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Abstract

Adenoviruses cause upper respiratory infections, conjunctivitis, keratitis, and gastrointesti-

nal illness. These can be fatal in immunocompromised individuals. Adenoviruses have also

been engineered into viral vectors to deliver therapeutic genes or induce immunity as vac-

cine carriers. The success of ocular gene therapy is driven partly by the immunologic and

biochemical influences of the intraocular environment. We have shown that versican and

hyaluronan modulate adenoviral vector transgene expression through CD44 signaling.

Herein we explored the role of these pathways on virus replication and viral protein expres-

sion of wild type adenovirus. We report that the addition of vitreous humor (which contains

both versican and hyaluronan) increases viral hexon protein levels. Vitreous humor also

increased wild type adenovirus DNA replication in vitro. Metalloproteinase and γ-secretase

inhibitors, which inhibit CD44 proteolytic activation, blocked adenoviral replication in vitro.

Similarly, protein kinase C and RhoA kinase inhibitors, both proteins associated with CD44

mediated pathways, also inhibited wild type adenoviral replication in vitro. Application of

metalloproteinase and γ-secretase inhibitors to human conjunctival explants sharply

decreased adenoviral vector gene expression. Our results demonstrate that pharmacologic

delivery of these inhibitors is easily achievable. The inhibition of these enzymes should be

explored as potential therapies of wild type adenoviral infections.

Introduction

Gene therapy has proven to be particularly successful in the eye [1, 2]. Although immunologic

differences between the ocular and systemic compartments play a role [3], our laboratory has
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also shown that there are biochemical influences exerted by the vitreous of the eye that can

modulate the expression of adenoviral vector delivered genes in vitro [4–6]. This paper will

explore if the same and related biochemical pathways influenced by components of the vitre-

ous similarly influence wild type adenovirus replication and gene expression and whether

inhibitors of these pathways can modulate adenoviral gene expression in human tissue.

Adenoviruses are a family of medium-sized viruses that cause a wide variety of illnesses

such as febrile respiratory disease, conjunctivitis, hemorrhagic cystitis, and hepatitis. These

can trigger nervous system infections such as meningitis [7, 8]. Adenoviruses frequently cause

severe disease in congenitally immunocompromised patients, especially in pediatric patients

[8], as well as patients undergoing immunosuppressive treatment for organ and tissue trans-

plants or cancers. Infections in these patients have an overall case fatality rate of 48%, and the

virus is extremely resistant to a variety of physical and chemical agents [8, 9]. There is currently

no effective cure for adenoviral infections.

Adenoviruses are often used as vectors for gene therapy after deleting their essential viral

genes to render them replication-defective and replacing those genes with a cassette that

expresses a foreign therapeutic gene [10]. It was previously discovered that in vitro transduc-

tion of cells by serotype 5 adenoviral vectors in the presence of vitreous, the gelatinous sub-

stance in the eye, significantly increases transgene expression [4]. This increase is partially due

to a hyaluronan (HA)/CD44-mediated pathway. Sequential proteolysis of the hyaluronan

receptor CD44 leads to this HA-mediated enhancement of gene expression; when HA binds

CD44, it triggers matrix metalloprotease cleavage of CD44’s extracellular domain. The remain-

ing CD44 peptide then becomes the substrate of the γ-secretase complex, which cleaves CD44

again and liberates its intracellular domain. The intracellular domain translocates to the

nucleus, where it can regulate gene expression. The inhibition of matrix metalloprotease and

γ-secretase activities suppress the enhancement of adenoviral-mediated gene expression [5].

In this study, we show that these results are transferrable to wild-type adenoviruses serotype

5 (Ad5WT) that are responsible for common human infections, including severe infections in

immunocompromised patients. Also, we demonstrate that inhibition of RhoA kinase [11] and

protein kinase C [12], both of which have been linked to CD44-related biochemical pathways,

can similarly inhibit both adenovector transgene expression (TGE) and Ad5WT replication.

These findings could prove beneficial for the development of treatments for adenoviral infec-

tions and modulation of gene therapy protocols.

Materials and methods

Cell culture

Cell lines were cultured as follows: Both Y79-Rb (ATCC, HTB-18; Manassas, VA) and Hela

cells (ATCC, CCL-2; Manassas, VA) were grown in DMEM (Mediatech, Manassas, VA) sup-

plemented with 5% heat-inactivated bovine serum (Gemini Bio-Products, Sacramento, CA)

and 1% Penicillin/Streptomycin. Cultures were maintained at 37˚C with 5% CO2.

Antibodies

The CD44 blocking antibody BRIC235 is a mouse monoclonal IgG2b antibody that was pur-

chased from the International Blood Group Reference Laboratory (cat. 9407P) in the United

Kingdom. The anti hexon antibody is a rabbit polyclonal to Adenovirus Type 5 hexon and was

purchased from Abcam (cat. Ab24240). The anti-E1A antibody is a mouse monoclonal anti-

body to Adenovirus Types 2/5 E1A (clone M73) and was purchased from EMD Millipore Cor-

poration (cat. 6B7386).
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Inhibitors

The γ-secretase inhibitor DAPT was purchased from Sigma-Aldrich (cat. D5942). The metal-

loproteinase inhibitors TAPI-0 (cat. 579050) and TAPI-1 (cat. 579051), the RhoA kinase

(ROK) inhibitor Y-27632 (cat. 688000) and the protein kinase C (PKC) inhibitor Gö6983 (cat.

365251) were purchased from EMD Millipore Corporation.

Adenoviral vectors

The first-generation adenoviral vectors delivering the luciferase gene (Luc) under the control

of the cytomegalovirus promoter CMV (Ad5/CMV-Luc) or the green fluorescent protein

(GFP) gene under the control of the CMV promoter (Ad5/CMV-GFP) were prepared and

expanded by the Vector Development Laboratory at Baylor College of Medicine and stored in

25 μL aliquots at -80˚C until needed.

Wild type adenovirus

The wild type adenovirus type 5 (Ad5WT) was provided by Dr. Ann Leen, from the Center for

Cell and Gene Therapy at Baylor College of Medicine and stored in aliquots at -80˚C until

needed.

Adenovirus vector transduction or wild type adenovirus infection in vitro
Cells were counted using a hemocytometer and plated in a cell culture plate as indicated in the

text using DMEM supplemented with 5% FBS and 1% antibiotics (complete growth media).

Either a viral vector or wild type virus was diluted in complete growth medium to the appro-

priate concentration. Vitreous, inhibitors, antibodies, or diluent were mixed with the virus or

vector to achieve the indicated final concentration. The mixture was overlaid on the cells. Cul-

tures were kept at 37˚C with 5% CO2 for either 24 or 48 hrs.

Luciferase activity assay

To assay luciferase activity, cells dispensed in a 96-well plate (2 x 104 cells/well) were washed

once with PBS 1X. Once PBS 1X was removed, cells were lysed in 50 μL of Promega Lysis Buffer

(Promega Corp). The plate was kept at -80˚C for at least 15 minutes and then thawed slowly to

room temperature. Next, 5 μL of cell lysate were added to 50 μL of luciferase substrate (Promega

Corp.) and mixed gently by flicking the tube. The tube was placed in a luminometer, and light

emitted was measured as counts per minute (CPM). CPMs were normalized to CPM/ μg lysate

using protein concentrations determined using Bradford Assay Reagent (Bio-Rad).

Adenovirus quantitative PCR (Ad-qPCR)

Cells were plated in 24-well plates (2 x 105 cells/well) and transduced with the indicated multi-

plicity of infection (MOI) of wild type adenovirus or Ad5/CMV-Luc vector. Adenovirus was

quantified by quantitative PCR [13] using the primer pairs and probes directed against a con-

served sequence among different Ad serotypes within the hexon gene shown in Table 1.

The PCR reactions were set up and performed using Taqman 2X Universal Master Mix

(Applied Biosystems, Carlsbad, CA) according to the manufacturer’s directions, using primer

concentration of 0.75 mM and a probe concentration of 0.5 mM. Q-PCR was conducted using

the ABI Prism 7000 Sequence Detection System programmed as follows: 35˚C for 2 minutes,

95˚C for 10 minutes, and repeat 40 times: 95˚C for 15 seconds, 55˚C for 10 seconds. The copy

numbers of adenovirus genomes were standardized to the number of cells quantified in the

assay.
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Statistical analysis

Quantitative data were analyzed using the Graph Pad Prism 5 software. For comparison of

only two averages, the Student’s t-test was performed. For the comparison of more than two

averages, a one-way ANOVA test was conducted followed by the Newman- Kleus Student t-

test or the Dunnet’s test to detect significant differences between all groups or between a con-

trol group and an experimental group. Statistical significance was considered when p� 0.05.

Symbols denoting levels of statistical significance are as follows: �, p =<0.05; ��, p<0.01; and
���, p<0.001.

Results

Vitreous enhances Ad5 wild type (Ad5WT) replication and hexon

expression

Previous reports have demonstrated that versican through both hyaluronan-CD44 dependent

and independent mechanisms and their associated intracellular pathways can modulate ade-

noviral vector-mediated transgene expression [4–6]. Thus, it is reasonable to hypothesize that

wild type adenoviral replication could also involve the same pathways.

To test this hypothesis, we first examined the effect of hyaluronan-containing vitreous on

Ad5WT gene expression. If the CD44-HA pathway is involved, the incubation of the cells in

the presence of vitreous should enhance the Ad5WT gene expression. We monitored the

expression of the adenoviral coat protein hexon or replication regulatory protein E1A after

incubation with vitreous by western blot (Fig 1A–1C). After 24 hours, the level of hexon pro-

tein expression is significantly increased but not the protein expression of E1A.

Next, we examined whether Ad5WT replication was affected by the presence of vitreous.

Y79 retinoblastoma cells were infected in vitro with Ad5WT in the presence of vitreous. To

measure adenoviral replication, an adenovirus-specific quantitative PCR was performed using

DNA isolated from the cultured cells. After 48 hours, the addition of 5% vitreous to the cell

cultures significantly increased the number of Ad genomes per cell by a 3.5-fold difference

when compared to Ad genomes per cell in the absence of vitreous (Fig 1D). Incubation of the

cells with short-chain HA oligosaccharides (o-HA) that antagonize HA–CD44 signaling

blocked the increase in Ad genomes induced by the presence of vitreous [5]. These results

show that, as hypothesized, the addition of vitreous can increase Ad5WT replication in vitro.

However, we could not demonstrate an increase in active Ad5WT using a plaque-forming

assay.

A potential explanation for the vitreous mediated enhancement of Ad5WT replication and

gene expression could be due to vitreous increasing the number of viral particles being inter-

nalized by the cells. This hypothesis was tested by quantifying the number of genomes after

transduction with an Ad5 vector delivering the luciferase gene. This vector provides the same

Table 1. Q-PCR primer and probe sequences.

Name Sequence (5’! 3’)

Adenogene FWD GCCACGGTGGGGTTTCTAAACTT

Adenogene REV GCCCCAGTGGTCTTACATGCACATC

Adenogene Probe 56-FAM/TGCACCAGACCCGGGCTCAGGTACTCCGA/36-TAMSp

CRP FWD CTTGACCAGCCTCTCTCATGC

CRP REV TGCAGTCTTAGACCCCACCC

CRP Probe 56-FAM/TTTGGCCAGACAGGTAAGGGCCACC/36-TAMPs

https://doi.org/10.1371/journal.pone.0236175.t001
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capsid proteins as the Ad5WT while allowing a more sensitive method to further study

changes in gene expression. We trypsinized cells after 1-hour incubation with our vector in the

presence or absence of 5% vitreous humor to remove any bound but not internalized viral par-

ticles. Our results showed that the simultaneous incubation of our Ad5 vector with vitreous

did not increase the number of vector genomes detected within the cells (Fig 2A). To further

test this hypothesis, we compared the effect of adding Ad5 in the presence of vitreous or add-

ing vitreous after removing the virus. As expected, co-incubation of vitreous with the Ad5 vec-

tor increased the level of transgene expression; however, the addition of vitreous after vector

removal of the Ad5 vector also caused an increase in transgene expression (Fig 2B). Together

these results demonstrate that the vitreous enhancement of viral replication and or gene

expression is unlikely due to an increase in the virus or vector transduction/infection.

Inhibition of matrix metalloproteases or the γ-secretase complex decreases

Ad5WT replication in vitro
The vitreous enhancement of Ad5WT replication and its inhibition by o-HA in vitro strongly

suggests that the same CD44-dependent mechanism involving sequential proteolysis of CD44

Fig 1. Vitreous enhances Ad5 wild type replication and hexon expression. (A-C) Y79 cells were infected in a 24 well

plate (2x105 cells/well) with Ad5WT (MOI: 250 genomes/cell) in the absence (A, Lane 1; B, lane 2) or presence (A,

Lane 2; B, Lane3) of 5% vitreous. Total protein was isolated at 24 hours post-infection and analyzed for hexon (A) or

E1A (B) expression by western blotting. Hexon levels were significantly increased after vitreous exposure (A-B) while

E1A expression was unchanged (C). Lysate from HEK293 cells, which contain and express the Ad E1A gene, was used

as a positive control (B, Lane 1). (D) Y79 cells were infected in a 24 well plate (2x105 cells/well) with Ad5WT (MOI:

250 genomes/cell) in the presence or absence of 5% vitreous with or without small chain hyaluronic acid (o-HA) for 24

or 48 hours. Cells were harvested by centrifugation at 500 g for 10 minutes and trypsinized, followed by a wash with

PBS 1X. Cell pellets were then stored at -80˚C until all samples were collected. Total DNA was extracted using the

DNEasy Kit (QIAGEN, Inc) as per the manufacturer’s protocol. Ad genomes and cellular genomes were quantified

using 125 ng of each sample in an Ad Q-PCR assay as described in Materials and methods. Ad genome numbers are

standardized to cellular genome copies in each sample. Values represent the average ± standard deviation. (n = 4

biological replicates, p<0.0001).

https://doi.org/10.1371/journal.pone.0236175.g001
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in response to hyaluronan that modulates Ad TGE (Fig 3A) could also affect wild type virus

replication in vitro. Cells were infected in the presence or absence of the MMP inhibitor TAPI-

0 or the γ-secretase inhibitor DAPT for 48 hours at 37˚C to test this hypothesis. Results show

that at 48 hours, there is viral replication in the presence of DMSO solvent (control) (Fig 3B).

However, cells that were infected in the presence of either TAPI-0 or DAPT showed a signifi-

cant reduction in the amount of replication when compared to the DMSO 48 hours control

group. From these results, it is concluded that the inhibition of the MMP activity or the γ-

secretase complex activity can significantly decrease Ad5WT replication in vitro.

Fig 2. Vitreous enhances Ad TGE after virus binding/internalization. (A) Y79 cells were transduced in a 24 well

plate (2x105 cell/well) with Ad5/CMV-Luc (MOI: 250 pfu/cell) in the presence or absence of 5% vitreous for 1 hr at

37˚C. Cells were then trypsinized and washed once with PBS 1X followed by a 10 minutes centrifugation (500 g) at

4˚C. DNA was extracted from cell pellets using the DNEasy kit from QIAGEN as per the manufacturer’s procedure.

Adenoviral vector genomes were quantified using the adenovirus quantitative PCR technique as stated in Materials

and Methods. (n = 3 biological replicates, p = 0.46, n.s. = not significant by student t-test) (B) Y79 cells were

transduced with Ad5/CMV-Luc (MOI: 250 pfu/cell) in the presence or absence of 5% vitreous in a 96 well plate (2x104

cell/well). In the "non-removed" group, the vector was present during the whole procedure. In the "removed" groups,

cells were transduced with the same vector for 1 hr at 37˚C before being washed once with complete media and then

incubated with media alone or with 5% vitreous for the remainder of the assay. Cells were then lysed, and luciferase

activity was determined as stated in Materials and Methods. Values represent the average ± standard deviation. (n = 5

biological replicates, p<0.0001).

https://doi.org/10.1371/journal.pone.0236175.g002

Fig 3. Inhibition of metalloproteases or the γ-secretase complex inhibits Ad5 wild type replication in vitro. (A)

Hyaluronan binding to its receptor CD44 is followed by sequential proteolysis first by MMP (inhibited by TAPI-0 or

TAPI-1) to release the extracellular domain followed by proteolysis by the γ-secretase complex (inhibited by DAPT) to

release the intracellular domain. (B) Y79 cells were infected in a 24 well plate (2x105 cells/well) with Ad5WT (MOI:

250 genomes/cell) in the presence of DMSO (1:103 dilution) for 24 hours, or with DMSO (1:103 dilution), TAPI-0

(1 μM), or DAPT (0.5 μM) for 48 hours. Cells were harvested by spinning at 500 g for 10 minutes and trypsinized,

followed by a wash with PBS 1X. Cell pellets were then stored at -80˚C until all samples were collected. Total DNA was

extracted using the DNEasy Kit (QIAGEN, Inc.) as per the manufacturer’s protocol. Ad genomes and cellular genomes

were quantified using 125 ng of each sample in an Ad Q-PCR assay as described in Materials and methods. Ad genome

numbers are standardized to cellular genome copies in each sample. Values represent the average ± standard deviation.

(n = 6, p<0.0001).

https://doi.org/10.1371/journal.pone.0236175.g003
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Inhibition of matrix metalloproteases or the γ-secretase complex inhibits

Ad TGE in situ
The experiments described in this manuscript have been performed in vitro. The Ad5WT used

in these experiments can only replicate in human tissues and there is no accurate animal

model of human adenovirus conjunctivitis disease. We, therefore, examined whether Ad TGE

was affected by the MMP and γ-secretase inhibitors in human conjunctiva explants, a tissue

commonly targeted by wild type adenovirus that results in conjunctivitis (Fig 4). Human con-

junctiva explants from cadaver eyes were obtained from the Lions Eye Bank. Punch biopsies of

equal size were obtained using a trocar and placed in 96 well plates. Each biopsy was trans-

duced with Ad5-CMV-Luc (1.25 x 107 pfu/well) in the presence or absence of the CD44 block-

ing antibody BRIC235 (4 μg/well), the MMP inhibitors TAPI-0 (1 μM)) or TAPI-1 (10 μM), or

the γ-secretase inhibitor DAPT (500 nM) for 16 hours. Samples were lysed, and luciferase

activity determined as described in Materials and methods. These inhibitors decreased TGE ex
vivo in a human tissue where adenovirus can cause disease.

Activation of protein kinase C (PKC) regulates the vitreous enhancement

of Ad TGE

We have previously shown that phosphorylation of the intracellular domain of CD44 by cal-

modulin-dependent protein kinase II (S325) and, to a lesser degree, protein kinase C (PKC,

S291) is essential in the enhancement of Ad TGE by vitreous [5]. The model of Ad TGE modu-

lation predicts that the inhibition of PKC might also potentially decrease viral replication

Fig 4. Inhibition of CD44, matrix metalloproteases, or the γ-secretase complex in situ inhibits Ad TGE. Human

conjunctiva explants were obtained from the Lions Eye Bank donated eyes. Punch biopsies of the conjunctiva were

placed in the wells of 96 well plates and transduced with Ad5-CMV-Luc (1.25x107 pfu/well) in the presence or absence

of the CD44 blocking antibody BRIC235 (4 μg/well), the MMPs inhibitors TAPI-0 (1 μM) or TAPI-1 (10 μM), or the

γ-secretase inhibitor DAPT (500 nM) for 16 hrs. Samples were lysed, and luciferase activity determined as described in

Materials and Methods. Values were standardized to luciferase activity of media control samples. Values represent the

average ± standard deviation. (n = 2 eye pairs, ��� = p<0.001).

https://doi.org/10.1371/journal.pone.0236175.g004

PLOS ONE Inhibitors of wild-type adenoviral replication

PLOS ONE | https://doi.org/10.1371/journal.pone.0236175 July 22, 2020 7 / 14

https://doi.org/10.1371/journal.pone.0236175.g004
https://doi.org/10.1371/journal.pone.0236175


(Fig 5A). The phosphorylation of the cytoplasmic domain of CD44 by PKC increases its ability

to bind hyaluronan. To test our model, we pharmacologically activated or inhibited PKC activ-

ity in the presence of vitreous. Cells were incubated with or without 5% vitreous in the pres-

ence or absence of DMSO, the PKC activator phorbol 12-myristate 13-acetate (PMA), or the

PKC inhibitor Gö6938, or their combination. These cells were transduced with the Ad5 vector

delivering the luciferase transgene. Our results demonstrate that PMA activation of PKC

increases transgene expression, which can be inhibited by the co-incubation with Gö6938 (Fig

5B). Furthermore, the presence of PMA allows for the vitreous enhancement of transgene

expression, which is abrogated in the presence of the PKC inhibitor. Together, these results

indicate that activation of PKC is necessary for the hyaluronan-CD44 mediated enhancement

of Ad transgene expression.

Inhibition of RhoA kinase (ROK) decreases vitreous enhancement of Ad

TGE

The interaction of CD44 with its ligand HA is known to activate several intracellular pathways.

RhoA kinase (ROK) is a signaling partner that interacts with the cytoplasmic domain of the

CD44 receptor upon engagement with its ligand HA [11]. Our model in Fig 5A predicts that

inhibition of ROK can inhibit vitreous mediated enhancement of transgene expression. To

determine if ROK activity is involved with Ad TGE, the effect of ROK inhibitor Y-27632 on

Ad TGE was examined in vitro. Y79 cells were transduced with a first-generation adenoviral

vector delivering the luciferase gene in the presence or absence of 5% vitreous with or without

the ROK inhibitor Y-27632 (Fig 6A and 6B). The inhibition of ROK activity in the absence of

vitreous results in a significant decrease in Ad TGE. Furthermore, the inhibition of ROK in

the presence of vitreous results in a significant decrease in the enhancement of Ad TGE in a

dose-dependent manner.

A similar experiment was conducted using a first-generation adenoviral vector to deliver

the fluorescent eGFP transgene to demonstrate that this effect is not transgene specific. Images

show similar results to those obtained when using a luciferase transgene; inhibition of ROK

Fig 5. Activation of PKC is needed for the vitreous enhancement of Ad TGE. (A) CD44 is phosphorylated by

activated PKC within its intracellular domain. This increases the affinity of CD44 for its ligand hyaluronan (HA). HA-

engaged CD44 can then recruit RhoA, which in turn activates Rho-kinase. PMA activates PKC, while Go6938 inhibits

it. The small molecule Y27632 inhibits the activity of Rho-kinase. (B) HeLa cells were seeded in a 96 well plate at 2x104

cells per well. The next day, cells were incubated with either 100μL of DMSO (1:103), 100μL of PMA (20 ng/mL) alone,

100 μL of the PKC inhibitor Gö6983 (1μM) alone, or 100 μL of both compounds for 1 hr at 37˚C. The cells were

washed and then transduced with Ad5/CMV-Luc (MOI: 50 pfu/cell) in the presence or absence of 10% vitreous for 18

hrs. Cells were then lysed, and luciferase activity determined as described in Materials and Methods. Values represent

the average ± standard deviation. (n = 8, p<0.0001 by Dunnett’s test).

https://doi.org/10.1371/journal.pone.0236175.g005
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results in a decrease in transgene expression (Fig 6C and 6D). The results of these experiments

suggest that the activity of ROK is required for the Ad TGE in the presence or absence of vitre-

ous. The observation that the ROK inhibitor was capable of decreasing Ad TGE in the absence

of vitreous suggests that this kinase also modulates the baseline expression of the adenoviral

transgene. Nonetheless, the presented data would suggest that this could be a potential molecu-

lar target for the modulation of Ad TGE.

Inhibition of protein kinase C or RhoA kinase (ROK) Inhibits Ad5WT

replication in vitro
Given our observation that both PKC and ROK can be targeted to modulate adenoviral vector

transgene expression, we hypothesize that inhibition of either of these enzymes can decrease

the replication of Ad5WT. Cells were infected with Ad5WT in the presence or absence of the

PKC inhibitor Gö6983 to test this hypothesis. A single dose of either inhibitor or its solvent

DMSO alone was added on day zero, and cells were cultured for an additional 24 or 48 hours.

The addition of the PKC or ROK inhibitor was sufficient to significantly decrease Ad5WT rep-

lication after a 48 hour incubation period (Fig 7). These results further support the similar

hypothetical model through which Ad TGE and Ad5WT replication can be modulated

through the modulation of PKC or ROK activity.

Fig 6. Inhibition of RhoA kinase (ROK) decreases vitreous enhancement of Ad TGE and vitreous enhancement of

TGE. (A) Effect of the ROK inhibitor Y-27632 on Ad TGE. Y79 cells were transduced with Ad5-CMV- Luc (MOI: 250

pfu/cell) in the presence or absence of Y-27632 (4 μM) for 16 hours. Cells were lysed, and luciferase activity

determined as described in Materials and Methods. (n = 4, p<0.0001) (B) Effect of the inhibitor Y-27632 on the

vitreous enhancement of Ad TGE. Y79 cells were transduced with Ad5-CMV-Luc (MOI: 250 pfu/cell) in the presence

or absence of 5% vitreous with or without different doses of Y-27632 for 16 hours. Cells were lysed, and luciferase

activity determined. Values represent the average ± standard deviation. (n = 5, �� = p<0.01, ��� = p<0.001) (C, D)

Effect of the inhibitor Y-27632 on the Ad TGE using eGFP. Y79 cells were transduced with Ad5- CMV-eGFP (MOI:

103 pfu/cell) in the absence (C) or presence (D) of the Y-27632 for 16 hours. Images are representative fluorescent

microscopic fields.

https://doi.org/10.1371/journal.pone.0236175.g006
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Discussion

Adenoviral infections occur both in healthy human hosts as well as in immunocompromised

patients [7]. Most adenoviral infections in immunocompetent hosts are self-limiting and only

require supportive treatment. Adenovirus infections can be fatal in neonates and immuno-

compromised individuals as well as rarely in otherwise normal adults and children. In these

affected patients antiviral agents have been used. Cidofovir is the most frequently used phar-

maceutical to treat life-threatening adenoviral infections but severe nephrotoxicity is dose-lim-

iting. Published data are limited to anecdotal case reports and small non-randomized studies

but treatment has been associated with clinical improvement and a suggestion of increased

survival in recipients of human stem cell and lung transplants infected by adenovirus [14, 15].

Brincidofovir is an oral lipid ester of cidofovir and is an investigational drug reported to have

less nephrotoxicity [16]. Pooled Intravenous gamma globulin that contain high titers of anti-

body to adenovirus is used in patients with hypogammaglobulinemia and may have some

effect in patients with adenoviral infection [17]. Immunotherapy with donor lymphocytes

stimulated with adenovirus in vitro were used with some success when injected into human

stem cell recipients infected with adenovirus [18, 19]. We propose potential targets for these

infections. The observation described in this study that PKC, ROK, MMP, and γ-secretase

Fig 7. Inhibition of PKC or Rho protein kinase decreases Ad5 wild type replication in vitro. Y79 cells were infected

in a 24 well plate (2x105 cells/well) with Ad5WT (MOI: 250 genomes/cell) in the presence of DMSO (1:103 dilution)

for 24 hours, or with DMSO (1:103 dilution), or with Gö6983 (1 μM), or with Y27632 (100 μM) for 48 hours. Cells

were harvested by centrifugation at 500 g for 10 minutes and trypsinized, followed by a wash with PBS 1X. Cell pellets

were then stored at -80˚C until all samples were collected. Total DNA was extracted using the DNEasy Kit (QIAGEN,

Inc) as per the manufacturer’s protocol. Ad genomes and cellular genomes were quantified using 125 ng of each

sample in an Ad Q-PCR assay as described in Materials and methods. Ad genome numbers are standardized to cellular

genome copies in each sample. Values represent the average ± standard deviation. (n = 6 biological replicates,

p<0.0001).

https://doi.org/10.1371/journal.pone.0236175.g007
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inhibitors that have previously been described to modulate transgenic Ad5 gene expression [5]

also inhibited wild-type Ad5 gene expression.

Matrix metalloprotease inhibitors like TAPI-0 and TAPI-1 have been studied in clinical tri-

als as metastatic cancer treatments [20, 21]. Although with limited success, these studies pro-

vide data on the safety and tolerability of these drugs. Similarly, the field of Alzheimer’s

Disease has completed multiple clinical studies evaluating the effects of γ-secretase in disease

progression. Although toxicity problems have been reported with these inhibitors due to its

interference with Notch signaling, new compounds that inhibit the γ-secretase complex while

sparing Notch signaling are under development [22]. Studies focusing on the use of PKC

inhibitors for diabetic retinopathy [23–25] have demonstrated the tolerability of these mole-

cules and potential efficacy in the disease. Finally, the inhibition of ROK for ocular disease

using small compounds have also been explored in subjects with diabetic macular edema [26].

These studies provide evidence of the potential clinical value of targeting these pathways and,

based on our studies, could indicate a potential new repurposing of these compounds. Future

studies will be needed to determine the efficacy of repurposing these compounds for adenovi-

rus infections.

The sequential proteolysis and liberation of CD44 intracellular domain has been described

[27]. Once liberated, CD44-ICD can regulate gene expression through three hypothetical

mechanisms: transactivation, tethering, or synergism [28]. CD44-ICD transactivation is

believed to be mediated through a direct interaction of CD44-ICD with its response element

(CIRE: CCTGCG), which can be found 38 times throughout the Ad5 genome. Although not

tested in our work, we can predict that CD44-ICD could be in part, mediating increase Ad5

gene expression through transactivation. This CIRE sequence is absent from the CMV pro-

moter used in our studies, which suggest that CD44-ICD could be working through a tethering

mechanism requiring a specific transcription factor. Future studies will test our hypothesis

concerning CD44-ICD mechanism of action.

Previous research has demonstrated that gene therapy can potentially benefit patients with

ocular diseases [1, 2]. We have explored mechanisms both immunologic [3] and biochemical

[4–6] that can explain these results. The mechanism of anterior chamber acquired immune

deviance (ACAID) can explain the long duration of transgene expression of cells within the

ocular environment [29, 30]. Our laboratory has also found that vitreous, the gelatinous mate-

rial within the globe of the eye, can enhance transgene expression delivered by adenoviral vec-

tors. There are both hyaluronan dependent and independent mechanisms and mechanisms

that involve versican [5, 6]. Both versican and hyaluronan are expressed in relatively high con-

centrations in vitreous [31, 32]. The hyaluronan dependent mechanism appears to involve the

hyaluronan receptor CD44. When hyaluronan binds to CD44, metalloproteinase cleaves the

extracellular domain creating the substrate that allows γ-secretase to release an intracytoplas-

mic peptide that translocates to the nucleus [33, 34]. This second proteolytic step appears to

require PKC phosphorylation of the intracytoplasmic domain adjacent to the proteolytic

domain [35]. When inhibitors of these proteases and the kinase are introduced in vitro, the

enhancement of adenoviral-mediated transgene expression is inhibited [5]. Downstream bio-

chemical events that are influenced by CD44 include RhoA kinase-related pathways [36].

Inhibitors of RhoA kinase also inhibit vitreous-enhanced adenoviral-mediated transgene

expression. This process appears to be under the influence of Src kinase since Src inhibitors

greatly enhance adenoviral-mediated transgene expression [6].

To identify potential targets for therapeutic intervention in wild-type adenoviral infection,

we explored whether each of these modulators of adenoviral vector transgene expression could

affect wild-type F5 adenoviral replication. First, we found that incubation with vitreous

enhanced adenoviral hexon expression and replication. Interestingly, we could not verify an
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increase in active viral infectious particles using a standard plaque-forming assay. Potential

explanations for this could be a lack of sensitivity of the assay or failure of our in vitro system

to produce more active infectious units even though increased hexon and viral DNA had been

produced. Importantly, specific proteolytic and kinase inhibitors inhibited adenoviral replica-

tion, therefore, implicating these pharmacologic agents as potential therapeutic options to

treat and prevent adenoviral infections, a leading cause of human morbidity and in severely

immunocompromised individuals, mortality. Furthermore, these same inhibitors could inhibit

Ad TGE in human conjunctiva a target tissue of wild-type adenoviral infection.

Since transcription control appeared to be involved in the transgene expression [5],

transcription regulatory pathways were next explored. A previous study has implicated

Janus kinase (JAK) activity being required for vitreous-mediated TGE enhancement [6].

When the JAK1/2 inhibitor ruxolitinib was added to Ad5-transduced cells incubated in

vitreous or versican containing media (VCS), the vitreous or VCS-mediated enhancement of

transgene expression was inhibited. The same effect was observed when STAT3/5 inhibitors

C188-9 and 5,15-DPP were employed [6]. Although this has not yet been tested in cells trans-

duced with Ad5WT, it is possible that JAK/STAT can be another target to treat adenoviral

infections.

There currently is a need for pharmacologic preventive or therapeutic regimens for adeno-

viral infections. We have previously found biochemical pathways that modulate transcription

of transgenes delivered by adenoviral vectors previously used in gene therapy. This manuscript

demonstrates that these same biochemical targets might be useful to treat and prevent wild

type adenoviral infections in humans.

Supporting information

S1 Fig. Y79 WT Ad5 hexon western. Full western blot in support of Fig 1A.

(TIF)

S2 Fig. Y79 WT Ad5 E1a western. Full western blot in support of Fig 1C.

(TIF)
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