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Potential prognostic mRNA biomarkers are exploited to assist in the clinical management

and treatment of breast cancer, which is the first life-threatening tumor in women

worldwide. However, it is technically challenging for untrained researchers to process

high dimensional profiling data to screen and validate the potential prognostic values

of genes of interests in multiple cohorts. Our aim is to develop an easy-to-use web

server to facilitate the screening, developing, and evaluating of prognostic biomarkers in

breast cancers. Herein, we collected more than 7,400 cases of breast cancer with gene

expression profiles and clinical follow-up information from The Cancer Genome Atlas and

Gene Expression Omnibus data, and built an Online consensus Survival analysis web

server for Breast Cancers, abbreviated OSbrca, to generate the Kaplan–Meier survival

plot with a hazard ratio and log rank P-value for given genes in an interactive way. To

examine the performance of OSbrca, the prognostic potency of 128 previously published

biomarkers of breast cancer was reassessed in OSbrca. In conclusion, it is highly valuable

for biologists and clinicians to perform the preliminary assessment and validation of

novel or putative prognostic biomarkers for breast cancers. OSbrca could be accessed

at http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp.
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INTRODUCTION

Breast cancer is one of the leading cancers and the primary cause of mortality in women.
The global burden of breast cancer is still increasing (1). It is predicted that by 2021, the
incidence of breast cancer will increase to 85 per 100,000 women in China (2). Currently,
clinicopathological risk factors are primarily used to estimate prognosis. These clinicopathological
risks include stage, histological grade, tumor size, lymph node infiltrate, and so on (3). Molecular
subtypes influence the survival of breast cancer. According to three protein expression statuses
[estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2
(HER2)], breast cancer can be categorized into four classes: luminal A, luminal B, basal-like,
and HER2+ (4). Because of the heterogeneity and survival difference of breast cancer, the
utmost interests for researchers are how to validate the prognostic and predictive candidate genes

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01349
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01349&domain=pdf&date_stamp=2019-12-20
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xqguo@henu.edu.cn
https://doi.org/10.3389/fonc.2019.01349
https://www.frontiersin.org/articles/10.3389/fonc.2019.01349/full
http://loop.frontiersin.org/people/692844/overview
http://loop.frontiersin.org/people/647946/overview
http://loop.frontiersin.org/people/704935/overview
http://loop.frontiersin.org/people/758265/overview
http://loop.frontiersin.org/people/654242/overview
http://loop.frontiersin.org/people/702101/overview
http://loop.frontiersin.org/people/584021/overview
http://loop.frontiersin.org/people/605469/overview
http://bioinfo.henu.edu.cn/BRCA/BRCAList.jsp


Yan et al. Evaluation of Breast Cancer Prognostic Biomarkers

in appropriately powered breast cancer cohorts using the
massive published expression levels of various genes profiles with
clinical outcome.

So far, a number of poor clinical outcome associated genes
have been identified. The most famous prognostic significance of
breast cancer is the estrogen receptor gene, which is expressed
in 50–70% of clinical tumor cases (5). Progesterone receptor and
HER2 are two other important prognostic-related and predictive
genes for breast cancer. In addition, a lot of new prognostic genes
are exploited for diagnosing and curing breast cancer, such as
breast cancer 1/2, TP53, cyclin D1, cyclin E, cathepsin D, cystatin
E/M, and plexin B1 (6–8). Many studies showed that using
multigenes as a panel of biomarkers may work more accurately
to predict clinical outcome (9). Therefore, multivariate cohorts
are needed to identify novel genes, and these genes need to be
exploited to cure and evaluate prognosis of breast cancer.

By combining clinical follow-up data and high-throughput
profiling data, we have reached a better understanding in the
study of breast carcinoma. In this study, we collected the gene
expression profiling data with follow-up information of breast
cancers, which were mainly from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) database. Our
aim is to provide a high powerful web server with massive
data to generate survival plots to assess the relevance of the
expression levels of interested genes on the clinical outcome for
breast cancer patients. The Online consensus Survival analysis
web server for Breast Cancers offers a web server to clinicians or
non-bioinformatics researchers to appraise or exploit potential
prognostic genes. Users can predict the prognostic potency of
gene of interests using OSbrca.

METHODS AND EXPERIMENT

Data Collection
The gene expression profiling datasets for breast cancer were
mainly composed of TCGA and GEO cohorts (Table 1)
according to the following four criteria: (1) the cohort must
have at least 50 breast cancer cases, (2) the cohort must
contain individual clinical follow-up information, (3) the probe
annotation should be completed or probe could be translated
to gene symbol by ID conversion, such as DIVID, and (4) only
platforms with more than 50 individual samples were selected if
GEO cohorts having more than one platform.

Development of OSbrca
The OSbrca server is deployed in a tomcat server as previously
described with minor modification (10). In brief, front-end
application was exploited in HTML and JSP to retrieve user
inputs and display the output on the web page. Java and R were
also used in the server application to control the analysis request
and return the results. The gene expression profiles and clinical
data were stored and managed by the SQL Server database. The
R and SQL Server were linked by third middleware (The R
packages, “RODBC” and “JDBC”). The R package “survminer”
and “survival” generate Kaplan–Meier (KM) survival curves with
log-rank P-value and calculate the hazard ratio (HR) with 95%
confidence intervals (95%CI). The KM survival curves measure

the effect of genes on survival using breast cancer data (11). Log-
rank test is the standard method of survival data comparison,
which is widely used in survival analysis (12). HR and 95%
confidence interval (95% CI) were calculated by univariate Cox
regression analysis. OSbrca can be accessed in http://bioinfo.
henu.edu.cn/BRCA/BRCAList.jsp.

Collection and Authenticating Previously
Reported Prognostic Biomarkers of Breast
Cancer
To collect previously published biomarkers of breast cancer in the
PubMed, three key words were used: breast cancer, prognostic,
and biomarker. One hundred and twenty-eight previously
identified prognostic biomarkers are listed in Table S1. To
examine the performance of OSbrca, each reported prognostic
biomarker was analyzed in OSbrca, by categorizing patients
with “upper 25%” (the upper 25% expression vs. the bottom
75% expression). In addition, OSbrca is a web server for cross-
validation of the potential prognostic biomarkers among tens
of breast cancer cohorts. As a result, the methodology of
validation in OSbrca includes two parts. First, we performed
the validation of prognostic biomarkers between different breast
cancer cohorts, and this independent validation between cohorts
is of great importance for biomarker development; second,
validation of previously reported prognostic biomarkers in
OSbrca presented the reliability of OSbrca.

RESULTS

Collection of Gene Expression Profiles
With Clinical Follow-Up Information of
Breast Cancer
Breast cancer is the leading mortality in women and is one
of the most widely studied cancers. Thus, the urge for breast
cancer patient is to exploit novel therapy target and prognostic
biomarkers, which would offer the opportunities to assist the
clinical management and treatment. However, it is technically
challenging for untrained researchers to process the high
dimensional profiling data to screen and validate the potential
prognostic values of genes of interests in multiple cohorts.
To build OSbrca, we have collected more than 7,400 samples
of breast cancer expression profiles with clinical follow-up
information, mainly obtained from TCGA (1,092 samples) and
GEO cohorts (6,364 samples) (Table 1). OSbrca includes overall
survival (OS, 3,786 patients from 23 cohorts), progression-free
interval (1,096 patients only from TCGA cohort), progression-
free survival (1,096 patients only from TCGA cohort), disease-
specific survival (1,499 patients from three cohorts), disease-
free interval (952 patients only from TCGA cohort), recurrence-
free survival (RFS, 2,207 patients from 19 cohorts), disease-free
survival (DFS, 1,632 patients from 11 cohorts), and metastasis-
free survival (MFS, 2,508 patients from 16 cohorts). In other
words, the OSbrca can predict those eight survival endpoints
basing on breast cancer clinical information, such as RFS.
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TABLE 1 | The basic information of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) of breast cancer cohorts in Online consensus Survival

analysis web server for Breast Cancers (OSbrca).

Datasets Cohort Platform Survival No.# References

1 NIH and NHGRI TCGA DCC OS, PFI, PFS, DSS, DFI 1,083, 1,096, 1,096, 1,078,952 (19)

2 Chapel Hill GSE10885 GPL1390 OS, RFS 94, 95 (20)

3 Chapel Hill GSE10886 GPL1390 OS, RFS 178, 178 (21)

4 Chapel Hill GSE10893 GPL1390 OS, RFS 155, 156 (22)

5 Leverkusen GSE11121 GPL96 MFS 200 (23)

6 San Diego GSE12093 GPL96 DFS 136 (24)

7 Rotterdam GSE12276 GPL570 MFS 204 (25)

8 Carlsbad GSE1379 GPL1223 DFS 60 (26)

9 Stockholm GSE1456 GPL96 OS, MFS 159, 159 (27)

10 Woburn GSE17705 GPL570 RFS 298 (28)

11 Chapel Hill GSE18229 GPL887 OS, RFS 53, 53 (29)

12 Chapel Hill GSE18229 GPL1390 OS, RFS 164, 165 (29)

13 San Diego GSE2034 GPL96 MFS 286 (30)

14 Taipei GSE20685 GPL570 OS, MFS 327, 327 (31)

15 Toronto GSE20711 GPL570 OS, RFS 88, 88 (32)

16 Marseille GSE21653 GPL570 DFS 248 (33, 34)

17 Helsinki GSE24450 GPL6947 OS, DFS 183, 183 (35, 36)

18 New York GSE2603 GPL96 MFS 82 (37)

19 Chapel Hill GSE2607 GPL1390 OS, RFS 52, 52 (38)

20 Chapel Hill GSE26338 GPL887 OS, RFS 56, 56 (39)

21 Chapel Hill GSE26338 GPL1390 OS, RFS 173, 174 (39)

22 Köln GSE26971 GPL96 MFS 258 (40)

23 Chapel Hill GSE2741 GPL1390 OS, RFS 61, 61 (41)

24 Toronto GSE2990 GPL96 RFS 109 (42)

25 Amsterdam GSE31364 GPL14378 DFS 72 (43)

26 Durham GSE3143 GPL8300 OS 158 (44)

27 Marseille GSE31448 GPL570 DFS 251 (34)

28 Taipei GSE33926 GPL7264 MFS 51 (45)

29 Singapore GSE3494 GPL96 DSS 237 (46)

30 Chapel Hill GSE3521 GPL1390 OS, RFS 84, 84 (47)

31 Chapel Hill GSE35629 GPL1390 OS, RFS 53, 53 (48)

32 Milan GSE37181 GPL6884 MFS 123 (49)

33 Bethesda GSE37751 GPL6244 OS 61 (50)

34 Bethesda GSE39004 GPL6244 OS 61 (50, 51)

35 Bangalore GSE40206 GPL4133 MFS 61 (52)

36 Amsterdam GSE41994 GPL16233 DFS 103 (53)

37 Dublin GSE42568 GPL570 OS, RFS 104, 104 (54)

38 Winston-Salem GSE45255 GPL96 DFS, MFS, DSS 94, 136, 134 (55)

39 Taipei GSE48391 GPL570 DFS 81 (56)

40 Singapore GSE4922 GPL96 DFS 249 (57)

41 Chicago GSE5327 GPL96 MFS 58 (58)

42 Taipei GSE53752 GPL7264 MFS 51 (45)

43 Chapel Hill GSE6130 GPL1390 OS, RFS 86, 87 (59)

44 Toronto GSE6532 GPL96 RFS, MFS 119, 239 (60–62)

45 Toronto GSE7390 GPL96 OS, RFS, MFS 198, 198, 198 (63, 64)

46 Toronto GSE9195 GPL570 RFS, MFS 77, 77 (61, 62)

47 Montpellier GSE9893 GPL5049 OS, DFS 155, 155 (65)

Total## 7456

#The number of samples only includes follow-up information; ##only the sum of the highest survival number. OS, overall survival; PFI, progression-free interval; PFS, progression-free

survival; DSS, disease-specific survival; DFI, disease-free interval; RFS, recurrence-free survival; DFS, disease-free survival; MFS, metastasis-free survival.
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FIGURE 1 | Validation previously reported gene PGK1 in Online consensus Survival analysis web server for Breast Cancers (OSbrca). PGK1 gene is high expressed in

tumor tissue as a worse prognostic survival biomarker in breast cancer. (A) OS of TCGA, (B) OS of GSE20685, (C) RFS of GSE17705, (D) MFS of GSE2034, (E) MFS

of GSE269721, (F) DFS of GSE31448. PGK1, phosphoglycerate kinase 1; OS, overall survival; DFS, disease-free survival; RFS, recurrence-free survival; MFS,

metastasis-free survival.

The Architecture of the OSbrca Web Server
for Breast Cancer
Based on the expression profiles and clinical outcome of breast
cancers, OSbrca can determine the prognostic values of interested
genes using KMPlot, HR, and log-rank P-value. OSbrca has
implemented several optional clinical confounding factors, such
as data source, age, stage, histological type, molecular subtype,
survival, and ER/PgR/HER2 status. Users can select different
cutoff, such as the upper 25%, for gene expression levels when
categorizing the breast cancer population. The interface of the
OSbrca is simple and friendly. Users could input the particular
official gene symbol with all the default parameters and then click
“Kaplan–Meier plot” button. The KMPlot with HR and log-rank
P-value will be displayed on the output web page.

Evaluation of the Previously Reported
Prognostic Biomarkers of Breast Cancer in
OSbrca
We have designed OSbrca to be a user-friendly and easy-to-use
online web server to analyze and evaluate the prognostic values

of particular genes in 48 breast cancer cohorts using existing
high-throughput profiling breast cancer data. To measure the
performance and determine the reliability of OSbrca, we have
collected previously published prognostic biomarkers of breast
cancer (Table S1) and tested their prognostic potency in OSbrca.
Fu et al. have demonstrated that PGK1 was overexpressed in
tumor tissue and was an indication of worse survival biomarker
in breast cancer (13). Using OSbrca, we showed that PGK1 gene
was indeed a poor survival biomarker in breast cancer cohorts
(top 6 samples): TCGA [OS, HR (95% CI) = 2.42 (1.74–3.36),
P < 0.0001], GSE20685 [OS, HR (95% CI) = 2.11 (1.35–3.39),
P = 0.001], GSE17705 [RFS, HR (95% CI) = 2.44 (1.51–3.95),
P < 0.001], GSE2034 [MFS, HR (95% CI) = 1.60 (1.06–2.41), P
= 0.0257], GSE269721 [MFS, HR (95% CI) = 1.83 (1.06–3.15),
P = 0.0291], and GSE31448 [DFS, HR (95% CI) = 1.67 (1.03–
2.69), P = 0.0364] (Figure 1). We also test another reported
poor DFS biomarker RRM2. Figure 2 shows that RRM2 gene
was an indication of worse survival indicator in five out of six
breast cancer cohorts (top 6 samples), except in the cohort of
GSE17705 (Figure 2). One hundred and twenty-eight previous
reported prognostic biomarkers were validated in OSbrca shown
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FIGURE 2 | Validation previously reported gene RRM2 in Online consensus Survival analysis web server for Breast Cancers (OSbrca). RRM2 gene is a poor

prognostic biomarker in breast cancer. (A) Progression-free survival (PFS) of The Cancer Genome Atlas (TCGA); (B) OS of GSE20685; (C) RFS of GSE17705; (D)

MFS of GSE2034; (E) MFS of GSE269721; (F) DFS of GSE31448. RRM2, ribonucleotide reductase regulatory subunit M2; PFS, progression-free survival; OS, overall

survival; RFS, recurrence-free survival; MFS, metastasis-free survival; DFS, disease-free survival.

in Table S1. Based on our studies using OSbrca, 62% analyzed
biomarkers (79/128) showed consistent performance as reported
in the literature, but some biomarkers showed contradictory
outcomes to previous results. Taking the AOCA1 gene as an
another example, a previous study showed that the AOCA1 gene
could potentially predict a worse clinical prognosis in breast
cancer (14). However, the analysis from OSbrca suggested that
breast cancer patients with the overexpression of the AOCA1
gene would potentially have a better clinical outcome (Table S1).
In summary, all the results showed that the OSbrca web server is
very reliable through validating previously reported biomarkers
of breast cancer.

DISCUSSION

Breast cancer is widely profiled by RNA-sequences and gene
microarrays, such as TCGA. Thus, the core and focus issue

is how to excavate potential therapy targets and to develop
prognostic biomarkers by possessing massive high-throughput
profiles. Based onmassive data of different cohorts, we integrated
48 cohorts of breast cancer datasets and established an online
web server, named OSbrca. OSbrca implanted a selective set
of clinical parameters, including tumor grade, age, status of
ER/PgR/HER2, menopause status, and so on. The OSbrca could
output the KMPlot with HR and log rank P-value for given
genes in an interactive way. In addition, users can study genes
in a particular country or race using OSbrca, such as Chinese
breast cancer patients. Herein, we retrospectively validated the
previously reported prognostic biomarkers of breast cancer. The
results showed that most previous reported biomarkers could
be identified by some different cohorts of OSbrca (Figures 1,
2, and Table S1). In addition, OSbrca is an across-validation
web server used to exploit breast cancer biomarkers based on
different independent cohorts of breast cancer. Cross-validation
in OSbrca means that it is important to exploit prognostic
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biomarkers among tens of breast cancer cohorts and also presents
the reliability of OSbrca.

So far, there are some online prognostic websites for breast
cancer, such as KM plotter (11), PROGgene (15), ITTACA
(16), PrognoScan (17), OncoLnc, and GEPIA (18), but the
size of datasets used in these tools is relatively small and
limited compared to OSbrca. Specifically, OSbrca integrates
48 cohorts that contain more than 7,400 patients with RNA-
sequencing and gene microarray data. It allows researchers to
revisit previous protein biomarkers and exploit novel prognostic
biomarkers. There are some limitations of this study, such as
the loss of different platform integration, lacking noncoding gene
information, which will be solved in the new-version of this tool.
In addition, when new cohorts become available, we will update
OSbrca in a timely manner.

In conclusion, the OSbrca web server integrates more than
7,400 follow-up breast samples and is highly valuable for
researchers with a limited bioinformatics background to access
and uncover prognostic-related biomarkers for breast cancer.
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