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Abstract: Immunotherapy has emerged as the new therapeutic frontier of cancer treatment, showing
enormous survival benefits in multiple tumor diseases. Although undeniable success has been
observed in clinical trials, not all patients respond to treatment. Different concurrent conditions can
attenuate or completely abrogate the usefulness of immunotherapy due to the activation of several
escape mechanisms. Indeed, the tumor microenvironment has an almost full immunosuppressive
profile, creating an obstacle to therapeutic treatment. Phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) governs a plethora of cellular processes, including maintenance of genomic
stability, cell survival/apoptosis, migration, and metabolism. The repertoire of PTEN functions
has recently been expanded to include regulation of the tumor microenvironment and immune
system, leading to a drastic reevaluation of the canonical paradigm of PTEN action with new potential
implications for immunotherapy-based approaches. Understanding the implication of PTEN in cancer
immunoediting and immune evasion is crucial to develop new cancer intervention strategies. Recent
evidence has shown a double context-dependent role of PTEN in anticancer immunity. Here we
summarize the current knowledge of PTEN’s role at a crossroads between tumor and immune
compartments, highlighting the most recent findings that are likely to change future clinical practice.
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1. Introduction

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a major nonredundant,
dose-dependent tumor-suppressor gene able to act in both a phosphatidylinositol 3-kinase
(PI3K)-dependent and -independent manner [1]. PTEN protein is involved in the regulation of
several crucial cell functions, such as maintenance of genomic stability, cell survival, apoptosis,
migration, and metabolism, and even partial PTEN loss of function is enough to promote tumorigenesis
and accelerate cancer progression [2]. Since its discovery as an elusive tumor suppressor, PTEN has been
identified as a lost or mutated driver gene in numerous sporadic and heritable tumors [3]. A decade of
mechanistic studies has established the intimate role of PTEN and its fine regulation in several animal
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models and in vitro experiments. In particular, mouse models of main gene mutants and the generation
of allelic series in mice with progressively decreased PTEN doses allowed PTEN functional loss to
be depicted as a driving force in multiple tumors [2,4–8] and demonstrated that mutated proteins
heterodimerize with wild-type PTEN, restraining PTEN activity in a dominant-negative fashion [9].
Consistently, transgenic mouse lines bearing varying levels of wild-type PTEN overexpression acquired
anticancer protective features through a healthy metabolism switch, thus opening a route for novel
treatment modalities for cancer prevention and therapy [10].

Increasing studies have investigated the potential prognostic and predictive role of PTEN in
cancer. However, due to its complex regulation, the mere evaluation of gene mutations is not sufficient
to fully uncover the broad range of activity loss status [11]. Indeed, besides genetic alterations,
different mechanisms of regulation of PTEN expression and function, including transcriptional
regulation, noncoding RNAs, post-translational modifications, and protein–protein interactions,
have been reported [12,13]. Interestingly, a new self-regulatory feed-forward loop sustained by
PI3K-FOXO-deubiquitinase USP11 in response to PTEN action has been described, which improves its
stability and tumor-suppressive activity [14].

Notably, the repertoire of PTEN functions has recently been expanded to include regulation of
the tumor microenvironment and immune system, thus changing the canonical paradigm of PTEN
action with new potential implications for immunotherapy-based approaches. Here we summarize the
current knowledge of the role of PTEN at a crossroads between tumor and immune compartments.

2. PTEN Function in Tumor-Immune Microenvironment

Tumor-associated stromal cells, such as fibroblasts and endothelial cells, cooperate with cancer
cells to promote proliferation, invasion, and metastasis to distant sites. The immune system orchestrates
a primary protective antitumor response; however, tumors often foster a tolerant microenvironment
switch, inducing immunosuppressive signals to reduce this protective mechanism.

The basis of tumor-induced anergy has been widely investigated in the last decades, and several
studies highlighted the role of T cell unresponsiveness in the early events of tumor progression [15–17].
In addition to its cell autonomous effects on cancer cells, PTEN exerts an important regulatory role
in tumor microenvironment composition, counteracting the instauration of an immunosuppressive
milieu, thus preventing tumor immune escape [18] (Table 1).

The first evidence of PTEN involvement in immunity emerged in a study correlating its germline
deletion with autoimmune disorders [19], followed by a demonstration that T cell-specific PTEN
knockout affects T cell homeostasis, inducing spontaneous activation and autoantibody production in
mouse models [20].

The emerging literature suggests a central role of PTEN in both innate and adaptive immunity.
Myeloid PTEN-deficient mice exhibited augmented collagen deposition, dysregulation of macrophage
polarization, and secretion of proinflammatory and profibrotic factors after induction of pulmonary
fibrosis [21]. Myeloid-specific depletion of PTEN also increased the recruitment of neutrophils
at the inflamed site [22,23]. Conditional deletion of PTEN in B cells led to the acquisition of a
hyperproliferative profile [24], while its deletion in dendritic cells caused expansion of CD8+ and
CD103+ subpopulations [25]. PTEN loss in CD4+ T cells enhanced their helper function, with augmented
activation and production of cytokines [26].

Further studies demonstrated that PTEN controlled cancer cell secretome, avoiding secretion of
cytokines, with immunosuppressive potential. In a PTEN-defective melanoma cell line engineered to
express PTEN under a tetracycline-responsive promoter, PTEN negatively regulated the expression of
the immunosuppressive cytokines interleukin (IL)-10, IL-6, and vascular endothelial growth factor
(VEGF) by inhibiting signal transducer and activator of transcription (STAT)3.
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Table 1. Preclinical studies on the role of PTEN pathway in regulation of anti-tumor immunity.

Tumor Type Tumor Model Consequence for Immune Regulation
and Tumor Immune Microenvironment Mechanism Involved Reference

Melanoma

Patient-derived short-term melanoma
cultures that either naturally express or
lacked PTEN gene; PTEN knock-down/

knock-in melanoma cell lines.

Increase of IL-10, IL-6 and VEGF; reduction
of secretion of the pro-inflammatory
cytokine IL-12 by monocyte-derived

dendritic cells.

In melanoma cells lacking PTEN, STAT3 activated
the transcription of immunosuppressive cytokines in

a PI3K-dependent manner. Moreover, PD-L1 was
upregulated, leading to immune evasion.

Dong et al., Oncogene
2014 [27]

Melanoma
Genetically engineered mouse models
with specific deletion of PTEN in Tregs

(PTENTreg-KO mice).

Intra-tumor increment of activated
proinflammatory Ly6c+CD11b+ myeloid

dendritic cells, which expressed more
CD86 and less PD-L1. Tregs in the tumor

lost their suppressive phenotype and
converted into proinflammatory helper

cells (ex-Tregs).

Genetically modified mice with specific deletion of
PTEN in Tregs showed Treg destabilization, slow

melanoma tumor growth, high grade of
inflammation and were not able to create an

immunosuppressive tumor microenvironment.

Sharma et al., Science
advances 2015 [28]

Melanoma Mouse model bearing PTEN deleted
melanoma tumors.

Decreased of T cell trafficking in tumor
bulk in adoptive T cell therapy

mouse models.

Loss of PTEN promoted resistance to T cell killing
and decresed T cell infiltration by inducing

expression of immunomodulatory cytokines, such as
CCL2 or VEGF, and inhibiting autophagy pathway.

Peng et al., Cancer
discovery 2016 [29]

Prostate tumor Mice bearing PTEN-null senescent
prostate tumors.

Increase of tumor infiltration of MDSCs.
Reduction of CD4+, CD8+ and natural

killer (NK) infiltrates.

In PTEN-null senescent tumors, activation of the
JAK2/STAT3 pathway via protein tyrosine
phosphatase PTPN11/SHP2 established an

immunosuppressive tumor microenvironment with
production of MDSC chemoattractant cytokines.

Toso et al., Cell reports
2014 [30]

Prostate tumor
Genetically engineered mouse models

with specific deletion of PTEN in prostate
epithelial cells (Ptenpc−/− mice).

Increase of tumor infiltration of MDSCs.
The massive infiltration of MDSCs induced secretion
of IL-1 receptor antagonist (IL-1RA) that hampers

senescence response thus sustaining tumor growth.

Di Mitri et al., Nature
2014 [31]

Prostate tumor

Genetically engineered mouse models
with specific prostate deletion of PTEN

(Ptenpc−/− mice), PTEN and Zbtb7a
(Ptenpc−/−; Zbtb7apc−/− mice), PTEN and

p53 (Ptenpc−/−; Trp53pc−/− mice) and
organoid cultures.

Increase of tumor infiltration of MDSCs.

Combined deletion of PTEN and Zbtb7a or PTEN
and p53 in prostate tumors promoted tumor

progression through MDSC recruitment, NF-κB
signalling activation and cytokines secretion.

Bezzi et al., Nature
medicine 2018 [32]

Pancreatic ductal
adenocarcinoma

(PDAC)

Genetically engineered mouse models
with specific pancreatic deletion of PTEN
(Pdx1-Cre, KrasG12D and PtenL mice).

Increase of tumor infiltration of MDSCs,
neutrophils, monocytes and Tregs.

PTEN loss induced secretion of chemoattractant
cytokines CXCL1, G-CSF, IL-23 via NFkB.

Ying et al., Cancer
discovery 2011 [33]
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Table 1. Cont.

Tumor Type Tumor Model Consequence for Immune Regulation
and Tumor Immune Microenvironment Mechanism Involved Reference

Brain metastatic
tumor

Co-culture of tumour cells with primary glia
(90% astrocytes). Mouse model obtained by
intracarotidly injection of syngeneic mouse

melanoma B16BL6 cells to form brain
metastase with or whitout astrocyte-specific

depletion of PTEN-targeting miRNAs.

Recruitment of ionized calcium-binding
adapter molecule 1 (IBA1)-expressing

myeloid cells.

Astrocyte-derived exosomes mediated an
intercellular transfer of PTEN-miRNAs to brain

metastatic tumor cells to simulate transient PTEN
loss status which in turn induced secretion of CCL2
with recruitment of IBA1-expressing myeloid cells,

thus further enhancing metastasis outgrowth.

Zhang et al., Nature
2015 [34]

Breast cancer
Genetically engineered mouse models with

specific inactivation of Pten in stromal
fibroblasts of mouse mammary glands.

Massive remodeling of the extra-cellular
matrix (ECM), enhanced deposition of

collagen, innate immune cell infiltration
and increased angiogenesis.

Loss of PTEN in stromal fibroblasts Sustained tumor
growth through an Ets2-dependent transcriptional
program with induction of MMP9 and CCL3 and

VEGF pathway.

Trimboli et al., Nature
2009 [35]

Breast cancer Genetically engineered mouse models with
specific delection of PTEN in fibroblast.

Increase of MMP9, MMP2, BMP1, LOXL2
and EMILIN2, increased angiogenesis.

PTEN loss from mammary stromal fibroblasts
activates an oncogenic secretome that orchestrates

the transcriptional reprogramming of other cell
types in the microenvironment. Downregulation of
miR-320 and upregulation of one of its direct targets

ETS2, are critical events in Pten-deleted stromal
fibroblasts responsible for inducing this oncogenic

secretome, which in turn promotes tumour
angiogenesis and tumour-cell invasion.

Bronisz et al., Nature
cell biology 2011 [36]

Thyroid cancer
Co-culture of PTEN-deficient thyroid cancer
cell line with monocytes derived from PTEN
hamartoma tumor syndrome (PHTS) patients.

Innate immune cells from PHTS patients
acquired a more proinflammatory
phenotype and increased lactate

production.

Secretion of proinflammatory factors. Sloot et al., Oncogene
2019 [37]

Glioma Glioma cell line with genetic deletions in or
mutations of PTEN Increase of immunosuppressive mileu.

Specific loss of PTEN in glioma cells induced
reduction of anti-tumor immunity and resistance to
tumor-specific T cells lysis with increase of PD-L1

expression through a translational regulation
mechanism.

Parsa et al.,Nature
medicine 2007 [38]

Glioblastoma
Primary human glioblastoma cell lines

derived from resected patients and
co-cultured with matched autologous T-cells.

High T-cell apoptosis upon contact with
PTEN-deficient cancer cells.

PTEN loss confered immunoresistant phenotype
through the PI3K/Akt/mTOR pathway.

Waldron et al., Journal
of clinical neuroscience

2010 [39]

Gastric cancer Mouse models treated with gastric cancer cell
derived exosomes. Increase of MDSCs activation.

Gastric cancer-secreted exosomes were able to
deliver miRNA-107 to the host MDSCs inducing
their activation through PTEN-downregulation.

Indeed, the release of PI3K pathway induced the
expression of ARG1 in MDSCs thus increasing their

suppressive function.

Ren et al, Cancer
Management and
Research 2019 [40]
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The addition of conditioned media from established melanoma cell lines and patient-derived
short-term melanoma cultures lacking PTEN to monocyte-derived dendritic cells inhibited the ability
of these cells to secrete the inflammatory cytokine IL-12. Blockage of IL-10, IL-6 and VEGF by using
neutralizing antibodies partially restored IL-12 production, thus confirming the role of these secreted
cytokines in mediating PTEN loss-dependent immunosuppression [27]. An analysis of histological
samples from 67 malignant melanoma patients with or without brisk host response showed that PTEN
expression was positively correlated with brisk host response [27].

Furthermore, mice bearing PTEN-null senescent prostate tumors displayed a massive tumor
infiltration of granulocytic myeloid-derived suppressor cells (MDSCs) recruited in tumor bulk by
the unrestricted activation of the Janus kinase (JAK)2/STAT3 pathway and the consequent secretion
of chemoattractant molecules. Consistently, treatment with Jak2/Stat3 inhibitors reprogrammed the
secreted cytokine network, leading to antitumor immune response and enhanced chemotherapy
efficacy [30]. In agreement with these findings, a non-cell-autonomous mechanism has been described,
by which prostate cancer driven by PTEN loss may evade senescence stimuli in the early step of
tumor progression through tumor microenvironment-derived factors. Indeed, at 7–8 weeks of age,
genetically engineered mouse models (GEMMs) with specific deletion of PTEN in prostate epithelial
cells (Ptenpc−/− mice) developed premalignant prostatic lesions characterized by a strong senescence
response that counteracted tumor progression. At this stage, PTEN-null lesions showed a concomitant
presence of both senescent and proliferative cells; however, the massive infiltration of MDSCs induced
secretion of interleukin-1 receptor antagonist (IL-1RA), which hampered the senescence response,
thus sustaining tumor growth [31].

Moreover, in mouse models of pancreatic ductal adenocarcinoma, PTEN loss influenced the
frequency of intratumoral neutrophils, monocytes, and regulatory T cells (Tregs) through activation of
NFkB and expression of chemoattractant cytokines such as CXCL1, G-CSF, and IL-23 [33].

Other deletions may also cooperate with PTEN loss to modify the immune compartment of the
tumor microenvironment. For instance, combined deletion of PTEN and Zbtb7a in prostate tumors
promoted tumor progression through MDSC recruitment and NF-κB signaling activation, whereas
compound loss of PTEN and p53 were associated with an immunosuppressive phenotype [32].

A recent preclinical study on gastric cancer models demonstrated that cancer-secreted exosomes
were able to deliver specific PTEN-regulating microRNA (miRNA) to MDSCs, inducing their expansion
and activation [40].

Notably, a bidirectional regulation mechanism by which PTEN may suppress pro-oncogenic
secretome and stroma immune tolerance has been postulated; on the contrary, stroma cells may
secrete miRNA-containing exosomes to target PTEN expression in cancer cells. This epigenetic
downregulation occurs only at specific metastatic sites and is strictly linked to the specific local
microenvironment. More specifically, it has been demonstrated in both human samples and mouse
models that astrocyte-derived exosomes mediate an intercellular transfer of PTEN-miRNAs to brain
metastatic tumor cells to simulate transient PTEN loss status, which in turn leads to CC-motif
chemokine ligand 2 (CCL2) secretion with recruitment of ionized calcium-binding adapter molecule
1 (IBA1)-expressing myeloid cells, thus further enhancing metastatic outgrowth [34]. The fine
balance between pro- and antitumorigenic forces decides the fate of cancer progression/inhibition.
Moreover, a stroma-specific PTEN signaling pathway that involves the activation of an Ets2-dependent
transcriptional program in fibroblast surrounding tumors and suppresses mammary cancer growth has
been reported. Mouse models with specific PTEN loss in fibroblast showed extended gene expression
reprogramming and massive remodeling of the tumor microenvironment, with increased extracellular
matrix (ECM) deposition, innate immune cell infiltration, and increased angiogenesis [35,36].

PTEN is frequently mutated in sporadic cancers as well as hereditary tumor predisposition
syndromes, such as PTEN hamartoma tumor syndrome (PHTS), which increases the risk of benign
and malignant tumors, including thyroid cancer. A recent work demonstrated that co-culture of
macrophages with a PTEN-deficient thyroid cancer cell line induced a strong proinflammatory
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phenotype compared to PTEN wild-type ones [37]. Further studies in murine knockout models of
PHTS demonstrated that a loss of PTEN function led to deregulation of the immune response with a
decreased ability of dendritic cells to prime CD8+ T cells, leading to impaired tumor eradication [41].

These findings indicate that PTEN may also have a critical role in immunity, thus demonstrating
a functional link between its activities as a tumor suppression driver gene and tumor immune
microenvironment regulator gene (Figure 1).
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Figure 1. PTEN in cancer immune microenvironment regulation. PTEN loss in tumor cells induces
an immunosuppressive microenvironment through secretion of immunosuppressive cytokines and
MDSCs/Tregs chemoattractant molecules, inhibition of autophagy pathway and CD8 T cell killing,
secretion of miRNA-containing exosomes to target PTEN expression in MDSCs inducing their
activation. PTEN loss in fibroblasts surrounding tumor increases immune cell infiltration and
induces microenvironment remodeling while inhibition of AKT pathway in T cells enhances memory T
cell differentiation.

3. PTEN Pathway in Regulatory T Cells: A Controversial Role

CD4+ FOXP3+ regulatory T cells (Tregs) are a fundamental component of the adaptive immune
system, able to mediate contact inhibition of effector T cells and deputed to the release of suppressive
cytokines such as TGF-β and IL-10 [42]. Cytokine signals drive differentiation of naïve CD4+ T cells in
Tregs, and several Treg cell functions appear to rely on an intact PTEN/PI3K/AKT pathway [43].

Tumor cells may avoid immune surveillance through upregulation of specific proteins deputed to
the maintenance of peripheral immune tolerance, such as programmed cell death ligand-1 (PD-L1),
which binds the immune receptor programmed cell death-1 (PD-1) on immune cells. The activated
downstream pathway leads to inhibition of cytotoxic T lymphocytes and reduction of tumor-infiltrating
T cells; on the other hand, PD-1/PD-L1 interaction induces the differentiation of CD4+ T cells into
Tregs and enhances their suppressive function [44]. This effect is mediated by the inhibition of AKT
phosphorylation and simultaneous PTEN overexpression.

Tregs increase their regulatory function in response to inflammatory stimuli via induction of
PTEN expression [44]. Activated Tregs upregulate PD-1, which in turn increases PTEN phosphatase
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activity and turnover. This effect is mediated by inhibition of casein kinase 2 (CK2), a serine/threonine
protein kinase that regulates PTEN activity [45].

Furthermore, it has been demonstrated that cell contact–dependent potentiation of Treg stability
and function is mediated by the interaction between semaphorin-4a, expressed on T effector cells and
dendritic cells, and NRP-1, expressed at high levels on Tregs, via activation of the PTEN axis [46].

Indoleamine 2,3-dioxigenase (IDO) is an enzyme involved in immunosuppressive metabolism,
catalyzing the rate-limiting step of L-tryptophan (Trp) conversion into L-kynurenine (Kyn) [47].
It exerts strong immunosuppressive effects in physiological conditions such as pregnancy and during
tumor progression, affecting both innate and adaptive immunity [48–51]. Persistent activation of
this kynurenine pathway leads to depletion of the Trp pool in immune cells, with a consequential
lack of response to immunological stimulus [52]. Moreover, accumulation of Kyn and its derivative
products elicits cytotoxic effects on immune effector cells and stimulates Treg differentiation [53,54].
In the past, genetic or pharmacological targeting of the IDO pathway was evaluated as a strategy
to counteract tumor spreading [55–57]. Interestingly, a permanent PD-1/PTEN-driven feedback
loop has been described, in which the immunoregulatory enzyme IDO, expressed on tolerogenic
dendritic cells (DCs) and other antigen-presenting cells (APCs), activates the PTEN pathway in
Tregs, inducing a reduction of PI3K/AKT activation and thus an increment of FOXO1 and FOXO3a
activity, which upregulates PD-1 and PTEN expression, creating an autosustaining persistent PTEN
stimulation loop that stabilizes the suppressive Treg population [28,58–60]. Thus, IDO and PD-1 work
sequentially to sustain the suppressive Treg phenotype. Blockage of PD-1 causes AKT phosphorylation,
progressive loss of FOXO3a expression, and abrogation of the suppressive features. Consistently,
pharmacological targeting of PTEN after immunotherapy with vaccine/T cells or chemotherapy in
melanoma mouse models profoundly reprogrammed the tumor microenvironment from a suppressive
to a proinflammatory milieu, with rapid regression of tumors. Moreover, inhibition of PTEN
induced an intratumor increment of activated proinflammatory Ly6c+CD11b+ myeloid dendritic cells,
which expressed more CD86 and less PD-L1 [28].

Therefore, PTEN may act in two opposite ways: as a powerful tumor suppressor if expressed in
tumor cells, and as an immune suppressor and tumor escape enhancer if expressed in Tregs (Figure 2).
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Genetically modified mice with specific deletion of PTEN in Tregs (PTENTreg-KO mice) showed
slow melanoma and Lewis lung carcinoma (LLC) tumor growth and a high grade of inflammation
and were not able to create an immunosuppressive tumor microenvironment. Moreover, injection of
apoptotic cells in PTENTreg-KO tumor-free mice induced an inflammatory CD11b+CD103+ myeloid
response and elicited no FOXO3a+PD-1+ Treg recruitment. Similar results were obtained with
pharmacological PTEN inhibition [28].

PTEN acts as a negative regulator of IL-2-mediated expansion of Tregs. Indeed, Treg cells
lacking PTEN were increased in number [61]. Further studies on PTEN/Treg silenced mouse
models demonstrated a propensity of T cells to differentiate into T helper phenotype with an
exacerbation of follicular helper and germinal center responses and a global loss of Treg stability.
Indeed, PTEN-negative Tregs lost the expression of high-affinity IL-2 receptor (IL-2Rty and FOXP3,
and thus their suppressor function [43,62]. Gene-set enrichment analysis showed that the top 10
upregulated genes in PTEN-deficient Tregs were associated with cell cycle pathways. Moreover,
ingenuity pathway analysis of differentially expressed genes between wild-type and PTEN-deficient
Tregs revealed upregulation of pathways implicated in autoimmune diseases, glycolysis, T helper cell
differentiation, and immune signaling in PTEN-deficient cells [62].

Overall, these findings demonstrate that PTEN is highly expressed in Tregs and this is essential to
retain the characteristic immunosuppressive phenotype. In conflict with these data, it has been shown
that mice with a deletion of PTEN in the T cell compartment developed normal Tregs that responded
to IL-2 proliferative stimulation while retaining their ability to suppress effector T cells [63]. Moreover,
another study reported that specific deletion of the subunit p110o of PI3Ko in Tregs disrupted their
function and enabled immune-mediated tumor regression in murine models of lymphoma and breast
cancer [64].

4. PTEN-Modulating Strategies

4.1. Inhibition of PTEN Function

In recent years, PTEN inhibitor drugs have been developed and evaluated for their neuroprotective
and proregeneration properties, and subsequently for their anticancer function [65]. The orthovanadate
drug VO-OHpic is a high-affinity small-molecule inhibitor of PTEN that has been tested to destabilize
the PTEN+ Treg population. In melanoma and LLC mouse models, VO-OHpic in combination with
low doses of chemotherapy showed a marked synergistic antitumor effect with rapid immune system
activation [28,58]. In established tumors, PTEN inhibition did not spontaneously promote tumor
regression by itself, but needed inflammatory stimuli induced by chemotherapy or immunotherapy,
which sensitized Tregs to PTEN blockade-dependent destabilization. However, besides Tregs,
many different cells express PTEN, thus VO-OHpic does not work selectively. Since PTEN acts
as tumor-suppressor gene in cancer cells, its wide inhibition can raise some concerns. However,
the authors argued that the effects of tumor-suppressor gene blockade occur after a long time, thus one
optional strategy would be short-term intermittent treatment, such as pulsed immunotherapy [58].

4.2. Reactivation of PTEN Pathway

Regarding the “tumor side” of the problem, recent studies have proposed new interesting
strategies to reactivate antitumor PTEN function in tumor cells. For instance, the natural compound
indole-3-carbinol has been proposed as a potential therapeutic strategy for cancer prevention and
treatment thanks to its induction of PTEN reactivation [66]. Indole-3-carbinol is a natural compound in
cruciferous vegetables derived from the breakdown of glucobrassicin [67]. Crystallographic analysis
identified a putative indole-3-carbinol binding pocket on WW domain containing E3 ubiquitin protein
ligase 1 (WWP1), an enzyme able to suppress dimerization, membrane recruitment, and PTEN function
through its K27-linked poly-ubiquitination. In vitro and in vivo studies on prostate cancer models
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confirmed indole-3-carbinol as a potent WWP1 inhibitor with antitumor activity, thus suggesting this
drug for a tumor suppressor reactivation approach [66].

Another proposed strategy to restore functional PTEN is cell-mediated therapy, in which specific
cells with tumor-homing ability, such as neural stem cells for glioblastoma, are genetically modified to
express a particular protein with therapeutic potential. An alternative PTEN isoform produced by
translation from an alternative upstream start codon called PTEN long (PTEN-L) has been described.
Unlike conventional PTEN, this isoform can be secreted and then captured by neighboring cells in
the intracellular compartment thanks to a specific signal sequence. An engineered version of PTEN-L
with leader sequence from human light-chain immunoglobulin G has been proposed to arm neural
stem cells. Interestingly, this modified PTEN-L showed enhanced secretion capacity and an increased
propensity to be transferred between cells [68]. Finally, nanoparticle-mediated systemic delivery of
PTEN mRNA demonstrated significant inhibition of tumor growth in mouse models of PTEN-null
prostate cancer [69].

5. PTEN Role in Immunotherapy Response

5.1. Immunotherapy

Immunotherapy springs from the primary need to revert T cell tolerance toward tumor antigens.
Much effort has been invested in target discovery and immunomodulating strategies, and today cancer
immunotherapy represents one of the major breakthroughs of cancer treatment.

The landscape of immunotherapy approaches comprises a plethora of targeting strategies,
such as tumor-targeting monoclonal antibodies, adoptive cell transfers, oncolytic viruses, cancer
vaccines, dendritic cell-based immunotherapies, immunostimulatory cytokines, immunomodulatory
monoclonal antibodies, immunosuppressive metabolism inhibitors, pattern recognition receptor
agonists, and immunogenic cell death inducers [70]. Among the others, the best and broadest
results have been recently achieved with immune checkpoint inhibitors targeting crucial molecules
of antitumor T cell response, such as cytotoxic T lymphocyte associated antigen-4 (CTLA-4), PD-1,
and PD-L1. The mechanism of action of CTLA-4 typically involves competition with another T cell
surface molecule, cluster of designation 28 (CD28), for binding to B7 proteins CD80 and CD86 in
order to deactivate T cells [71]. Tregs constitutively express CTLA-4 on cell membranes, and this is
believed to be critical for their immunosuppressive properties [72]. Indeed, CTLA-4 on Treg surfaces
can capture the ligands CD80 and CD86 from opposing APC cells by a trans-endocytosis process,
thus downregulating their expression and ultimately affecting the potency of APC cells to activate
other T cells [73,74].

Similarly, the PD-1 blockade restarts an effective antitumor immune response and reverses
Treg-mediated suppression of effector T cells. In physiological conditions, PD-1 activation inhibits
phosphorylation of TCR downstream molecules, thus reducing TCR signaling after extensive activation.
In pathological conditions, constitutive hyperactivation of PD-1 increases the number of exhausted
T cells, resulting in altered functionality and poor control of infections and tumors [75,76]. CTLA-4
and PD-1 differ in location. Whereas CTLA-4 is expressed exclusively by T cell compartment, PD-1 is
present also on B cells, natural killer cells, and myeloid cells. Its ligand PD-L1 is expressed on leukocytes
and nonhematopoietic cells, and in nonlymphoid tissues [77].

Since the first success of the anti-CTLA-4 ipilimumab in metastatic melanoma, several
practice-changing clinical studies have established the usefulness of such treatments in many solid tumor
types [77,78]. Actually, approved immune-checkpoint inhibitors include ipilimumab; the anti-PD-L1s
atezolizumab, avelumab, and durvalumab; and the anti-PD-1s pembrolizumab and nivolumab.

5.2. PTEN and Immunotherapy Resistance

The tumor microenvironment has a nearly full immunosilencing profile, creating a main obstacle
to immunotherapy treatment combined with immunogenic chemoradiotherapy. Indeed, although a
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massive release of tumor antigens occurs following cytotoxic treatment, the recognition machinery
frequently fails to cross-present them in an immunogenic fashion.

Studies in the literature report a different context-related role of PTEN in immunity according
to cell type. Indeed, the PTEN pathway in Tregs drives stabilization of the suppressive immune cell
population and tolerance toward apoptotic cells, thus revealing Treg-specific PTEN targeting as a
previously unsuspected strategy for tumor treatment.

Despite its pro-tumor immunosuppressive role in Tregs, specific loss of PTEN in cancer cells has
been linked to reduction of antitumor immunity, with induction of PD-L1 expression on glioma cells
through a translational regulation mechanism [38]. Similarly, in patient-derived short-term melanoma
cultures that either naturally expressed or lacked PTEN gene and in PTEN knockdown/knock-in cells,
PD-L1 expression was inversely correlated with PTEN expression, highlighting PD-L1 modulation as
an alternative PTEN-dependent mechanism to promote host immune response against cancer [27].

Consistently, activation of the PI3K-AKT-S6K1 pathway induces immune escape and apoptosis of
activated T cells, impairing tumor-specific T cell killing through upregulation of PD-L1 on colorectal [79],
lung [80], renal [81], breast, and prostate cancer cells [82]. Recent studies highlighted an association
between PTEN expression and immunotherapy response (Table 2).

Table 2. PTEN pathway and immunotherapy response in patients.

Treatment Tumor Type Study Results n. of Patients Reference

anti-PD-1
pembrolizumab or

nivolumab
Melanoma

Analysis of a cohort of 39 metastatic
melanoma patients treated with anti-PD-1

antibodies (pembrolizumab and
nivolumab) demonstrated that patients
with PTEN positive tumors achieved

significantly greater reduction of tumor
size than patients with PTEN negative

tumors (p = 0.029)

Cohort of 39
patients

Peng et al., Cancer
discovery 2016 [29]

anti CTLA-4
ipilimumab and/or

anti-PD-1
pembrolizumab

Melanoma

Analysis of a cohort of longitudinal tissue
samples from metastatic melanoma

patients treated with sequential immune
checkpoint blockade (CTLA-4 blockade

followed by PD-1 blockade at time of
progression) demonstrated that PTEN

loss is associated with CTLA-4 blockade
resistance.

Cohort of 56
patients

Roh et al., Science
translational

medicine 2017 [83]

anti-PD-1
pembrolizumab

Uterine
leiomyosarcoma

Analysis of primary tumor, the sole
treatment-resistant metastasis, and

germline tissue identified biallelic PTEN
loss as potential clinical mechanism of

acquired resistance to immune
checkpoint therapy.

Case report George et al.,
Immunity 2017 [84]

anti PD-1
nivolumab or

pembrolizumab
Glioblastoma

Mutations on PTEN were significantly
enriched in nonresponders to anti-PD-1
inhibitors. Analysis of matched pre- and
post-anti-PD-1 treatment samples showed

that PTEN-mutated tumors had a
significantly higher level of

CD68+HLA-DR−macrophages, which
was previously linked to poor survival in

melanoma.

Cohort of 76
patients

Zhao et al., Nature
medicine 2019 [85]

anti-PD-1
nivolumab and

anti-CTLA-4
ipilimumab

Non-small cell lung
cancer (NSCLC)

PTEN mutations were significanly
associated with resistence to

immunocheckpoint inhibitor (p < 0.05).

Cohort of 113
patients

Chen et al., Cancer
Sci. 2019 [86]

anti PD-1
nivolumab and
pembrolizumab

Non-small cell lung
cancer (NSCLC)

A metastatic NSCLC case with PTEN
mutation, 80% PD-L1 expression and
high tumor mutational load showed a
durable response to mTORC1 inhibitor

but was refractory to treatment with
anti-PD-1 antibodies.

Case report Parikh et al., Lung
Cancer 2018 [87]
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Interestingly, a metastatic non-small-cell lung cancer (NSCLC) case harboring PTEN mutation,
PD-L1 positivity, and high tumor mutation burden showed a lack of durable response to PD-1
inhibitor [87]. An analysis of somatic mutational profiles of 113 NSCLCs treated with immune
checkpoint inhibitors revealed that PTEN mutations were only found in nonresponders [86].

Moreover, Peng et al. demonstrated that PTEN knockout in melanoma cells determined protection
from cell lysis when co-cultured in vitro with tumor-reactive T cells and decreased T cell trafficking in
tumor bulk in adoptive T cell therapy mouse models [29]. More importantly, tumoral PTEN loss in
patients correlated with decreased T cell infiltration at tumor sites and poor response to PD-1 inhibitors.
In detail, PTEN expression was evaluated in 39 tumor specimens from metastatic melanoma patients
treated with pembrolizumab or nivolumab, revealing that high-PTEN tumors (more than 10% cell
positivity) displayed significant reduction in tumor size. However, the authors showed no correlation
between PTEN and PD-L1 expression either in PTEN knockout cell cultures or PTEN-negative and
-positive tumor regions from patient specimens with heterogeneous PTEN expression or in a cohort of
135 resected stage IIIB/C melanoma regional metastases. Thus, the mechanism of tumor protection
by PTEN loss does not depend on PD-L1 but is linked to the expression of immunomodulatory
cytokines, such as CCL2 or VEGF, and to the impairment of specific autophagy pathways. Indeed,
enforced expression of autophagy-related genes in PTEN knockout tumor cells fully restored their
susceptibility to T cell killing [29]. Similarly, targeting the PI3K pathway in mouse models with PTEN
loss by using a selective small molecule inhibitor improved T cell-induced tumor killing and efficacy
of immunotherapy with anti PD-1 and anti-CTLA4 treatments [29].

These findings led to the design of a Phase I/II clinical trial that will test a combination of
immunotherapy and targeted therapy with a selective PI3K-beta inhibitor in patients with metastatic
melanoma who lack the PTEN gene (NCT03131908).

A recent analysis of whole-exome sequencing data of 110 pretreatment melanoma tumor biopsies
with matching germline tissue samples and RNA-seq data from a subset of 42 patients revealed that a
lower burden of copy number loss was significantly associated with clinical benefit to CTLA-4 blockade.
Among the regions associated with recurrent copy number loss, chromosome 10q emerges as being
rich in tumor suppressor genes such as PTEN. In a further analysis, the authors highlighted a closer
relationship between PTEN loss and CTLA-4 blockade response with an odds of resistance 5.58 times
greater than PTEN proficient tumors [83].

Consistent with these observations, a case study reported that in a patient with metastatic uterine
leiomyosarcoma who had an exceptional response to anti-PD-1 pembrolizumab, PTEN was revealed
as the principal actor of anti-PD-1 checkpoint blockade response [84]. The authors observed a rapid
and marked regression at all tumor sites after four doses of anti PD-1, with the exception of one single
nonresponding lesion. The comparative analysis between pretreatment samples and germline tissue
revealed biallelic PTEN loss as the possible driver of acquired resistance, exclusively harbored by the
resistant metastasis, together with reduced expression of two neoantigens linked to immunoreactivity.

A deconvolution analysis of genome-wide DNA methylation data from the complex cellular
mixtures of a wide spectrum of solid cancers demonstrated the existence of “immune hot” and
“immune cold” tumors with distinctive prognoses, genomic alterations, cytokine pathway activation,
and oncogenic drivers [88]. Moreover, the gene expression signature characteristic of hot tumors has
been found in samples from responders to immune-checkpoint inhibitors. Evaluation of the different
myeloid cell populations revealed a substantially higher percentage of M1 macrophages and T helper
1 (Th1) cells, together with a better prognosis and higher cytotoxic T lymphocyte response in hot
tumors with respect to cold tumors [89]. Contrariwise, cold tumors are enriched with Th2 cells and
M2-macrophages, which are associated with poor prognosis and immune-suppressive populations
such as MDSCs [90,91]. Of note, copy number analysis showed that deletion of PTEN in melanoma
cancer cells often segregates with cold tumors and thus immune depletion and potential resistance to
immunotherapy [88].
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Consistent with these observations, PTEN loss of function seems to be the driver of resistance to
anti-PD-1 checkpoint blockade also in glioblastoma [85]. In detail, Zhao et al. fully profiled glioblastoma
patients enrolled in a longitudinal study with anti-PD-1 nivolumab or pembrolizumab treatment
by whole-exome sequencing, RNA expression, and tissue imaging correlating these features with
treatment response. Genomic and transcriptomic analysis in a subset of patients (n = 45) showed that
PTEN somatic mutations were significantly associated with immunosuppressive expression signatures
in non-responder tumors, suggesting that PTEN may play a role in the establishment of a specific
tumor-immune microenvironment. Indeed, PTEN mutation was found in 23 out of 32 non-responders
and only three out of 13 responders. Conversely, mutations in the mitogen-activated protein kinase
(MAPK) pathway are significantly enriched in responders. Of note, the immunosuppressive signature
was most associated with the tumor subpopulation expressing the migration marker CD44 in
PTEN-mutated tumors rather than Tregs, revealing a central role of PTEN-mutated tumor cells
in immune regulation. To further explore the connection between PTEN and immunological features,
the authors examined RNA-sequencing data from 172 TCGA samples, demonstrating a significant
correlation between PTEN mutation and FOXP3-related transcriptional signature, together with a
higher percentage of macrophages, microglia, and neutrophils in the tumor microenvironment. Finally,
quantitative multiplex immunofluorescence of matched pre- and post-anti-PD-1 treatment samples
showed that PTEN-mutated tumors had a significantly higher level of CD68+HLA−DR− macrophages,
which was previously linked to poor survival in melanoma [92]. In post-treatment specimens, CD3+ T
cells were enriched only in PTEN wild-type tumor, while PTEN-mutated tumors displayed reduced
immune infiltration. The authors speculate that this phenomenon may be due to the changing
spatial structure in PTEN-mutant glioblastoma, characterized by increased clustering of tumor cells,
which physically hampers immune infiltration. More interestingly, immunosuppression gene sets were
elevated in non-responders before immunotherapy, but also in responders following immunotherapy,
highlighting the fundamental concept of primary resistance in non-responder tumors, probably led by
PTEN mutation, and acquired resistance in initial responders under treatment selection pressure [85].
A still unanswered issue is the possible role of PTEN post-transcriptional/-translational loss of activity
in guiding acquired resistance to immunotherapy after initial treatment success.

Another study on primary human glioblastoma cell lines derived from resected patients and
co-cultured with matched autologous T cells demonstrated high T cell apoptosis upon contact with
PTEN-deficient cancer cells, indicating that PTEN-deficient glioblastoma patients are suboptimal
candidates for immunotherapy. Pretreatment of these tumor cell lines with a specific PI3K inhibitor
reverses the massive apoptotic effect, suggesting the future exploration of immunotherapy in
combination with drugs targeting the PI3K/AKT/mTOR pathway [39]. Similar antitumor effects
have been demonstrated after co-treatment with toll-like receptor agonist and PI3K inhibitor [93].

5.3. AKT Pathway and Adoptive Cell Transfer Therapy

Adoptive cell transfer therapy (ACT) is a promising cellular immunotherapy approach based on
administering ex vivo expanded tumor-specific immune cells to cancer patients. Different cell types
can be administered for ACT, such as chimeric antigen receptor (CAR) T cells, TCR transduced T cells,
natural killer (NK) cells, and TILs. There are currently two CAR T cell therapies that are approved by
the FDA for the treatment of pediatric patients and young adults with refractory or relapsing B cell
precursor acute lymphoblastic leukemia and adult patients with refractory or relapsing large B cell
lymphoma. Despite encouraging clinical benefits of ACT, a main obstacle for long-lasting therapeutic
effects is the insufficient persistence of immune cells after adoptive transfer. Of note, constitutive
activation of PI3K impairs immunity response, promoting the development of short-lived terminally
differentiated effector T cells at the expense of long-lived memory T cells [94]. Conversely, several
studies demonstrated that inhibiting AKT signaling during ex vivo priming promotes features of
memory T cells and improves antitumor activity [95–99]. These findings suggest that therapeutic
modulation of AKT might be a promising strategy to increase the antitumor immunity of adoptively
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transferred cells, leading to the design of the first human gene therapy clinical trial to incorporate AKT
inhibitor in the T cell manufacturing process (NCT03139370).

6. Ongoing Clinical Trials

Clinical trials are currently under way to investigate a potential connection between the PTEN
pathway and immunotherapy. An ongoing Phase I study of targeted therapy plus anti-PD-L1
durvalumab in patients with advanced or metastatic solid tumors (MEDIPAC) is evaluating the
relationship between mutations in the AKT/PIK3CA/PTEN pathway and response to combination
therapy (NCT03772561). Another recent Phase Ib study (not yet recruiting) aims to evaluate the safety
and antitumor activity of targeted therapy in combination with durvalumab in patients with advanced
solid tumors selected for specific molecular alterations, including PTEN mutation (NCT03842228).

Moreover, several studies are investigating the feasibility and antitumor effect of PI3K-targeting
drugs in combination with immunotherapy in patients with metastatic melanoma who lack the
PTEN gene (NCT03131908), colorectal cancer (NCT03711058), large B cell lymphoma (NCT03484819),
lung cancer (NCT03257722), breast cancer, and gynecologic malignancies (NCT03719326). Currently
ongoing clinical trials are schematically summarized in Table 3.
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Table 3. Current clinical trials investigating PTEN-PI3K-AKT pathway and immunotherapy.

Conditions Immunotherapy
Treatment Study Description State Estimated

Enrolment Study Identifier

Advanced or metastatic
solid tumors

anti PD-L1
durvalumab

This is a Phase I dose-escalation study to evaluate the safety and
tolerability of combination treatment of AKT inhibitor AZD5363 +

PARP inhibitor olaparib + durvalumab. An exploratory objective is to
explore molecular correlates of the relationship between mutations in

AKT/PIK3CA/PTEN pathway and treatment response.

Recruiting 40 participants NCT03772561

Advanced solid tumors
selected for specific molecular

alterations, including
PTEN mutation

anti PD-L1
durvalumab

This is a Phase Ib study to evaluate effects and best dose of the
PI3Kinase inhibitior copanlisib and PARP inhibitor olaparib when

given together with durvalumab in patients with molecularly-selected
solid tumors including PTEN mutation.

Not yet
recruiting 102 participants NCT03842228

Metastatic melanoma with
PTEN Loss

anti-PD-1
pembrolizumab

This is a Phase I/II study to evaluate objective response rate and overall
survival of the selective PI3K-Beta Inhibitor GSK2636771 in

combination with pembrolizumab in patients with metastatic
melanoma and PTEN Loss.

Recruiting 41 participants NCT03131908

Relapsed/refractory
mismatch-repair proficient

colorectal cancer

anti-PD-1
nivolumab

This is a Phase I/II study to evaluate objective response rate of
PI3Kinase inhibitor copanlisib and nivolumab. Recruiting 54 participants NCT03711058

Recurrent/refractory diffuse
large B-cell lymphoma or
primary mediastinal large

B-cell lymphoma

anti-PD-1
nivolumab

This is a Phase II study to evaluate objective response rate of PI3Kinase
inhibition copanlisib hydrochloride and nivolumab. Suspended 106 participants NCT03484819

Metastatic triple-negative
breast cancer or
ovarian cancer

A2aR and A2bR
antagonist AB928

This is a Phase I/Ib study to evaluate safety, tolerability,
pharmacokinetic, pharmacodynamic, and clinical activity of

immunotherapy combinations. dual adenosine receptor antagonist
AB928 in combination with pegylated liposomal doxorubicin with or

without PI3kinase-gamma inhibitor IPI-549.

Recruiting 214 participants NCT03719326

Non Small Cell Lung Cancer anti-PD-1
pembrolizumab

This is a Phase Ib/II study to evaluate safety and objective response
rate of the standard pembrolizumab in combination with the

investigational agent PI3K-delta inhibitor idelalisib.
Recruiting 40 participants NCT03257722

HLA-DPB1*04:01 positive
adults with advanced cancers

T Cell Receptor
Engineered T Cells

(KITE-718)

This is a Phase I study to evaluate safety and objective response rate of
KITE-718 treated with AKT inhibitor during manufacturing process. Recruiting 75 participants NCT03139370
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7. Conclusions

PTEN is a well-known tumor suppressor gene able to block the proto-oncogenic PI3K/AKT
pathway in tumor cells. Notably, the repertoire of PTEN functions has been expanded to include
regulation of the tumor microenvironment and the immune system (Figure 3).
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Moreover, a controversial function has been reported in Treg-associated PTEN expression with
the growing idea of a new paradoxical pro-tumor-like skill. This evidence suggests a double
context-dependent role of PTEN according to the specific cell type. Indeed, PTEN expression is
crucial to prevent malignant transformation in normal and precancerous cells, and its loss both drives
cancer progression and induces a cascade of events that influence the microenvironment toward
an immunosuppressive profile. Contrary to its normal role as a tumor suppressor, PTEN-specific
expression in Tregs stabilizes these cells, preventing them from switching to an inflamed T helper-like
differentiation, thus contributing to the creation of a Treg-dependent immune-suppressive milieu,
which finally allows tumor immune escape and survival. Conversely, Treg decrement causes a
deep change of tumor microenvironment, with the acquisition of strong immunogenic features that
would be suitable for immunotherapy efficacy. A constitutively high level of PTEN protein has been
shown in tumor-associated Treg but not in effector T cells. Specifically, it has been demonstrated that
Treg cells require PTEN to sustain their suppressive function, supporting the expression of IL-2Rα,
a negative modulator of local immune response, and FOXP3 transcription factor. Indeed, mice bearing
Treg-specific deletion of PTEN lose Treg homeostasis and stability, gain Th1 response and B cell
activation, and are prone to developing autoimmune disease [43,62]. On these bases, the PTEN
pathway in Tregs represents an intriguing clinically actionable target to develop novel antitumor
immunotherapeutic strategies.

Given the central role of PTEN in tumor growth and antitumor immune response, interesting
approaches have been proposed to target PTEN expression in Tregs or induce its expression in tumor
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cells. However, the therapeutic potential of each PTEN-modulating approach may be mitigated
by the counterpart side effects, raising important concerns. Indeed, systemic administration of
PTEN-inhibiting drugs could hit not only PTEN activity in Tregs, but also residual PTEN function in
tumor and stroma, with potential pro-tumor consequences. Conversely, enhancing PTEN function
could reduce tumor growth while increasing the stability of the immunosuppressive Treg population.
A possible strategy to overcome the problems and increase the feasibility of these approaches could
be to use more selective modulating strategies or to explore complementary two-step double hit
approaches to induce PTEN depletion followed by cell-specific restoration of its pathway. Furthermore,
interfering with AKT downstream pathway in adoptively transferred T cells seems to be a promising
strategy to promote features of memory T cells and a long-lasting anti-tumor effect.

In recent years, the emerging field of oncoimmunology has fostered an increased understanding
of cancer biology, the tumor-immune interrelationship, and the fundamental balance between pro-
and antitumor forces. Strong efforts in this direction have guaranteed the development of several
immune-modulating strategies able to induce a lasting response in cancer patients. However, different
concurrent conditions can attenuate or completely abrogate the usefulness of immunotherapy due
to numerous escape mechanisms, such as a lack of immune cell infiltration, poor antigen expression
or presentation, tumor-mediated immune suppression, and release of immunomodulatory cytokines.
PTEN seems to play a pivotal, context-dependent role in antitumor immune regulation and thus needs
to be further investigated.
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