCl, 1 CaCl2, 10 EGTA, 10 

D-glucose, 10 HEPES, 5 MgATP, 0.4 Na3GTP, and 1 spermine, pH 7.2 (285–290 mOsm). 

Biocytin was added to the pipette for post hoc reconstruction to verify the identity of 

the cell as an interneuron, and not an ectopic CA1 pyramidal cell. Series resistance was 

monitored throughout each experiment with a −5-mV, 80-ms pulse before each stimulus, 

and cells with >20% change in series resistance were excluded from analysis. Data were 

digitized (5 kHz) and analyzed using macros written in IGOR-PRO (Wavemetrics, Lake 

Oswego, OR). To generate I-V curves, the holding potential was gradually increased to +40 
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mV, then 6 responses were recorded every 20 mV from +40 to −60 mV. Picrotoxin (100 

μM) was added to block GABAAR-mediated inhibition and d-APV (25 μM) was added to 

block NMDAR-mediated currents. Rectification index was defined as (amplitude of synaptic 

currents + 40 mV/amplitude of synaptic currents at −60 mV) multiplied by 1.5 to correct 

for differences in driving force; this correction assumes Erev = 0. Representative I-V curves 

were corrected for a −8 mV junction potential.

For input-output, the stimulating voltage was increased from 10 to 50 V and EPSCs were 

recorded in the presence of picrotoxin (100 μM). The I/V curve was graphed by taking the 

average amplitude of 5 traces at each voltage stimulation. For anti-Hebbian LTP, cells were 

voltage-clamped at −60 mV in the presence of picrotoxin (100 μM). A stable baseline of 

5 min or less was recorded at 0.1 Hz, due to reported wash-out of LTP. LTP was induced 

using a protocol pairing 400 pulses at 5 Hz, with postsynaptic hyperpolarization to −90 

mV. All values are expressed as mean ± SEM. Statistical analysis was performed using 

Mann-Whitney test (Rectification Index), Two-sample t-test (Anti-Hebbian LTP), and the 

Two-way repeated measures ANOVA (Input-Output) using Origin Pro 2015 Software.

d-APV was purchased from Tocris. Salts for making ACSF, internal solutions, picrotoxin, 

and spermine were purchased from Sigma-Aldrich. All recordings and analyses were 

performed blind to genotype of the animal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars of all data denote ± SEM. Differences between two groups were assessed by 

two tailed Student t-test and multiple groups were compared using one-way ANOVA for 

Figures 1, 2. 3, 4, 5, and 6. Statistical analysis of each data for Figure 7 is provided in 

Figure Legends. Differences were considered significant at p < 0.05; single, double, and 

triple asterisks indicate significant difference with p < 0.05, 0.01, or 0.001, respectively. The 

number of replicates for each experiment is indicated in the figure legends.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcription of GluA2 mRNA is elevated in Fmr1-deficient hippocampal 

neurons

• CPEB3 and STAT5b are the upstream effectors critical to GluA2 mRNA 

expression

• Increase in GluA2 underlies a switch in synaptic AMPAR phenotype in CA1 

interneurons

• A switch in AMPAR phenotype causes deficits in synaptic transmission and 

plasticity
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Figure 1. mRNAs encoding AMPAR subunits localize to proximal dendrites and synaptic sites in 
WT neurons
(A and B) Upper: representative images of individual endogenous GluA1 (red) (A) or 

GluA2 (red) (B) mRNA molecules within a single hippocampal neuron detected by 

single-molecule FISH, followed by immunofluorescence with antibodies directed to the 

presynaptic marker bassoon (green), the dendritic marker MAP2 (blue), and merge. Lower: 

higher-magnification images of boxed region in the upper panel.

(C) Upper: representative images of individual GluA1 (red) and GluA2 (green) mRNA 

molecules in the same neuron. Lower: higher-magnification images.

(D) Summary data of images like those in (A and B) showing the number of AMPAR GluA1 

(black) and GluA2 (red) mRNAs that juxtapose to synaptic sites marked by basoon (first 

two bars) or that colocalize with each other (third bar). GluA1 and GluA2, 30dendrites, 30 

neurons, n = 4.
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(E) Summary data for images like those in (C) showing the number of GluA1 and GluA2 

molecules per dendrite.

(F) GluA1 and GluA2 mRNA molecules as a function of the distance from the soma 

(GluA1, 101 dendrites, 35 neurons, n = 4; GluA2, 190 dendrites, 82 neurons, n = 4). 

The number of individual GluA1 and GluA2 mRNA molecules in all dendrites of all 

hippocampal neurons that met the criteria for identification as mRNAs (STAR Methods) 

were analyzed by an individual blinded to the treatment. Scale bar, 10 μm. For (D–F): Data 

are mean ± SEM. **p < 0.01. NS, not significant. Here and in Figures 2, 3, 4 (with the 

exception of Figure 2L), S1, and S2, n is defined as number of independent experiments 

each involving a different batch of neurons. In Figure 2I, n is defined as number of animals.
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Figure 2. GluA2 (but not GluA1) mRNA is elevated in dendrites and at TSSs of hippocampal 
neurons from Fmr1 KO mice
(A–D) Representative images of endogenous single mRNAs molecules encoding GluA1 

were detected by single-molecule FISH in primary cultures of hippocampal neurons from 

WT and Fmr1 KO mice (A) quantified in (B). (C) Higher-magnification images of boxed 

region in (A) quantified in (D).

(E–H) Representative images of endogenous single mRNAs molecules encoding GluA2 

were detected by single-molecule FISH in primary cultures of hippocampal neurons from 

WT and Fmr1 KO mice (E) quantified in (F). (G) Higher-magnification images of boxed 

region in (E) quantified in (H) (GluA1, WT: 101 dendrites, 35 neurons; KO: 134 dendrites, 

63 neurons, n = 4 per group; GluA2, WT: 190 dendrites, 82 neurons; KO: 99 dendrites, 82 

neurons, n = 4 per group).

(I) Representative images of a dual FISH experiment with probes targeting either the GluA2 

coding (upper left) or intronic (upper right) sequences.

(J) Representative images showing the number of GluA1 and GluA2 mRNA molecules at 

transcription hotspots in the nucleus of neurons from WT and Fmr1 KO mice.

(K) Summary data of images like those illustrated in (J) (GluA1, WT: 35 neurons; KO: 63 

neurons; GluA2, WT: 82 neurons, KO: 86 neurons, n = 4).
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(L) Summary qRT-PCR data from whole hippocampus showing GluA1 (upper) and GluA2 

(lower) mRNA expression (n = 4 per group). For all the quantitative graphs: Data are mean ± 

SEM. *p < 0.05; **p < 0.01.
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Figure 3. CPEB3 protein is elevated in dendrites and at TSSs of hippocampal neurons from 
Fmr1 KO mice and is critical to elevated GluA2 mRNA
(A) Upper: representative immunofluorescence images of WT and Fmr1 KO hippocampal 

neurons at low magnification. Lower: high-resolution image of boxed dendrite illustrated in 

the upper panel.

(B and C) Summary data for images like those in (A) showing relative dendritic (B) and 

nuclear (C) abundance of CPEB3 protein (WT: 35 dendrites, 19 neurons; KO: 28 dendrites, 

21 neurons, n = 4 per group).

(D) Schematic representation of the lentivirus construct containing CPEB3 shRNA-1, 

shRNA-2, and NT shRNA.

(E) Representative western blot showing efficacy and specificity of CPEB3 shRNA-1 (n = 

3).

Hwang et al. Page 30

Cell Rep. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(F and G) Images of a merge between GluA2 mRNA, assessed by FISH (red) and 

GFP, assessed by immunofluorescence (green) in dendrites taken from the first 50 μm of 

dendrites, as measured from the cell body of hippocampal neurons from WT (F) and Fmr1 
KO mice (G). Upper, NT shRNA; lower, CPEB3 shRNA-1.

(H) Summary data for images like those illustrated in (F and G) (WT + NT shRNA, 57 

dendrites; KO + NT shRNA: 59 dendrites; WT + CPEB3 shRNA: 31 dendrites; KO + 

CPEB3 shRNA: 33 dendrites, n = 3–6 per group).

(I and J) Representative images of Fmr1 KO neurons expressing NT (I) or CPEB3 (J) 

shRNA and labeled for GluA2 mRNA.

(K) Summary data of images like those in (I and J) (WT + NT: 139 neurons; Fmr1 KO + NT 

shRNA: 163 neurons; WT + CPEB3 shRNA: 52 neurons; Fmr1 KO + CPEB3 shRNA: 50 

neurons, n = 4 per group).

(L and M) Representative images of WT neurons expressing (L) GFP or (M) GFP-tagged 

CPEB3 and labeled for GluA2 mRNA.

(N) Summary data of images like those in (L and M) (empty vector: 85 neurons; CPEB3 

cDNA: 102 neurons, n = 4 per group).

(O) CPEB3 immunofluorescence in neurons marked by NeuN of the CA1 in brain sections 

from WT and Fmr1 KO mice.

(P) Quantification of immunofluorescence puncta in images like that illustrated in (O) (n = 

5 mice per group). For all the quantitative graphs: Data are mean ± SEM. *p < 0.05; **p < 

0.01; ***p < 0.001.
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Figure 4. Loss of FMRP is causally related to the elevated CPEB3 in fragile X neurons
(A) Summary data showing CPEB3 mRNA expression in hippocampal neurons from Fmr1 
KO versus WT mice (n = 12–13/coverslips).

(B) Representative western blot (upper) and summary data (lower) showing CPEB3 protein 

abundance in neurons from Fmr1 KO versus WT neurons (n = 9–18 coverslips).

(C) Upper: schematic of shRNA constructs. Lower: representative western blot of WT 

neurons expressing Fmr1 shRNA or NT shRNA (negative control) and summary data 

showing FMRP and CPEB3 protein abundance.

(D) Upper: schematic of human FMRP cDNA and empty vector. Lower: representative 

western of WT and Fmr1 KO neurons expressing either empty vector (GFP) or hFMRP-GFP 

and summary data showing human (h) and mouse (Ms) FMRP, and CPEB3 abundance in 

WT and Fmr1 KO neurons (n = 3–12 wells/coverslips, 3 independent experiments). For all 

the quantitative graphs: Data are mean ± SEM. **p < 0.01; ***p < 0.001.
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Figure 5. CPEB3 binds the gria2 promoter and enhances Stat5b-dependent GluA2 transcription
(A) Schematic of the gria2 promoter region highlighting the putative STAT5b binding motif 

and sites proximal and distal to the TSS to which probes were designed. Also shown are 

models of CPEB3 depicting a nuclear export sequence, a nuclear localization sequence, two 

RNA binding domains, and a gluta-mine-rich binding domain within the N terminus, which 

serves as a binding site for STAT5b and STAT5b, depicting a zinc-finger-binding domain 

harbored within the C terminus which enables binding to DNA.

(B) ChIP-qPCR showing enrichment of the transcription factor STAT5b at the proximal 

gria2 promoter in the hippocampus of WT and Fmr1 KO mice (n = 4 mice per group). The 

fold change for each group was normalized to the value obtained at a site 10 kb upstream of 

the TSS in WT.
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(C) ChIP-qPCR showing enrichment of CPEB3 at the putative STAT5b binding motif within 

the gria2 promoter in WT and Fmr1 KO mice (n = 4 mice per group; the fold change of each 

group was normalized to the value 10 kb upstream in WT).

(D) Representative GFP fluorescence images showing expression of CPEB3 shRNA and NT 

shRNA in primary cultures of hippocampal neurons.

(E) ChIP-qPCR showing enrichment of STAT5b at the putative STAT5b recognition motif 

and sites proximal (150 bp upstream) and distal (750 or 1,000 bp upstream) from the TSS 

within the gria2 promoter in CPEB3 or NT shRNA-treated primary cultures of hippocampal 

neurons (n = 3 experiments; the fold change for each group was normalized to the value for 

STAT5b occupancy 1 kb upstream of the TSS in gria2 in NT shRNA-treated neurons).

(F) ChIP-qPCR showing enrichment of STAT5b at the putative STAT5b recognition motif 

and sites proximal (150 and 350 bp upstream) and distal (2 kb downstream or 10 kb 

upstream) from the TSS within the gria2 promoter in the hippocampus of WT and Fmr1 KO 
mice in vivo (n = 3–5 mice per group; the fold change for each group is normalized to the 

value for STAT5b binding to a site 10 kb upstream in the hippocampus of NT shRNA-treated 

WT mice). For all the quantitative graphs: Data are mean ± SEM. *p < 0.05; **p < 0.01; 

***p < 0.001.
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Figure 6. CA1 inhibitory interneurons of Fmr1 KO mice express elevated GluA2 protein and 
exhibit properties of GluA2-containing AMPARs
(A) Representative western blot (upper) and summary data (lower) showing GluA2 protein 

abundance in the hippocampus of WT and Fmr1 KO mice at P21.

(B) Representative images of GluA2 immunofluorescence showing GluA2 protein 

expression in the cell bodies and dendrites of pyramidal neurons in the hippocampal CA1 

from WT and Fmr1 KO mice at P21.

(C) Summary of data from images like those illustrated in (B) (WT: 12 sections, 4 mice; 

Fmr1 KO: 12 sections, 4 mice). Sections were selected as one from every six serial sections.

(D) Left: Representative immunofluorescence images of GluA2 protein expression in the 

stratum pyramidale of WT (upper) and Fmr1 KO (lower) mice expressing GAD67-GFP 

at P21. Center: high-magnification (43 zoomed) images of boxed area on left shows a 
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GAD67(+) neuron. Right: GluA2 expression in the GAD67-GFP(+) neuron illustrated in 

center.

(E) Summary data for GluA2 protein expression in GAD67-GFP(+) neurons like that 

illustrated in (D) (WT: 15 cells, 5 mice; Fmr1 KO: 15 cells, 5 mice).

(F) WT and Fmr1 KO mice were injected with AAV-CAMKII-mCherry directly into CA1 

to label pyramidal neurons. Representative images of mCherry fluorescence (left), GluA2 

immunofluorescence (center), and DAPI label (merge, right) in the CA1 stratum pyramidale 
of WT (upper) and Fmr1 KO (lower) mice at P21.

(G) High-magnification (4× zoomed) image of the boxed area in (F) shows mCherry(+) 

pyramidal neurons (left) expressing GluA2 protein (right).

(H) Summary data from images like that illustrated in (G) (WT: 20 cells, 5 mice; Fmr1 KO: 

20 cells, 5 mice). For all the quantitative graphs: Data are mean ± SEM. *p < 0.05; **p < 

0.01.
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Figure 7. Inhibitory interneurons in the CA1 of Fmr1 KO mice exhibit deficits in synaptic 
transmission and plasticity
(A) Representative AMPAR-EPSCs recorded from CA1 interneurons in acute hippocampal 

slices from mice at P14-P21 in the presence of 25 μM d-APV and 100 μM picrotoxin (bath) 

and 1 mM spermine (pipette).

(B) The normalized average I-V relationship of AMPAR-EPSC peak amplitudes showed 

characteristic inward rectification in slices from WT mice. AMPAR-EPSC peak amplitudes 

recorded from Fmr1 KO mice exhibited linearization of the I-V relationship at positive 

potentials (WT: 12 cells, 6 mice; Fmr1 KO: 10 cells, 4 mice).

(C) The rectification index (EPSC amplitude at 40 mV/EPSC amplitude at −60 mV) × 1.5) 

in WT and Fmr1 KO mice. Mann-Whitney test, p = 0.0051.
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(D) Upper: representative EPSCs recorded from CA1 interneurons in acute hippocampal 

slices from P14-P25 mice. Lower: average input-output relationship of EPSC peak 

amplitudes at five stimulation intensities in WT and Fmr1 KO mice (WT: 10 cells, 4 mice; 

Fmr1 KO: 10 cells, 5 mice), two-way ANOVA, p = 0.003, F = 11.78.

(E) NMDAR-independent LTP at glutamatergic synapses onto inhibitory GABAergic 

interneurons observed in slices from WT and Fmr1 KO mice. CA1 interneurons were 

identified and voltage clamped at 60 mV using the visualized patch technique (WT: 10 cells, 

4 mice; Fmr1 KO: 10 cells, 5 mice); mean ± SEM of WT: 128.900 ± 8.712 versus Fmr1 KO: 

104.403 ± 4.339, two-sample t test, p = 0.022.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-CPEB3 Abcam Cat# ab10883; RRID:AB_442831

Rabbit polyclonal anti-CPEB1 Abcam Cat# ab3465; RRID:AB_303826

Rabbit polyclonal anti-FMRP Abcam Cat# ab27455; RRID:AB_732400

Mouse monoclonal anti-GluR2 (GluA2) BD Biosciences Cat# 556341; RRID:AB_396373

Mouse monoclonal anti- β-Actin Sigma Cat# A5316; RRID:AB_476743

Mouse monoclonal anti-Bassoon Enzo Life Sciences Cat# ADI-VAM-PS003; 
RRID:AB_10618753

Mouse monoclonal anti-Stat5b Santa Cruz 
Biotechnology

Cat# sc-1656; RRID:AB_2197067

Rabbit polyclonal anti-Synapsin I Abcam Cat# ab64581; RRID:AB_1281135

Rabbit polyclonal anti-AMPA Receptor 1 (GluR1)/GluA1 Alomone Labs Cat# AGC-004; RRID:AB_2039878

Rabbit polyclonal anti-VGLUT1 Thermo Fisher Scientific Cat# 48–2400; RRID:AB_2533843

Mouse monoclonal anti-GAD67 Millipore Cat# MAB5406; 
RRID:AB_2278725

Mouse monoclonal anti-NeuN Millipore Cat# MAB337; RRID:AB_2313673

Chicken polyclonal anti-MAP2 Millipore Cat# AB15452; RRID:AB_805385

Anti-mouse IgG, HRP-linked antibody Cell Signaling 
Technology

Cat# 7076; RRID:AB_330924

Anti-Rabbit IgG, HRP-linked antibody Cell Signaling 
Technology

Cat# 7074; RRID:AB_2099233

DyLight™ 405 AffiniPure Donkey Anti-Chicken IgY (IgG) (H+L) Jackson 
ImmunoResearch Labs

Cat# 703-475-155; 
RRID:AB_2340373

Alexa Fluor 488 Polyclonal Antibody Invitrogen Cat# A-11094; RRID:AB_221544

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa 
Fluor™ 546

Invitrogen Cat# A-11010, RRID:AB_2534077)

Goat anti-Mouse IgG, IgM (H+L) Secondary Antibody, Alexa Fluor™ 488 Invitrogen Cat# A-10680; RRID:AB_2534062

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa 
Fluor™ 546

Invitrogen Cat# A-11030; RRID:AB_2534089

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor™ 647

Invitrogen Cat# A-31573; RRID:AB_2536183

Bacterial and virus strains

AAV-CaMKIIa-mCherry Addgene #114469

LV-eGFP-tagged rCPEB3 This paper N/A

LV-eGFP-tagged hFMRP This paper N/A

LV-Fmr1 shRNA1 This paper N/A

LV-Fmr1 shRNA2 This paper N/A

LV-non-targeting shRNA Noh et al., 2012 N/A

LV-CPEB3 shRNA1 This paper N/A

LV-CPEB3 shRNA2 This paper N/A

Chemicals, peptides, and recombinant proteins

NBQX Tocris Cat#0373/10, CAS: 118876-58-7

d-APV Tocris Cat#0106, CAS: 79055-68-8
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REAGENT or RESOURCE SOURCE IDENTIFIER

Picrotoxin Sigma Cat#P1675, CAS: 124-87-8

Spermine Sigma Cat# S4264, CAS: 71-44-3

Experimental models: Cell lines

HEK293T ATCC Cat# CRL-3216

Experimental models: Organisms/strains

Mouse: FVB.129P2-Pde6b+ Tyrc-ch Fmr1 tm1Cgr/J female The Jackson Laboratory RRID:IMSR_JAX:004624

Mouse: FVB.129P2-Pde6b+ Tyrc-ch/AntJ male The Jackson Laboratory RRID:IMSR_JAX:004828

Mouse: CB6-Tg(Gad1-EGFP) G42Zjh/J The Jackson Laboratory RRID:IMSR_JAX:007677

Oligonucleotides

siRNA targeting sequence: CPEB3 shRNA-1: 5′-
AACTTAAGCCAGACGATAAGGGT-3′

This paper N/A

siRNA targeting sequence: CPEB3 shRNA-2: 5′-
TAAATGTACTGCGCGTGGA GAC-3′

This paper N/A

siRNA targeting sequence: Fmr1 shRNA-1: 5′-
AATATTAGCACCATGAGTACC-3′

This paper N/A

siRNA targeting sequence: Fmr1 shRNA-2: 5′-
TAAATCTTCTGGCACCTCCAG-3′

This paper N/A

Non-targeting shRNA sequence: NT shRNA: 5′-AAATGTACTGCG CGT 
GGAGAC-3′

This paper N/A

FISH probes for GluA1 anti-sense, GluA2 anti-sense and GluA2 intronic 
antisense, see Table S1

This paper N/A

ChIP primers for rat gria2 stat5b binding site:
Forward CAAGAAAAGTAGAGCATCCACAAAAT
Reverse AAACAGTCAAAGAAGGAAGAGGAAGA

This paper N/A

ChIP primers for rat gria2 ~150 bp upstream from the TSS:
Forward CAGTCTTGCGCATCCGATT
Reverse AGCCCAGAGCTCCGACTAAAG

This paper N/A

ChIP primers for rat gria2 ~750 bp from the TSS:
Forward TGGATTGAAAGGAACCGTAGGT
Reverse CAGATTATGGACATCCTTTCTAGACAAC

This paper N/A

ChIP primers for rat gria2 ~1000 bp from the TSS:
Forward GCTTGGTGAAGACTCCTGATGATT
Reverse GCTTGGCATGAAGTAGAATATTGAAC

This paper N/A

ChIP primers for mouse gria2 stat5b binding site:
Forward CCAAGAAAAGTAGAGCATCCACAA
Reverse AAACGGTCAAAGAAGGAAAAGGA

This paper N/A

ChIP primers for mouse gria2 ~150 bp upstream from the TSS:
Forward GGCAGCCTGGTGCCTCTTA
Reverse TCCGCGGTGCTAAAATCG

This paper N/A

ChIP primers for mouse gria2 ~350 bp upstream from the TSS:
Forward GGCGGCGAAGCTTTCTTC
Reverse TCAAATCATATTCGTTGTGCTCAA

This paper N/A

ChIP primers for mouse gria2 ~2 kb downstream from the TSS:
Forward CGGGCCCAACTCCTCAA
Reverse AGCCCCACGTCGTCCTATT

This paper N/A

ChIP primers for mouse gria2 ~10 kb upstream from the TSS:
Forward CAGACAACAGCAACACGGAATAG
Reverse CCTACAGCTTTGACCAGCTTCTC

This paper N/A

Recombinant DNA

Plasmid: FCGW-GFP-hFMRP This paper N/A

Plasmid: FCGW-GFP-rCPEB3 This paper N/A

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ https://imagej.nih.gov/ij/
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