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Background: Because stomach adenocarcinoma (STAD) has a poor prognosis, it is necessary to explore 
new prognostic genes to stratify patients to guide existing individualized treatments.
Methods: Survival and clinical information, RNA-seq data and mutation data of STAD were acquired 
from The Cancer Genome Atlas (TCGA) database. Fifty-one nicotinamide adenine dinucleotide (NAD+) 
metabolism-related genes (NMRGs) were obtained from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Reactome databases. Differentially expressed NMRGs (DE-NMRGs) between STAD and 
normal samples were screened, and consistent clustering analysis of STAD patients was performed based 
on the DE-NMRGs. Survival analysis, Gene Set Enrichment Analysis (GSEA), mutation frequency 
analysis, immune microenvironment analysis and drug prediction were performed among different clusters. 
Additionally, the differentially expressed genes (DEGs) among different clusters were selected, and the 
intersections of DEGs and DE-NMRGs were selected as the prognostic genes. Finally, quantitative real-
time polymerase chain reaction (qRT-PCR) was performed on a human gastric mucosa epithelial cell line 
and cancer cell line to verify the expression of the prognostic genes.
Results: A total of 27 DE-NMRGs and two clusters were selected. There was a difference in survival 
between clusters 1 and 2. Furthermore, 18 DE-NMRGs were significantly different between clusters 1 and 
2. The different Gene Ontology (GO) biological processes and KEGG pathways between clusters 1 and 2 
were mainly enriched in cyclic nucleotide mediated signaling, synaptic signaling and hedgehog signaling 
pathway, etc. The somatic mutation frequencies were different between the two clusters, and TTN was the 
highest mutated gene in the patients of the clusters 1 and 2. Additionally, eight immune cells, immune score, 
stromal score, and estimate score were different between clusters 1 and 2. The patients in cluster 2 were 
sensitive to CTLA4 inhibitor treatment. Furthermore, the top five drugs (AP.24534, BX.795, Midostaurin, 
WO2009093927 and CCT007093) were significantly higher in cluster 1 than in cluster 2. Finally, three 
genes (AOX1, NNMT and PTGIS) were acquired as prognostic, and their expressions were consistent with 
the results of bioinformatics analysis. 
Conclusions: Three prognostic genes related to NAD+ metabolism in STAD were screened out, which 
provides a theoretical basis and reference value for future treatment and prognosis of STAD.
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Introduction

Gastric cancer (GC) is a malignant tumor originating from 
the gastric mucosal epithelium, and is often hidden, without 
specific symptoms. The incidence of GC in males is higher 
than in females, and worldwide it has become the fourth 
leading cause of death (1). The most common histological 
type of GC is stomach adenocarcinoma (STAD), which 
accounts for about 95% of GC patients. Research data show 
that in 2020 there were about 1.09 million new cases of GC 
in the world, and about 769,000 GC patients died (1). The 
mechanism of the occurrence and development of STAD 
is not completely clear. Patients usually seek treatment for 
dyspeptic symptoms such as nausea and vomiting, and the 
diagnosis is usually in the middle and late stages (2-4). In 
recent years, the incidence of GC has decreased, but the 
prognosis is not good. Therefore, it is necessary to explore 
new prognostic genes for stratified analysis of patients to 
guide the existing individualized therapy.

Nicotinamide adenine dinucleotide (NAD+) is one of the 
most important coenzymes in redox reactions and the core 

of energy metabolism. The traditional concept describes 
nicotinamide nucleotide metabolism as a very static process, 
which mainly emphasizes the mutual transformation 
between NAD and NADP oxidation and reduction forms 
(5,6). However, studies over the past 30 years have clearly 
shown that the metabolism, transport and function of 
NAD are dynamic and complex. NAD can be converted 
into NADP, NAADP and cADPR, which play key roles in 
energy transduction and cellular signal transduction, and 
the degradation products of NAD, such as nicotinamide and 
N-methylnicotinamide, have also been considered as key 
regulators of energy metabolism, epigenetics and disease 
status (7,8). NAD pathway metabolites can also be used 
as substrates for a variety of enzymes, including PARPs, 
sirtuins, CD38, ART, SARM1 and RNA polymerase, which 
are involved in many aspects of cell homeostasis (9,10). 
There are three independent metabolic pathways of NAD+ 
in the human body: Preiss-Handler pathway, ab initio 
synthesis pathway and remedial synthesis pathway (11).  
Changes in NAD homeostasis can be found in age-
related diseases such as neurological diseases, diabetes, and  
cancer (12). The NAMPT-mediated remedial pathway is 
necessary for most NAD+ production in mammalian cells, 
and the latest research by Lv et al. proposed that NAMPT, a 
key rate-limiting enzyme in the NAD+ synthesis pathway, be 
used as a starting point. It was found that NAD+ metabolism 
can drive tumor immune escape in a CD8+ T cell-dependent 
manner (13), suggesting that the level of NAD+ or NAMPT 
should also predict the effect of immunotherapy to some 
extent.

Therefore, in this study we downloaded the data of 
gastric adenocarcinoma patients from the University 
of California Santa Cruz (UCSC) Xena and carried 
out molecular stratification analysis based on NAD+ 
metabolism-related genes (NMRGs) to evaluate the 
relationship between different clusters and the prognosis of 
STAD, in order to further understand the differences in vivo 
of STAD patients with different survival rates. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://jgo.amegroups.com/
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Highlight box

Key findings
•	 Three nicotinamide adenine dinucleotide metabolism-related 

genes were discovered to play an important role in STAD.

What is known and what is new?
•	 NAD+ can directly and indirectly affect several essential biological 

activities, including metabolic pathways, DNA repair, chromatin 
remodeling, cellular senescence, and immune cell function.

•	 The kynurenine metabolic pathway affected by the key gene AOX1 
is a potential target for the treatment of gastric adenocarcinoma, and 
it may be possible to improve the efficacy of gastric adenocarcinoma 
immunotherapy by inhibiting kynurenine metabolism.

What is the implication, and what should change now? 
•	 Our results provide a theoretical basis and reference value for the 

treatment and prognosis of STAD. More research is needed to gain 
insight into the role of NMRGs in tumor development and to elucidate 
these molecular mechanisms that are of great value for cancer 
therapies targeting NAD+ and its metabolites. 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-1092/rc
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Methods

Data sources

Normalized gene expression data from RNA-sequencing 
(RNA-seq; Fragments Per Kilobase Million [FPKM] 
value) and somatic mutation data as well as the relevant 
clinical data of The Cancer Genome Atlas stomach 
adenocarcinoma (TCGA-STAD) cohort were downloaded 
from the University of California Santa Cruz (UCSC) Xena 
database (https://xenabrowser.net/datapages/, updated to 
July 20, 2019). The RNA-seq data contained 375 cancer 
and 32 normal samples, as well as 350 cancer samples 
with survival and clinical information. The NMRGs were 
downloaded from the “Pathway (hsa00760): Nicotinic acid 
and nicotinamide metabolism” metabolic pathway and the 
“R-HSA-196807: Nicotinic acid metabolism” metabolic 
pathway in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (https://www.kegg.jp/) and the Reactome 
database (https://reactome.org/) respectively according to a 
previous reference (14). Finally, 51 NMRGs were obtained 
after deduplication. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Screening for DE-NMRGs and consistent cluster analysis

A total of 49 NMRGs were identified in the RNA-
seq data of STAD. The expression matrices of the 49 
NMRGs were used to draw a boxplot using the R package 
“ggplot2” (15), and the differentially expressed NMRGs 
(DE-NMRGs) between STAD and normal samples were 
screened by the Wilcoxon test with P<0.05. The R package 
“ConsensusClusterPlus” (16) was used to perform consistent 
clustering analysis of STAD patients with the clustering 
parameters maxK =10, clusterAlg = “pam” and distance = 
“pearson”, based on the DE-NMRGs. Next, the optimal 
clustering method was selected based on the boundary 
points where the cumulative distribution function (CDF) 
value changed the most and the CDF downward trend was 
more stable. The uniform manifold approximation and 
projection (UMAP) and principal component analysis (PCA) 
were used to evaluate the distribution between the clusters. 

Survival analysis of patients with different clusters

Survival analysis of the patients in each cluster was 

performed using the R package “survival” (17) to compare 
the differences in survival among patients in the different 
clusters. Boxplots of the DE-NMRGs expression levels 
between different isoforms were plotted by the Wilcoxon 
test using the R package “ggplot2” (15). 

Correlation analysis between different clusters and clinical 
characteristics

The correlation of clinical characteristics between different 
clusters was based on the clinical information of samples 
from the TCGA database and the different clusters of 
patients by Chi-square test. Next, the R package “Heatmap” 
was used to draw a heatmap of the clinical characteristics of 
different clusters and DE-NMRGs.

Gene set enrichment analysis (GSEA) functional 
enrichment analysis among different clusters

The GSEA software (V4.0.3) was used to perform the 
functional enrichment analysis of the different clusters (18). 
The following parameters were set: (I) the KEGG pathway 
gene set was used as the enrichment background, setting 
the parameter gene sets database: c2.cp.kegg.v7.4.symbols.
gmt; (II) the Gene Ontology (GO) biological process 
gene was set as the enrichment background, setting the 
parameter gene sets database: c5.go.bp.v7.4.symbols.gmt; 
(III) set different clusters as the phenotype file, setting the 
parameter phenotype label: cluster2 VS cluster1; (IV) set 
the parameter Metric for gene sorting: Signal2Noise; (V) set 
parameters: gene list sorting method: real, gene list sorting 
method: descending order. According to the different folds 
of the cluster 2 versus cluster 1, the above gene sets were 
used as background genes for enrichment analysis.

Analysis of somatic mutation among different clusters

To investigate the somatic mutation frequencies among the 
different STAD clusters and observe different mutational 
patterns between clusters, the R package “maftools” was 
applied to analyze and visualize the mutation frequency of 
each mutation type between clusters (19). Single nucleotide 
variants (SNVs), single nucleotide polymorphisms (SNPs), 
insertions (INS), deletions (DELs) and other somatic 
mutational signatures between clusters were analyzed and 
visualized by “maftools” (19). Moreover, the top 20 genes 
with mutation frequencies in different clusters were selected 
for waterfall plot display. Next, the differentially mutated 

https://jgo.amegroups.com/article/view/10.21037/jgo-22-1092/rc
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genes between the different clusters were compared with 
P<0.001 by Fisher’s test in the mafCompare function, 
and the forestPlot function to draw a forest plot for 
visualization.

Immune microenvironment analysis

The proportion of 22 immune cells in all samples in 
the expression matrix was calculated using the Cell type 
Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) and the LM22 gene set (20). 
CIBERSORT was used to calculate the proportion of 
each immune cell in each sample, and the corresponding 
statistical value was calculated, excluding samples with 
P>0.05 (20). Using the R package “ggplot2” to draw a 
violin plot by the Wilcoxon test based on the score of each 
immune cell, immune scores, stromal scores and estimate 
scores for different clusters which were calculated using the 
Estimate algorithm (21). The heatmap of immune scores, 
stromal scores, estimate scores and differential immune cell 
expression levels for different clusters was drawn using the 
R package “pheatmap” (22).

Sensitivity analysis of immunotherapy and predictive 
analysis of chemotherapeutics

The sensitivities of PD-1 and CTLA4 inhibitors in the 
different clusters were analyzed using the submap algorithm 
in the GenePattern cloud server, and heatmaps were plotted 
by “pheatmap” (22). Based on the Genomics of Drug 
Sensitivity in Cancer database, a ridge regression model was 
constructed to predict each drug’s IC50, and the IC50 of 
patients with different clusters of 136 drugs was predicted 
using the pRRophetic algorithm (23). Next, the R package 
“ggplot2” was used to draw boxplots for visualization. The 
Wilcoxon test method was used to screen out drugs with 
significant differences between clusters.

Screening for prognostic genes and prognostic analysis

The differentially expressed genes (DEGs) in the gene 
expression matrix of different clusters were analyzed 
using the limma package (24). The difference threshold 
was set to: P<0.05 and |log2 fold change (FC)|>0.5. The 
intersections of the DEGs and DE-NMRG were selected as 

the prognostic genes using jVenn. 

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

Human gastric mucosa epithelial cell line (GES-1) and 
three human gastric cancer cell lines (HGC-27, NCI-N87 
and SNU-1) were purchased from iCell Bioscience Inc 
(Shanghai, China). Total RNA of all cell lines was extracted 
by TRIzol reagent (Thermo Fisher, ShangHai, CN). The 
sweScript RT I First strabd cDNA SynthesisAll-in-OneTM 
First-Strand cDNA Synthesis Kit (Servicebio, Wuhan, 
China) was used for reverse transcription to form cDNA. 
Finally, polymerase chain reactions (PCR) were performed 
with the 2× Universal Blue SYBR Green qPCR Master Mix 
(Servicebio). The primers of the prognostic genes were: 
AOX1-F: GTTCACATTTATCTTGATGGCTCTG, 
AOX1-R:  GACATTCGACATTGGCATTCTTA; 
NNMT-F:  CTCCTCTCTGCTTGTGAATCCT, 
NNMT-R:  CCTGTCTCAACTTCTCCTCCTT; 
PTGIS-F: CTGGTTGGGGTATGCCTTGG, PTGIS-R: 
TCATCACTGGGGCTGTAATGT. 

Statistical analysis

All analyses were conducted using R language (https://
www.r-project.org/). Differences in differentially expressed 
analysis, immune-related analysis, and drug sensitivity 
analysis between cluster 1 and cluster 2 were calculated by 
Wilcoxon test. For the clinical correlation analysis, the data 
from different clusters with different characteristics was 
compared by Chi-square test. The differentially mutated 
genes between the different clusters were compared by 
Fisher’s test. If not specified above, P<0.05 was regarded as 
statistically significant. 

Results

Screening for DE-NMRGs and consistent cluster analysis

A total of 27 DE-NMRGs were selected, including 11 
downregulated DE-NMRGs and 16 upregulated DE-
NMRGs (Figure 1A). Based on these 27 DE-NMRGs, two 
clusters were the best clusters with K =2 (Figure 1B,1C).  
The results of UMAP and PCA indicated that the 
distribution of the two clusters was clearer (Figure 1D,1E).

https://www.r-project.org/
https://www.r-project.org/
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Figure 1 Screening for DE-NMRGs and consistent cluster analysis. (A) Differentially expressed NAD+ metabolic genes between cancer 
and normal samples. (B) Consensus clustering cumulative distribution function for k=2 to 10. (C) Consensus clustering matrix for k=2. (D) 
UMAP analysis confirmed the classification. (E) PCA analysis confirmed the classification. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. 
CDF, cumulative distribution function; UMAP, uniform manifold approximation and projection; PCA, principal component analysis; DE-
NMRGs, differentially expressed NAD+ metabolism-related genes; NAD+, nicotinamide adenine dinucleotide. 

Survival analysis among patients with different clusters

To compare the differences in survival between patients with 
different clusters, the Kaplan-Meier curves of the two clusters 
were drawn. There was a significant difference in survival 
between clusters 1 and 2 (P=0.025), with the patients in 
cluster 1 having a good prognosis (Figure 2A). Furthermore, 
18 DE-NMRGs were significantly different between clusters 

1 and 2, including AOX1, ASPDH and ENPP1 (Figure 2B).

Correlation analysis between different clusters and clinical 
characteristics

To understand the correlation between different clusters 
and clinical features, the clinical information of samples 
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was combined with different clusters of patients from the 
TCGA database and clinical features that were significantly 
different from the different clusters were screened out. 
The neoplasm histologic grade (P=0.0020), OS (P=0.0430), 
pathologic T (P=0.0004) and tumor stage (P=0.0035) all 
significantly correlated with the different clusters (Figure 3, 
Figure S1).

GSEA functional enrichment analysis among different 
clusters

The different GO biological processes and KEGG 
pathways between clusters 1 and 2 were enriched, 
respectively. The mainly GO terms enriched were cyclic_
nucleotide_mediated_signaling (ES =0.6320), synaptic_
signaling (ES =0.5450), regulation_of_dna_directed_dna_
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Figure 4 GSEA functional enrichment analysis among different subtypes. (A) Cluster 2 enrichment results in GOBP. (B) Cluster 1 
enrichment results in GOBP. (C) Cluster 2 enrichment results in KEGG. (D) Cluster1 enrichment results in KEGG. GSEA, gene set 
enrichment analysis; GOBP, Gene Ontology Biological Process; KEGG, Kyoto Encyclopedia of Genes and Genomes.

polymerase_activity (ES =−0.9037), etc. (Figure 4A,4B). The 

main enriched KEGG pathways were hedgehog_signaling_

pathway (ES =0.6740), focal_adhesion (ES =0.6363), base_

excision_repair (ES =−0.6906), etc. (Figure 4C,4D).

Analysis of somatic mutation among different clusters

To investigate the somatic mutation frequencies among the 
different STAD clusters, the different mutational patterns 
between the 186 samples of cluster 1 and the 186 samples of 
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cluster 2 were observed. The splice site, nonsense mutation, 
nonstop mutation, in frame del, missense mutation, frame 
shift ins and frame shift del were significantly different 
between clusters (Figure 5A). Moreover, the frequencies 
of missense mutations were the largest in both cluster 1 
and cluster 2. Somatic mutation signatures of SNVs, INS, 
SNPs and DELs were significantly different between 
clusters (Figure 5B,5C). Additionally, the gene mutation of 
the patients in clusters 1 and 2 is shown in Figure 5D,5E. 
The TTN was the highest gene mutation in the patients of 
clusters 1 and 2 (Figure 5D,5E). A total of 31 differentially 
mutated genes were selected between cluster 1 and cluster 2, 
including PSD, HDAC4 and INADL (Figure 5F). 

Immune microenvironment analysis

To study immune cell infiltration in patients with different 
clusters, the proportions of 22 immune cells in the  
189 samples of cluster 2 and the 186 samples of cluster 
1 were calculated. Among them, 152 samples of cluster 
2 and 106 samples of cluster 1 were screened for further 
exploration. There were eight immune cells that were 
significantly different between clusters, including T 
cells follicular helper, T cells CD4 memory activated, 
macrophages M2, T cells CD4 memory resting, monocytes, 
dendritic cells activated, mast cells resting and eosinophils 
(Figure 6A). Additionally, the immune score, stromal score 
and estimate score were calculated in the different clusters 
and there were significant differences in the two clusters 
(Figure 6B-6E).

Sensitivity analysis of immunotherapy and predictive 
analysis of chemotherapeutics

The patients in cluster 2 were sensitive to CTLA4 
inhibitor treatment with P=0.02 (Figure 7A). Furthermore, 
of the top five drugs are shown in Figure 7, AP.24534, 
BX.795, Midostaurin, WO2009093927 and CCT007093 
were significantly higher in cluster 1 than in cluster 2 
(Figure 7B-7F). 

Screening for prognostic genes and prognostic analysis

A total of 1,734 DEGs were obtained from clusters 1 
and 2: 1,427 upregulated DEGs and 307 downregulated 
DEGs (Figure 8A). Next, three prognostic genes (AOX1, 
NNMT and PTGIS) were acquired from the intersection of 
the DEGs and DE-NMRGs (Figure 8B). In addition, the 

overall survival (OS) of AOX1 (P=0.02) (Figure 8C), NNMT 
(P=5e−04) (Figure 8D) and PTGIS (P=0.012) (Figure 8E) 
were different between the high and low expression groups. 

qRT-PCR

We performed qRT-PCR on a normal cell line (GES-1) and 
cancer cell lines (HGC-27, NCI-N87 and SNU-1) to verify 
the expression of the prognostic genes. The expressions of 
PTGIS, NNMT and AOX1 were the same as the results of 
the bioinformatics analysis. The expressions of PTGIS and 
AOX1 were higher in the normal cell line (GES-1) than in 
the cancer cell lines (HGC-27, NCI-N87 and SNU-1), but 
that of NNMT was lower (Figure 9).

Discussion

STAD has high incidence and mortality rates, accounting 
for 95% of GC cases. It is the fifth most common 
malignancy worldwide and the fourth leading cause of 
cancer death worldwide (1). Because the disease is often 
diagnosed late, its prognosis is poor (25,26). Many studies 
have shown that people with GC have alterations in NAD+ 
metabolism-related molecules or chemicals (13,27), but no 
studies have reported the NAD+ metabolic signatures with 
regard to GC prognosis.

NAD+ is a key coenzyme in redox processes and an 
enormously critical aspect of energy metabolism (8). 
NAD+ can directly and indirectly affect several essential 
biological activities, including metabolic pathways, DNA 
repair, chromatin remodeling, cellular senescence, and 
immune cell function (28,29). Studies have indicated that 
NAD+ levels play a role in cancer progression through 
multiple signaling pathways affecting DNA repair and 
cellular defense (30,31). ATP and NAD+ produced by cells 
in the tumor microenvironment can be transformed to 
adenosine by CD38 ecto-NADase and CD39 ecto-ATPase, 
hence lowering T cell function and inhibiting tumor  
immunity (32). NADK has been found to be cancer-
promoting, and inhibition of this enzyme lowers tumor 
cell proliferation and xenograft growth in vivo (33). Studies 
have found that nicotinamide mononucleotide (NMN) 
supplementation in combination with PD-L1 antibodies 
significantly inhibits tumor progression in vivo, suggesting 
that NAD supplementation may be a promising therapeutic 
strategy for the treatment of drug-resistant tumors  (13). 
Oxaliplatin attenuates the NAD/NADH ratio by blocking 
tumor-associated NADH oxidase (tNOX), consequently 
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boosting p53 acetylation and death of GC cells (34). Liu  
et al. found that suppression of NAMPT function promoted 
apoptosis in GC cells and improved effector CD8+ T cell 
function (27). Therefore, an in-depth understanding of the 
roles of NMRGs in tumor development and elucidation 
of these molecular mechanisms are of enormous value for 

cancer therapy targeting NAD+ and its metabolites.
In this study, we carried out molecular stratification 

analysis based on NMRGs to evaluate the relationship 
between different clusters and the prognosis of STAD. 
Finally, qRT-PCR was utilized to evaluate the expression 
of key prognostic genes in human gastric adenocarcinoma 
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cell lines, to further comprehend the in vivo differences of 
STAD patients with different survival rates. AOX1, NNMT 
and PTGIS are considered to be three key genes associated 
with STAD prognosis among the NMRGs. The NNMT 
catalytic reaction is primarily the removal of precursor 
molecules in the pathway of NAD+ production  (12).  
NNMT methylates NAM to MNAM (8), thus playing a 
central regulatory role in the metabolism of the cancer-
associated fibroblast differentiation and cancer progression 
in the stroma (35). Both knockdown and pharmacological 
inhibition of NNMT have been found to lead to an increase 
in NAD+ content  (12). Previous research showed that 
NNMT expression was substantially linked with GC stage, 
and increased stromal NNMT expression predicted poor 
prognosis in GC, which is consistent with our data (36). It 
is worth noting that Liu et al. demonstrated that NNMT 
directly interacts with TTPAL to activate PI3K/AKT 
signaling to promote gastric carcinogenesis, hence partaking 
in cancer proliferation, invasion, metastasis and drug 
resistance (37). Likewise, AOX1 is one of the key enzymes 
in tryptophan catabolism, and deletion of AOX1 may lead 
to the accumulation of kynurenine and NADP (38,39). 
Kynurenine can bind to aromatic hydrocarbon (AhR) 
receptors on immune cells to evade immune responses 
by tumors (40). In the clinic, AOX1 has been found to be 
involved in the development and progression of several 
malignancies, such as bladder, prostate and colorectal 
cancers (38,41,42). Prostaglandin I2 synthase (PTGIS) is 
a crucial gene for the synthesis of prostaglandin I2 and 
plays a key role in inflammation and immune modulation 
(43,44). High expression of PTGIS promotes the infiltration 
of tumor-associated macrophages and T-regulatory cells 
(Tregs) in the tumor microenvironment, which leads to a 
worse prognosis in GC patients (44).

We observed that TTN had the highest gene mutation 
frequency in patients with cluster 1 and cluster 2 subtypes, 
and the missense mutation accounted for the highest 
proportion of this gene mutation type. Mutations in TTN, 
the gene encoding giant myofilament titin, cause familial 
dilated cardiomyopathy (45). Study has shown that patients 
with a high frequency of TTN mutations have a better 
prognosis, which is similar to our results (46). Yang et al. 
found that TTN mutations were effective in predicting 
GC prognosis, tumor mutation burden (TMB), and 
immunotherapy response (47). 

In order to analyze the infiltration of immune cells 
in patients with various subtypes, we estimated the 
proportions of 22 categories of immune cells between the 
two groups and found that eight types were substantially 
different in distinct subtype groups. In the high-risk 
group, the infiltration degree of T cells CD4 memory 
resting, eosinophils, monocytes, macrophages M2, and 
mast cells resting was higher, while in the low-risk group, 
the infiltration degree of T cells CD4 memory activated, 
T cells follicular helper, and dendritic cells activated was 
higher. This may imply a protective role for activated CD4+ 
memory T cells and Tfh cells in GC patients. Previous 
studies have shown that memory T cells can provide 
protection against GC and are associated with lymph 
node metastasis in GC (48). Tryptophan catabolism helps 
tumor cells evade immune responses through accumulated 
catabolites, prompting the differentiation of CD4+ cells into 
Tregs (49,50). High levels of CD4+ T cells appear in the 
early clinical stage and are significantly correlated with the 
clinical stage of GC (51). NAMPT plays an important role 
in the differentiation of macrophages to the M2 phenotype, 
which usually has low NAD levels (49,50). The tumor-
associated macrophages in gastric adenocarcinoma are 
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mainly M2 macrophages, which are closely related to the 
migration and invasion of tumor cells  (52). We discovered 
that increased macrophage M2 infiltration was related to 
lower survival outcomes in GC patients. Studies by others 
have also indicated that large concentrations of macrophages 
predict worse survival results in GC patients (53,54). The 
foregoing data show that NMRGs may affect the survival 
rate of GC patients by influencing immune cell infiltration 
of tumors. Although our results cannot clarify the effects on 
immune cells, they reveal their association and their effect 
on prognosis. The association of NAD+ with immune cell 
infiltration may allow new research to determine the precise 
mechanisms of immune escape, ultimately inspiring new 
therapeutic modalities. Interestingly, we observed significant 
enrichment of pathways related to DNA replication repair 
and cell cycle regulation in cluster 1 patients. Cancer cell 
genome instability, favorable for accumulation of mutations 
and expansion of tumor heterogeneity, and pathways 
related to DNA replication repair and cell cycle regulation 
play essential roles in the development of GC (55,56). 
Therefore, the relationship between NAD+ metabolism and 
pathways relevant to DNA replication repair and cell cycle 
regulation in GC merits additional research.

N A D +  h a s  b e e n  r e p o r t e d  t o  e n h a n c e  D N A  
demethylation  (57). NAD+ is also a substrate for polyribose 
polymerase 1 (PARP1), a nuclear protein that plays a key 
role in DNA methylation  (58). Tumor NAD metabolism 
mainly regulates DNA demethylation through Tet1-
mediated Dnmts,  and NAD metabolism regulates 
and induces PD-L1 expression by controlling DNA 
demethylation  (13). The link between NAD+ and DNA 
methylation provides a nutritionally guided approach to 
clinical cancer management.

In our results, patients with the cluster 2 subtype were 
shown to be sensitive to cytotoxic T lymphocyte-associated 
protein (CTLA)-4 inhibitor treatment. The CTLA-4 
pathway is a key regulator of T cell responses to tissues, 
coregulating T cell responses with the receptor CD28 (59). 
The restriction of the CTLA-4 immune response to self-
tissue can be relieved by anti-CTLA-4 antibody (60,61). 
Ipilimumab is a CTLA-4 inhibitor (61,62). In a single-
agent trial of ipilimumab in GC patients, doses of 10 mg/kg  
did not significantly improve patient outcomes (61). In a 
multicenter randomized controlled study (NCT02872116), 
nivolumab plus ipilimumab did not significantly improve 
OS compared with chemotherapy (63). But we did observe 
that after 12 months, the nivolumab plus ipilimumab group 
was superior to chemotherapy (63). These findings imply 

that CTLA-4 inhibitors may have long-term clinically 
meaningful OS and progression-free survival (PFS) benefits. 
Our research into genes related to NAD+ metabolism 
may suggest that in patients who are sensitive to CTLA-
4 inhibitors, combination therapy with anti-CTLA-4 and 
anti-PD-1 antibodies are worth exploring in future research.

However, this study has some limitations. Some of the 
genes in the dataset were filtered during the microarray 
quality control phase, making it impossible to analyze all 
NMRGs. More cohorts with larger samples are needed to 
validate our findings, and we will continue to focus on the 
role of these genes in the future.

Conclusions

This study assessed the role of NAD+ metabolism genes 
and pathways in STAD and analyzed the relationship 
between NAD+ metabolism and immune cell infiltration. 
In addition, we used qRT-PCR to analyze the expression of 
key prognostic genes in human gastric adenocarcinoma cell 
lines. Based on our above analysis, the kynurenine metabolic 
pathway affected by the key gene AOX1 is a potential target 
for the treatment of gastric adenocarcinoma, and it may be 
possible to improve the efficacy of gastric adenocarcinoma 
immunotherapy by inhibiting kynurenine metabolism. The 
results provide a theoretical basis and reference for further 
treatment and prognosis of STAD.
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